non asymptotic and moderate deviation results in quantum ... · non asymptotic and moderate...

34
Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz´ e (University of Cambridge) Joint with Nilanjana Datta Beyond I.I.D. in Information Theory 24-28 July 2017, Singapore 1 / 31

Upload: others

Post on 22-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Non asymptotic and moderate deviation resultsin quantum hypothesis testing

arXiv:1612.01464v2

Cambyse Rouze (University of Cambridge)Joint with Nilanjana Datta

Beyond I.I.D. in Information Theory24-28 July 2017, Singapore

1 / 31

Page 2: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Overview

1 Quantum hypothesis testing in the i.i.d. setting

2 Quantum hypothesis testing beyond i.i.d.

3 Application to the determination of the capacity of classical-quantum channels

2 / 31

Page 3: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing in the i.i.d. setting

Framework

Let H finite dimensional Hilbert space, ρ, σ ∈ D+(H), set of states on Hρ (null hypothesis) and σ (alternative hypothesis).

A test is a POVM T , I− T, T ∈ B(H), 0 ≤ T ≤ IPossible errors in inference with associated error probabilities:

α(T ) = Tr(ρ(I− T )) type I error

β(T ) = Tr(σT ) type II error

Trade-off between these two errors, various ways of optimizing them.

In the asymmetric case, minimize the type II error while controlling the type I error:

β(ε) = inf0≤T≤1

β(T )| α(T ) ≤ ε.

3 / 31

Page 4: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing in the i.i.d. setting

Size-dependent quantum hypothesis testing

For states ρn, σn ∈ D+(H⊗n), define the type II error exponent:

Rn := −1

nlog β(Tn), ⇔ β(Tn) = e−nRn ,

as well as the type I threshold

εn such that α(Tn) ≤ εn.

Example: the i.i.d. scenario:

4 / 31

Page 5: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing in the i.i.d. setting

Quantum Stein’s lemma

Theorem (Hiai&Petz91, Ogawa&Nagaoka00)

maxα(Tn)≤ε

Rn →n→∞

D(ρ‖σ), ∀ε ∈ (0, 1),

D(ρ‖σ) = Tr(ρ(log ρ− log σ)) Umegaki’s quantum relative entropy.

5 / 31

Page 6: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing in the i.i.d. setting

Small deviations and second order asymptotics

Theorem (Tomamichel&Hayashi13, Li14 )

maxα(Tn)≤ε

Rn = D(ρ‖σ) +1√ns1(ε) +O

(log n

n

), s1(ε) :=

√V (ρ‖σ)Φ−1(ε),

V (ρ‖σ) = Tr(ρ(log ρ− log σ)2)− D(ρ‖σ)2 quantum information variance , Φ ∼ N (0, 1).

6 / 31

Page 7: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing in the i.i.d. setting

Large deviations and the Hoeffding bound

Theorem (Hayashi06, Nagaoka06,Mosonyi&Ogawa14)

R < D(ρ‖σ) : −1

nlog

min

β(Tn)≤e−nRα(Tn)

n→∞sup

0<α<1

α− 1

α[R − Dα(ρ‖σ)]

R > D(ρ‖σ) : −1

nlog

max

β(Tn)≤e−nR(1− α(Tn))

n→∞sup1<α

α− 1

α[R − D∗α(ρ‖σ)]

7 / 31

Page 8: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing in the i.i.d. setting

Moderate deviations

Theorem (Chubb&Tan&Tomamichel17, Chen&Hsieh17)

Moderate sequence ann∈N: an → 0,√nan →∞; εn = e−na2

n :

maxα(Tn)≤εn

Rn = D(ρ‖σ)−√

2V (ρ‖σ)an + (an),

8 / 31

Page 9: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing in the i.i.d. setting

Finite sample size bounds

Asymptotic regime:

ρ⊗n, σ⊗n, n →∞

;Finite sample size:

ρ⊗n, σ⊗n, n <∞

Theorem (Audenaert&Mosonyi&Verstraete12)

D(ρ‖σ)−g(ε)√n≤ maxα(Tn)≤ε

Rn ≤ D(ρ‖σ) +f (ε)√n

f (ε) ∝ log(1− ε)−1, g(ε) ∝ log ε−1

,

9 / 31

Page 10: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing in the i.i.d. setting

What is known

i.i.d. Beyond i.i.d.

Stein’s lemma

α(Tn) ≤ εβ(Tn) ∼ e−nD(ρ‖σ) X1

Small deviations

α(Tn) ≤ εβ(Tn) ∼ e−nD(ρ‖σ)−

√n s1(ε) X2

Large deviations

(R < D(ρ‖σ))

β(Tn) ≤ e−nR

α(Tn) ∼ e−nHR (ρ‖σ) X3

Moderate deviations

α(Tn) ≤ e−na2n

β(Tn) ∼ e−nD(ρ‖σ)+√

2V (ρ‖σ)an√

n ?

Finite sample size

α(Tn) ≤ εβ(Tn) ≤ e−nD(ρ‖σ)+

√ng(ε) ?

1Bjelakovic&Siegmund-Schultze04, Bjelakovic&Deuschel&Krueger&Seiler&Siegmund-Schultze&Szkola08,Hiai&Mosonyi&Ogawa08, Mosonyi&Hiai&Ogawa&Fannes08, Brandao&Plenio10,Jaksic&Ogata&Pillet&Seiringer12, etc.

2Datta&Pautrat&R163Mosonyi&Hiai&Ogawa&Fannes08, Jaksic&Ogata&Pillet&Seiringer12

10 / 31

Page 11: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing in the i.i.d. setting

A tighter lower bound on the error exponent for finite sample size

Theorem (Audenaert&Mosonyi&Verstraete12)

D(ρ‖σ)−g(ε)√n≤ maxα(Tn)≤ε

Rn, g(ε) ∝ log ε−1.

11 / 31

Page 12: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing in the i.i.d. setting

Theorem (R&Datta16)

D(ρ‖σ)−1√nh(ε) ≤ max

α(Tn)≤εRn, h(ε) ∝

√log ε−1.

12 / 31

Page 13: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing in the i.i.d. setting

Theorem (R&Datta16)

D(ρ‖σ)−1√nh(ε) ≤ max

α(Tn)≤εRn, h(ε) ∝

√log ε−1.

0.2 0.4 0.6 0.8 1.0ϵ

-2

-1

1

2

Rates

g(ϵ)

h˜(ϵ)

s1(ϵ)

-f(ϵ)

maxα(Tn)≤ε

Rn = D(ρ‖σ) +1√ns1(ε) +O

(log n

n

)

13 / 31

Page 14: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing in the i.i.d. setting

Key tool 1: martingale concentration inequalities

Concentration inequalities provide upper bounds on tail probabilities of the type

P(|X − E[X ]| ≥ r).

Different methods exist to derive concentration inequalities (martingales, logarithmic Sobolevinequalities, transportation cost, Talagrand’s induction method, etc...)

A martingale is a sequence Xnn∈N of integrable random variables for which:

E[Xn+1|X1, ...,Xn] = Xn almost surely.

Example: sum of independent integrable centered random variables Sn :=∑n

k=1 Yk :

E[Sn+1|Y1, ...,Yn] =n+1∑k=1

E[Yk |Y1, ...,Yn] =n∑

k=1

E[Yk |Y1, ...,Yn] + E[Yn+1|Y1, ...,Yn]

=n∑

k=1

Yk + E[Yn+1] = Sn + 0 = Sn,

Azuma-Hoeffding’s martingale concentration inequality: if ∀k ∈ 1, ..., n,|Xk − Xk−1| ≤ d , then:

P(Xn − X0 ≥ r) ≤ exp

(−

r2

2nd2

).

14 / 31

Page 15: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing in the i.i.d. setting

Key tool 2: the relative modular operator

∆ρ|σ : B(H)→ B(H), A 7→ ρAσ−1.

Noncommutative generalization of the Radon Nikodym derivative between two measures.

∆ρ|σ is a positive operator, admits a spectral decomposition: given

ρ :=∑λ∈sp ρ

λPλ(ρ), σ :=∑µ∈sp σ

µPµ(σ),

log ∆ρ|σ :=∑x∈X

xΠx (log ∆ρ|σ), Πx (log ∆ρ|σ) :=∑

λ∈sp(ρ),µ∈sp(σ),log(λ/µ)=x

LPλ(ρ)RPµ(σ),

where X denotes the set of real numbers log (λ/µ), LA(B) = AB, RA(B) = BA.

The spectral theorem allows us to go from the quantum setting to classical probabilitytheory: given a Hilbert space V, a pure state Ψ ∈ V and a self adjoint operatorO =

∑x∈sp(O) xΠx on V,

P(X ∈ A) := 〈Ψ,ΠA(O)Ψ〉, ΠA :=∑

x∈A⊂sp(O)

Πx

defines a random variable on sp(O), so that ∀f : sp(O)→ R:

E[f (X )] = 〈Ψ, f (O)Ψ〉

15 / 31

Page 16: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing in the i.i.d. setting

From error exponents to concentration

Lemma (Li14, Datta&Pautrat&R16)

For all L > 0 there exists a test T such that

Tr(ρ⊗n(1− T )) ≤ 〈(ρ⊗n)1/2,Π(−∞,log L](log ∆ρ⊗n|σ⊗n )((ρ⊗n)1/2)〉 and Tr(σ⊗nT ) ≤ L−1

.

(1)

Via spectral theorem, define the random variable Xn of law (Ωτ = τ 1/2)

P(Xn = x) := 〈Ωρ⊗n ,Πx (log ∆ρ⊗n|σ⊗n )(Ωρ⊗n )〉

i.e. ∀f : sp(log(∆ρ⊗n|σ⊗n ))→ R

〈Ωρ⊗n , f (log ∆ρ⊗n|σ⊗n )(Ωρ⊗n )〉 =∑x∈X

f (x)〈Ωρ⊗n ,Πx (log ∆ρ⊗n|σ⊗n )(Ωρ⊗n )〉 ≡ E[f (Xn)].

Xn has characteristic function

E[

eiuXn]

= 〈Ωρ⊗n , eiu log ∆

ρ⊗n|σ⊗n (Ωρ⊗n )〉 =n∏

k=1

〈Ωρ, eiu log ∆ρ|σ (Ωρ)〉 = E

[eiu∑n

k=1 Xk],

where (Xk ) i.i.d. random variables so that E[Xk ] = D(ρ‖σ).

Xk − kD(ρ‖σ)1≤k≤n is a centered martingale, hence by Azuma-Hoeffding inequality:

〈Ωρ⊗n ,Π(−∞,−r ](log ∆ρ⊗n|σ⊗n − nD(ρ‖σ) id)(Ωρ⊗n )〉 = P(Xn − nD(ρ‖σ) ≤ −r) ≤ e− r2

2nd2 ,

d := ‖ log ∆ρ|σ − D(ρ‖σ) id ‖∞.

16 / 31

Page 17: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing in the i.i.d. setting

From error exponents to concentration

Lemma (Li14, Datta&Pautrat&R16)

For all L > 0 there exists a test T such that

Tr(ρ⊗n(1− T )) ≤ 〈(ρ⊗n)1/2,Π(−∞,log L](log ∆ρ⊗n|σ⊗n )((ρ⊗n)1/2)〉 and Tr(σ⊗nT ) ≤ L−1

.

(1)

Via spectral theorem, define the random variable Xn of law (Ωτ = τ 1/2)

P(Xn = x) := 〈Ωρ⊗n ,Πx (log ∆ρ⊗n|σ⊗n )(Ωρ⊗n )〉

i.e. ∀f : sp(log(∆ρ⊗n|σ⊗n ))→ R

〈Ωρ⊗n , f (log ∆ρ⊗n|σ⊗n )(Ωρ⊗n )〉 =∑x∈X

f (x)〈Ωρ⊗n ,Πx (log ∆ρ⊗n|σ⊗n )(Ωρ⊗n )〉 ≡ E[f (Xn)].

Xn has characteristic function

E[

eiuXn]

= 〈Ωρ⊗n , eiu log ∆

ρ⊗n|σ⊗n (Ωρ⊗n )〉 =n∏

k=1

〈Ωρ, eiu log ∆ρ|σ (Ωρ)〉 = E

[eiu∑n

k=1 Xk],

where (Xk ) i.i.d. random variables so that E[Xk ] = D(ρ‖σ).

Xk − kD(ρ‖σ)1≤k≤n is a centered martingale, hence by Azuma-Hoeffding inequality:

〈Ωρ⊗n ,Π(−∞,−r ](log ∆ρ⊗n|σ⊗n − nD(ρ‖σ) id)(Ωρ⊗n )〉 = P(Xn − nD(ρ‖σ) ≤ −r) ≤ e− r2

2nd2 ,

d := ‖ log ∆ρ|σ − D(ρ‖σ) id ‖∞.

16 / 31

Page 18: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing in the i.i.d. setting

From error exponents to concentration

Lemma (Li14, Datta&Pautrat&R16)

For all L > 0 there exists a test T such that

Tr(ρ⊗n(1− T )) ≤ 〈(ρ⊗n)1/2,Π(−∞,log L](log ∆ρ⊗n|σ⊗n )((ρ⊗n)1/2)〉 and Tr(σ⊗nT ) ≤ L−1

.

(1)

Via spectral theorem, define the random variable Xn of law (Ωτ = τ 1/2)

P(Xn = x) := 〈Ωρ⊗n ,Πx (log ∆ρ⊗n|σ⊗n )(Ωρ⊗n )〉

i.e. ∀f : sp(log(∆ρ⊗n|σ⊗n ))→ R

〈Ωρ⊗n , f (log ∆ρ⊗n|σ⊗n )(Ωρ⊗n )〉 =∑x∈X

f (x)〈Ωρ⊗n ,Πx (log ∆ρ⊗n|σ⊗n )(Ωρ⊗n )〉 ≡ E[f (Xn)].

Xn has characteristic function

E[

eiuXn]

= 〈Ωρ⊗n , eiu log ∆

ρ⊗n|σ⊗n (Ωρ⊗n )〉 =n∏

k=1

〈Ωρ, eiu log ∆ρ|σ (Ωρ)〉 = E

[eiu∑n

k=1 Xk],

where (Xk ) i.i.d. random variables so that E[Xk ] = D(ρ‖σ).

Xk − kD(ρ‖σ)1≤k≤n is a centered martingale, hence by Azuma-Hoeffding inequality:

〈Ωρ⊗n ,Π(−∞,−r ](log ∆ρ⊗n|σ⊗n − nD(ρ‖σ) id)(Ωρ⊗n )〉 = P(Xn − nD(ρ‖σ) ≤ −r) ≤ e− r2

2nd2 ,

d := ‖ log ∆ρ|σ − D(ρ‖σ) id ‖∞.

16 / 31

Page 19: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing in the i.i.d. setting

From error exponents to concentration

Lemma (Li14, Datta&Pautrat&R16)

For all L > 0 there exists a test T such that

Tr(ρ⊗n(1− T )) ≤ 〈(ρ⊗n)1/2,Π(−∞,log L](log ∆ρ⊗n|σ⊗n )((ρ⊗n)1/2)〉 and Tr(σ⊗nT ) ≤ L−1

.

(1)

Via spectral theorem, define the random variable Xn of law (Ωτ = τ 1/2)

P(Xn = x) := 〈Ωρ⊗n ,Πx (log ∆ρ⊗n|σ⊗n )(Ωρ⊗n )〉

i.e. ∀f : sp(log(∆ρ⊗n|σ⊗n ))→ R

〈Ωρ⊗n , f (log ∆ρ⊗n|σ⊗n )(Ωρ⊗n )〉 =∑x∈X

f (x)〈Ωρ⊗n ,Πx (log ∆ρ⊗n|σ⊗n )(Ωρ⊗n )〉 ≡ E[f (Xn)].

Xn has characteristic function

E[

eiuXn]

= 〈Ωρ⊗n , eiu log ∆

ρ⊗n|σ⊗n (Ωρ⊗n )〉 =n∏

k=1

〈Ωρ, eiu log ∆ρ|σ (Ωρ)〉 = E

[eiu∑n

k=1 Xk],

where (Xk ) i.i.d. random variables so that E[Xk ] = D(ρ‖σ).

Xk − kD(ρ‖σ)1≤k≤n is a centered martingale, hence by Azuma-Hoeffding inequality:

〈Ωρ⊗n ,Π(−∞,−r ](log ∆ρ⊗n|σ⊗n − nD(ρ‖σ) id)(Ωρ⊗n )〉 = P(Xn − nD(ρ‖σ) ≤ −r) ≤ e− r2

2nd2 ,

d := ‖ log ∆ρ|σ − D(ρ‖σ) id ‖∞.

16 / 31

Page 20: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing beyond i.i.d.

1 Quantum hypothesis testing in the i.i.d. setting

2 Quantum hypothesis testing beyond i.i.d.

3 Application to the determination of the capacity of classical-quantum channels

17 / 31

Page 21: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing beyond i.i.d.

Example 1: quantum Gibbs states on spin chains

Hn := H⊗n, HX :=⊗

i∈X⊆ZH

Translation invariant interaction:

Φ : Z ⊇ X 7→ ΦX ∈ Bsa(HX ).

Finite range: ∃R > 0 : |X | > R ⇒ ΦX = 0.

Local Gibbs state: HΦ[n] :=

∑Y⊂[n] ΦY , ρn := e

−βHΦ[n]

Tr(e−βHΦ

[n] )

.

Such states satisfy the factorization property : ∃ R > 0 such that (Hiai&Mosonyi&Ogawa08):

ρn ≤ R ρn−1 ⊗ ρ1 upper factorization,

ρn ≥ R−1ρn−1 ⊗ ρ1 lower factorization.

18 / 31

Page 22: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing beyond i.i.d.

Example 2: finitely correlated states

Defined by Fannes&Nachtergaele&Werner92

Generalizes the notion of a Markov chain to the quantum regime.

E : B(K)→ B(H)⊗ B(K) CPTP map

ρ full-rank state on B(K) such that TrH E(ρ) = ρ.

ρn := TrK(id⊗n−1B(H) ⊗E) ... (idB(H)⊗E) E(ρ) ∈ D+(H⊗n).

ω state whose restriction to each H⊗n is ρn is a finitely correlated state.

Ex: ground state of AKLT Hamiltonian on spin 1 chain (Affleck&Kennedy&Lieb&Tasaki87).

Finitely correlated states satisfy the upper factorization property (Hiai&Mosonyi&Ogawa08)

∃R > 1 : ρn ≤ R ρn−1 ⊗ ρ1.

19 / 31

Page 23: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing beyond i.i.d.

Finite sample size bounds beyond i.i.d.: correlated states

Definition (upper factorization)

ρnn∈N satisfies the upper factorization property if ∃R > 0 such that ∀n ≥ 1,

ρn ≤ R ρn−1 ⊗ ρ1 upper factorization,

Theorem (R&Datta17)

If ρnn∈N and σnn∈N satisfy the upper factorization property, with R ≥ 1, for any 0 ≤ ε ≤ 1,

maxα(Tn)≤ε

Rn ≥

D(ρ1‖σ1)− c

√2 log(Rnε−1)

nif ε ≥ Rne−nc2/2

,

D(ρ1‖σ1)− c2/2−

1

nlog(Rn

ε−1) else,

where c := ‖ log ∆ρ1‖σ1− D(ρ1‖σ1) id ‖∞.

The proof consists of an adaptation of the proof of Azuma-Hoeffding’s inequality.

20 / 31

Page 24: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Quantum hypothesis testing beyond i.i.d.

Moderate deviations beyond i.i.d.: correlated states

Definition (factorization property)

∃R > 0 such that

ρn ≤ R ρn−1 ⊗ ρ1 (upper factorization),

ρn ≥ R−1ρn−1 ⊗ ρ1 (lower factorization).

Theorem (R&Datta17)

Let ρn, σn ∈ D+(H⊗n) satisfying the upper factorization property with

0 ≤ log R < (4− ec )(ec − 1)2V (ρ1‖σ1)/(6c2),

where c := ‖ log ∆ρ1‖σ1− D(ρ1‖σ1) id ‖∞ < log 4. Let ann∈N moderate, εn := e−na2

n . Then,for n large enough:

maxα(Tn)≤εn

Rn ≥ D(ρ1‖σ1)−√

2V (ρ1‖σ1)

(3

4− ec(log R + a2

n)

)1/2

If ρnn∈N and σnn∈N satisfy the lower factorization property with R > 1, then

maxα(Tn)≤εn

Rn ≤ D(ρ1‖σ1)−√

2V (ρ1‖σ1)an + (an).

The proof can be rearranged to get back the results of Chubb et al and Chen et al in thei.i.d. scenario.

21 / 31

Page 25: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Application to the determination of the capacity of classical-quantum channels

1 Quantum hypothesis testing in the i.i.d. setting

2 Quantum hypothesis testing beyond i.i.d.

3 Application to the determination of the capacity of classical-quantum channels

22 / 31

Page 26: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Application to the determination of the capacity of classical-quantum channels

Information transmission via memoryless c-q channels

Assume Alice wants to communicate with Bob using a c-q channel:

W : X → D(H)

Alice encodes message k ∈ M := 1, ...,M into codeword xk ∈ X , into state W(xk ).

Bob performs a measurement modeled by a POVM T = T1, ...,TM.

The average probability of success is given by

P(success|W,T ) =1

M

M∑k=1

Tr(W(xk )Tk ).

The one-shot ε-error capacity of W is given by

C(W, ε) := log M∗(W, ε),

M∗(W, ε) := maxM ∈ N| ∃ POVM T : P(success|W,T ) ≥ 1− ε.

23 / 31

Page 27: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Application to the determination of the capacity of classical-quantum channels

Finite sample size analysis of memoryless c-q channels

n independent uses of W: Alice encodes message k ∈ 1, ...,Mn 7→ (xk,1, ..., xk,n) ∈ X n.

Holevo-Schumacher-Westmoreland theorem: for all 0 < ε < 1,

C(W⊗n, ε)

n→ χ

∗(W) := suppX

∑x∈X

pX (x)D

W(x)‖∑y∈X

pX (y)W(y)

Second order & moderate deviation: Tan&Tomamichel15, Chubb&Tan&Tomamichel17,Cheng&Hsieh17, using Wang&Renner12 to relate c-q capacity to type II error exponent.

Proposition (Finite sample size analysis, R&Datta17)

For any ε ∈ (0, 1), any pX achieving the Holevo capacity, and any ε′ ∈ (0, ε):

C(W⊗n, ε)

n≥ χ∗(W)−

√2 log ε′−1

ncpX −

1

nlog

ε− ε′,

where cpX := ‖ log ∆ρpX |σpX− D(ρpX ‖σpX ) id ‖∞, with

ρpX =∑x∈X

pX (x)|x〉〈x| ⊗W(x), σpX =∑x∈X

pX (x)|x〉〈x| ⊗∑y

pX (y)W(y)

.24 / 31

Page 28: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Application to the determination of the capacity of classical-quantum channels

c-q channels with memory

A sequence of c-q channels Wn : X n → D(H⊗n) satisfies the channel upper factorizationproperty if ∃R > 0:

∀(x1, ..., xn) ∈ X n : Wn(x1, ..., xn) ≤ R Wn−1(x1, ..., xn−1)⊗W1(xn).

Assume the following communication scheme:

Proposition (Finite sample size analysis)

If R ≥ 1, then for any ε ∈ (0, 1), any pX achieving χ∗(W1), and any ε′ ∈ (0, ε):

C(Wn, ε)

n≥

χ∗(W1)− cpX

√2 log(Rnε′−1)

n−

1

nlog

ε− ε′for Rne

−nc2pX

/2 ≤ ε′ < ε,

χ∗(W1)−

c2pX2−

1

nlog Rn

ε′−1 − log

ε− ε′else.

Similarly, a moderate deviation analysis can be carried out.

Open question: find a c-q channel with memory satisfying the factorization property.

25 / 31

Page 29: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Application to the determination of the capacity of classical-quantum channels

Summary

Martingale concentration inequalities can be used to find a finite sample size lower bound forthe optimal type II error exponent in the i.i.d. case and beyond. In the i.i.d. case, this boundis tighter than the previous bound of Audenaert&Mosonyi&Verstraete12.

Similar techniques can be used to derive moderate deviation bounds for sequences of statessatisfying a factorization property.

The one-shot bound of Wang&Renner12 can be applied to find finite sample size andmoderate deviation results for c-q channels.

An example of a quantum channel with memory satisfying the channel upper factorizationproperty is lacking at the moment.

26 / 31

Page 30: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

Application to the determination of the capacity of classical-quantum channels

Thank you for your attention!

27 / 31

Page 31: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

References

References

Audenaert&Mosonyi&Verstraete12: Quantum state discrimination bounds for finite samplesize. Journal of Mathematical Physics, Vol. 53, 122205 (2012).

Bjelakovic&Siegmund-Schultze04: An ergodic theorem for quantum relative entropy. Comm.Math. Phys. 247, 697 (2004)

Bjelakovic&Deuschel,&Krueger&Seiler&Siegmund-Schultze&Szkola08: Typical support andSanov large deviations of correlated states. Comm. Math. Phys. 279, 559 (2008).

Brandao&Plenio: A Generalization of Quantum Stein’s Lemma. Commun. Math. Phys. 295:791 (2010).

Datta&Pautrat&Rouze16: Second-order asymptotics for quantum hypothesis testing insettings beyond i.i.d.—quantum lattice systems and more. Journal of Mathematical Physics,57, 6, 062207 (2016)

Fannes&Nachtergaele&Werner92: Finitely correlated states on quantum spin chains.Commun. Math. Physics, 144, 443 490 (1992)

Hayashi07: Error exponent in asymmetric quantum hypothesis testing and its application toclassical-quantum channel Phys. Rev. A 76, 062301

Hiai&Mosonyi&Ogawa08: Large deviations and Chernoff bound for certain correlated stateson the spin chain. J. Math. Phys.

Hiai&Mosonyi&Ogawa08: Error exponents in hypothesis testing for correlated states on aspin chain. J. Math. Phys. 49, 032112 (2008).

Hiai&Petz91: The proper formula for the relative entropy an its asymptotics in quantumprobability. Comm. Math. Phys. 143, 99 (1991).

28 / 31

Page 32: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

References

Jaksic&Ogata&Piller&Seiringer12: Quantum hypothesis testing and non-equilibriumstatistical mechanics. Rev. Math. Phys. 24, 1230002 (2012).

Li14: Second-order asymptotics for quantum hypothesis testing. Ann. Statist. Volume 42,Number 1, 171-189 (2014).

Mosonyi&Hiai&Ogawa&Fannes08: Asymptotic distinguishability measures for shiftinvariantquasi-free states of fermionic lattice systems. J. Math. Phys. 49, 032112 (2008).

Nagaoka06: The converse part of the theorem for quantum Hoeffding bound.arXiv:quant-ph/0611289

Ogawa&Nagaoka00: Strong Converse and Stein’s Lemma in the Quantum HypothesisTesting. IEEE Trans. Inf. Theo. 46, 2428 (2000).

Sadghi&Moslehian14: Noncommutative martingale concentration inequalities. Illinois Journalof Mathematics, Volume 58, Number 2, 561-575 (2014).

Sason11: Moderate deviations analysis of binary hypothesis testing. 2012 IEEE InternationalSymposium on Information Theory Proceedings, Cambridge, MA, pp. 821-825 (2012).

Tomamichel&Hayashi13: A Hierarchy of Information Quantities for Finite Block LengthAnalysis of Quantum Tasks. IEEE Transactions on Information Theory, vol. 59, no. 11, pp.7693-7710 (2013).

29 / 31

Page 33: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

References

Proof (1)

Define Vn−1 : B(H⊗n)(ρn−11/2 ⊗ ρ1

1/2)→ B(H⊗n)ρn1/2 by

Vn−1(Xn(ρn−11/2 ⊗ ρ1

1/2)) = R−1/2Xnρn1/2, ∀Xn ∈ B(H⊗n).

Vn−1 is a contraction (upper factorization property). Moreover,

V ∗n−1∆σn|ρnVn−1 ≤ ∆σn−1⊗σ1|ρn−1⊗ρ1= ∆σn−1|ρn−1

⊗∆σ1|ρ1.

〈ρn1/2,∆t

σn|ρn (ρn1/2)〉 = R 〈(ρ1/2

n−1 ⊗ ρ11/2),V ∗n−1∆t

σn|ρnVn−1(ρn−11/2 ⊗ ρ1

1/2)〉

≤ R 〈(ρ1/2n−1 ⊗ ρ1

1/2), (V ∗n−1∆σn|ρnVn−1)t(ρ1/2n−1 ⊗ ρ1

1/2)〉 operator Jensen

≤ R 〈(ρ1/2n−1 ⊗ ρ1

1/2), (∆σn−1|ρn−1⊗∆σ1|ρ1

)t(ρ1/2n−1 ⊗ ρ1

1/2)〉 t ∈ [0, 1], x 7→ x t

= R 〈ρ1/2n−1,∆t

σn−1|ρn−1(σn−1

1/2)〉 〈ρ11/2,∆t

σ1|ρ1(ρ1

1/2)〉 operator monotone

≤ Rne−ntD(ρ1‖σ1) 〈Ωρ1, e

t(log(∆σ1|ρ1)+D(ρ1‖σ1))

(Ωρ1)〉n iteration.

By convexity of the exponential function, with c ≡ ‖ log ∆σ1|ρ1+ D(ρ1‖σ1) id ‖∞:

ets ≤1

2c

(etc − e−tc

)s +

1

2

(etc + e−tc

)− c ≤ s ≤ c.

〈Ωρ1, ∆t

σ1|ρ1(Ωρ1

)〉

≤ e−tD(ρ1‖σ1)[

1

2c

(etc − e−tc

)(〈Ωρ1

, log ∆σ1|ρ1(Ωρ1

)〉 + D(ρ1‖σ1)) +1

2

(etc + e−tc

)]= e−tD(ρ1‖σ1) 1

2

(etc + e−tc

)≤ e−tD(ρ1‖σ1)+t2c2/2

, using1

2(eu + e−u) ≤ eu

2/2.

30 / 31

Page 34: Non asymptotic and moderate deviation results in quantum ... · Non asymptotic and moderate deviation results in quantum hypothesis testing arXiv:1612.01464v2 Cambyse Rouz e (University

References

Proof (2)

By functional calculus, the following Markov-type inequality holds:

Π[λ,∞)(log(∆σn|ρn )) = Π[eλt ,∞)

(∆tσn|ρn ) ≤ e−λt∆t

σn|ρn .

Therefore

〈Ωρn ,Π[λ,∞)(log ∆σn|ρn )(Ωρn )〉 ≤ Rne−(λ+nD(ρ1‖σ1))tent2c2/2

,

Optimizing over t,

〈Ωρn ,Π[λ,∞)(log ∆σn|ρn )(Ωρn )〉 ≤

Rne−(λ+nD(ρ1‖σ1))2/(2nc2) if λ ≤ n(c2 − D(ρ1‖σ1))

Rne−(λ+nD(ρ1‖σ1))+nc2/2 else.

31 / 31