no - cheric park †, byung-joo kim ... korea research institute of chemical technology, 100,...

7
795 HWAHAK KONGHAK Vol. 41, No. 6, December, 2003, pp. 795-801 NO Kawasaki, J.* 305-600 100 * (2003 5 19 , 2003 9 20 ) NO Removal of Electrolessly Copper-plated Activated Carbons Soo-Jin Park , Byung-Joo Kim and Junjiro Kawasaki* Advanced Materials Division, Korea Research Institute of Chemical Technology, 100, Jang-dong, Yusong-gu, Daejeon 305-600, Korea *Department of Chemical Engineering, Tokyo Institute of Technology, Ookayama, Meguroku, Tokyo 152-8852, Japan Received 19 May 2003; accepted 20 September 2003) (activated carbons; ACs) Cu Cu ! Cu " # ACs $%& NO ’( )* + ,-./. Cu " # ACs 0 FT-IR 1 scanning electron microscope(SEM) 2 $% 3-.4, N 2 /77 K 56 78 0 BET 9, D-R plot, H-K ! BJH 92 $% :;.,, NO ’(<=0 ">?@ABCD $% EF./. GHI1, J$ K"L M N ACs Cu O0 PQ K".R, ACs 78 ; ST, UV 5 W XYZ [ \]2 ^./. ) NO ’(<=0 # Cu O$ K"L MN S_T K".4, $‘& I1 ACs # Cu Cu-ACs NO ’( )*$ "abc de fg#/. Abstract - In this study, the activated carbons (ACs) containing copper metal were prepared by electroless copper plating technique, in order to remove NO. The surface and structural properties of the ACs were determined by FT-IR and scanning electron microscope (SEM), respectively. N 2 /77 K adsorption isotherm characteristics, including the specific surface area and pore volume, were investigated by BET, D-R plot, H-K, and BJH methods. And NO removal efficiency was confirmed by gas chromatographic technique. The copper content on ACs increased as the plating time increased. However, a slightly gradual decrease of adsorption properties, such as BET’s specific surface area and total pore volume, was observed in ACs in the pres- ence of copper metal. NO removal efficiency of all Cu-ACs was higher than that of untreated ACs, and increased with the cop- per content on ACs. These results indicated that copper metal on Cu-ACs strongly accelerated catalytic reduction of NO on Cu- ACs surfaces, though it caused the decrease of the adsorption properties of original ACs. Key words: Activated Carbon, Copper Metal, Adsorption, NO Removal 1. ! ", #$ %& ’( )* ++, -./ 0& ’1 2/34 5[1]. 6, 1 7834 9: ;<# => ?, / @’ >A8=B #$ C D EFG& HI- J, KL MNB OPQR ST U5[2-3]. >A8=1 V/ W XYZQR [B \]7 -^_ RJ, - ? ‘abc1 de-f, cgh(molecular sieve), i#j A % kB lmn -o @p- q_ 5[4-6]. _r - : lm ghrR G Vst *7 RJ, - ue l mn vh9 9: 7_ w C i#- x =>1 Dy \] 7 z{ |5. - ? }Q~ w- Cu, Ag, Ni, Fe, Co G Pt %-J Cu G & u st#- ST TJ, G 7- 9 QR B 7L7 5 5 [7-10]. lm i#jA Cu n Dy @pB / \] u U 4 7_ 5. }Q~ @pB mpR, - i# jAn Cu w ‘a 3 C R v 0 8 @ pR @p.& 6# QR [- to @p-5. _r - @pB m3 w- i#jA& K)/™1 (. 1 5 - u5.  ¡¢ @pR i#jAn To whom correspondence should be addressed. E-mail: [email protected]

Upload: lamtuyen

Post on 18-May-2018

214 views

Category:

Documents


1 download

TRANSCRIPT

HWAHAK KONGHAK Vol. 41, No. 6, December, 2003, pp. 795-801

��� ����� �� � NO ��

���†�����Kawasaki, J.*

������� �����305-600 �� ��� �� 100

*������ �����(2003� 5� 19� ��, 2003� 9� 20� ��)

NO Removal of Electrolessly Copper-plated Activated Carbons

Soo-Jin Park†, Byung-Joo Kim and Junjiro Kawasaki*

Advanced Materials Division, Korea Research Institute of Chemical Technology,100, Jang-dong, Yusong-gu, Daejeon 305-600, Korea

*Department of Chemical Engineering, Tokyo Institute of Technology, Ookayama, Meguroku, Tokyo 152-8852, Japan�Received 19 May 2003; accepted 20 September 2003)

� �

� ����� ��(activated carbons; ACs)� � � ��� �� ���� Cu� ���� Cu ���� ���

���� � ! Cu" ��# ACs� $%& NO '( )*� +�� ,-�./. Cu" ��# ACs� � ��0 FT-IR

1 scanning electron microscope(SEM)2 $%�� 3-�.�4, N2/77 K 56 78 ��0 BET9, D-R plot, H-K ! BJH

92 $%�� :;�.,, NO '(<=0 ">?�@ABCD� $%�� EF�./. GHI1, �� �J$ K"L� M

N ACs � � Cu� O0 PQ K"�.�R, ACs� 78 ��; S� T, ��UV 5� ���W� XY�Z [��

\]2 ^./. ) NO '(<=0 ��# Cu� O$ K"L� MN S_T�� K"�.�4, $`& I1� ACs �

� ��# Cu� �� Cu-ACs � ��� NO '( )*$ "abc� de�� fg#/.

Abstract − In this study, the activated carbons (ACs) containing copper metal were prepared by electroless copper plating

technique, in order to remove NO. The surface and structural properties of the ACs were determined by FT-IR and scanningelectron microscope (SEM), respectively. N2/77 K adsorption isotherm characteristics, including the specific surface area and

pore volume, were investigated by BET, D-R plot, H-K, and BJH methods. And NO removal efficiency was confirmed by gas

chromatographic technique. The copper content on ACs increased as the plating time increased. However, a slightly gradual

decrease of adsorption properties, such as BET’s specific surface area and total pore volume, was observed in ACs in the pres-ence of copper metal. NO removal efficiency of all Cu-ACs was higher than that of untreated ACs, and increased with the cop-

per content on ACs. These results indicated that copper metal on Cu-ACs strongly accelerated catalytic reduction of NO on Cu-

ACs surfaces, though it caused the decrease of the adsorption properties of original ACs.

Key words: Activated Carbon, Copper Metal, Adsorption, NO Removal

1. � �

����� ��� �� ��� �� ��� �� ��� ��

���� ! "�, �#$ %& '(� ��� )* ++�, -./

0& '1 2/34� �5[1]. �6, �� �1 7834� 9:

;<# �=> ?�, �/� @'�� >A�8=B �#$ C D�

EFG& HI- �J, KL� MNB OPQR� ST U5[2-3].

>A�8=1 �V�/ W� XYZQR� [B \]7 -^�_�

�RJ, - ? `abc1 �de-f, cgh(molecular sieve), i#j

A %� kB lm�n -o�� @p- q_�� �5[4-6]. �_r -

:� lm� ghrR�� G �Vst� �*7 �RJ, -� ue l

m�n vh��9 9: 7_ w C i#- x =>1 Dy�� \]

7 z{�� |5. - ? �}Q~ w- Cu, Ag, Ni, Fe, Co G�� Pt

%-J Cu� G ��& ��� u�� st#- ST T��J, �� G

7�- ���9 ��QR� �B 7L7 �5� � � �5 [7-10].

lm� �� i#jA� Cun Dy�� @pB /� \]� u��

U� 47_� �� � �5. �}Q~ @pB �mpR�, -� i#

jAn Cu w�� `a 3� C ��R� v� 0 �8�� �� @

pR� @p.& �6# ��� ��QR� [- to� @p-5. �

_r - @pB �m3� w�- i#jA& K)/�1 �� (.

1 �� � �5� ��- u�5.   ¡¢ @pR�� i#jAn �†To whom correspondence should be addressed.E-mail: [email protected]

795

796 ��������Kawasaki, J.

�� � K� w c£-� w�1 ¤¥3¦ i#jAn ����

@p- �5. - @pB i#jA7 §hQR� w�� ��� c

¤�5� N�- u�� s� �3� ¨© �� bcª_ w�-

«�7� �� ��D u�5. ) ¡¢ @pR�� /. ¬mp1 «

� �5. - @pB st7E­ ®¯�� bc�r w�- Dy�

� �� .o8� i#jAn }���rR� w¥; i#jAn

�°� � �5� N�1 7_� s� �� w c¤n ±/7 �²

5� ��1 7z5. ³_� @pB wDwpR� §�Dwp� ´

§� Dwp- �5. §�DwpB bDh~ i#jA� §/Q µ1

-o�9 ¶® w1 Dy�� @pR� /.¬mp� kB N�1

7_� @p-5. �6 ´§� wDwpB �mp� §�Dwp&

N�r1 ·� ¸R� w1 w� �, 8¹Q �ºpR� »�

wr1 i#jA� Dy�� @pR�, - @pB i#jA& $}

�Q& ¼A7 U_ ½� K)/�ª_ w- ¾� ¿À�� N�1

7z5[11-14].

-� Á \]�,� Cun ´§� wDw @pR� ACs� Dy�

9 NO�V st� �� G =�Â8¹Q lmÃÄ� ¯SQ �ºÃÄ

1 ÅÆ�ÇRJ, �� Cun i#jA� Dy3 È�� i#jA& /

��#1 ÉÊ¥R�, ´§� CuDw� i#jA& NO�Vo lm

��,& 7Ã#� ��, �Ê�9 �Ç5.

2. ���� �

2-1. ��

Á !Ë�, Oo� i#jA(ACs)� 5�# lm�� 8×16 mesh U

/& �ÌjA(H)�, ��� ¸1 Oo�Í5. !Ë� Î, Æ´Ï �

�7 �_ ½B i#jAn 3q ¬Ð��, 2-3¡ )Ñ� 0 80oC&

�� Ò�, 483� -. @L3¦ �� 0 Oo�Í5. Cu& ´§�

DwB i#jAn Ó� 10%& HCl oÔ�, 30c� §�� � 0 !

3�ÍRJ, -� Oo� DwÕ C Dw��B Table 1� �ÖY×5.

Dw3�B 5, 15 G�� 40cR� �ÍRJ, K�� 361 ¤¥�9

�� as-received, Cu-5, Cu-15 G�� Cu-40R� ØØ�Í5. i#jA

� Dw� Cu& ÌB atomic absorption spectrophotometry(AAS)n O

o�9 cÙ�Í5.

2-2. ����

Cu7 Dy� ACs& È8� }��#1 ÅÆ�/ W� FT-IR�

scanning electron microscope(SEM)n Ú� ÉÊ�Í5. �� Cu Dy

0 i#jA }�& �AÉÃ/& ÌQ~ È8n ÉÊ�/ W� X-ray

photoelectron spectroscope(XPS)n -o�9 jA� �� �A& aÛ

Q Ü1 Ýa�Í5. -� source�� MgKαn -o�9 LAB MK-II

(VG Scientific Co.) cÙN$n -o�9 Ýa�ÍRJ, chamber Y&

ÞÄB 10−6-10−9 torr� �ß�9 Ýa�Í5.

2-3. ��� �� �

� 3à«B 300oC�, áÐ ÞÄ1 10−3 torr-�� ;_� .â� ã

5-6 3� �� ä/3å 0, ASAP 2010(Micromeritics Co.)1 -o�9

77 K�, .�ÞÄ(P/P0)� u� N2 /h& lmÛ1 Ýa�Í5. $}�

QB Brunauer-Emmett-Telleræ1 -o�9 % lmR�bç *��ÍR

J[15], è/�b�� D-R plot[16]1 -o�9 é~�Í5. K)/� C

?/�& cÙB �� H-Kp[17]� BJHp[18]1 Ú� ÉÊ�Í5.

2-4. NO ��� ��

NO �VêB He ëÏE 1,000 ppm ìD& NO 7En Oo�9 7

EU�³íGî�(DS 6200, Dï~Ef^Óf)� st § ·0& st=

� ð#=& cÙR� Ýa�ÍRJ, detector� thermal conductivity

detector(TCD)� columnB Hayesep A(30 ft, inner dia: 0.085 inch)n

-o�Í5. !Ë ? st�& D� 500oC� ;_�ÍRJ, è st

3�B 203�R� �Í5. st3 ;y� NO 7E& ;B M.F.C.

(mass flow controller; GMC1000, MLS)n Oo�9 Ú��ÍRJ, 10

ml ·min−1R� ;_3ñ5. cÙ § � 3à«B st D�, 13� �

� HeR� òó�9 �c1 ô§� �V�9 NO 7E& NLY lm

� &� qn õA8 � 0 Oo�Í5.

3. � ��

3-1. ��� Cu ��

ACs& ´§� Cu DwB `sQR� �º� C /Ö �7�­& s

tR� ö÷� st- ;��_r õø ±�_� ̧ B Cu ùâ� - �

�� G .�Q 7L­ v_pR�,& 7Ln _ú5� û � �RJ,

G st �aB Æî­ k5[19].

Cu2+ü2e−ýCuþ(Reduction)

E0=ü0.34 V (1)

2HCHOü4OH−ý2HCOO−üH2ü2H2Oü2e− (pH=14)

E0=ÿ1.07 V (2)

HCHOüH2OýHCOOHü2H+ +2e− (pH=0)

E0=ü0.056 V (3)

-­ k- ACs& }�� Cu(27)n Dy�/ W�,�   �& §g

7 ¨©�J, - §g«B ¤�Å���7 ¤��R� �8�R�� �

�5. -� Table 1�, �Ö� �­ k- DwÕ& pH7 � Å

�#1 ��� st- � �� `��5. -:� -;� �# o

Ô�, ¤�Å���& }��8 §W& Ü- Cu2+ - & }��8

§W�5 � °/ ��� æ (1), (2) st1 V� Cu2+ - - ¾� Cu

wR� �º�5. �_r s�� �#oÔ�,� ¤�Å�-�� �

º�7 �_ ½� æ (3)� kB st1 `R4� �5.

Table 1. Composition and operating conditions of electroless Cu platingbath

CompositionCuSO4: EDTA Na2:HCHO 1.0:2.50:1.31

Distilled water 980 ml

ConditionspH 12�0

Temperature 40�1 oCFig. 1. Cu quantification of the electrolessly Cu-plated activated car-

bons measured by AAS.

���� �41� �6� 2003� 12�

� �� �� �� ����� NO �� 797

Fig. 1B W�, �� ´§� Cu Dwp1 Ú� ��� Cu-5, Cu-15

G�� Cu-40& Cu ¥Û& AA cÙÜ1 �Ö� ¸-5. /ÁQR�

Cu& DyÛB Dw3�- ¬7�� ue ¬7�� ¸1 ��� � �

×5. �_r ¬7$, � 3�� �� DwÛ& $�Q~ É*� ã�&

ôr� ��1 G�� ¸- ���×5. -� ´§� wDw� ��

5� ��«�, _Q�� ��- ́ §� wDw& �T �s�� �

Dwh }�& �-� /�1 w yg7 �T�, 3°�57 ��

& �1 ù#� -0�� Dw D7 �� ¼A�/ ��R� �

��5[20].

3-2. ����

´§� Cu DwR� È8� Cu-ACs& }�Ý#1 FT-IR, XPS C

SEMR� ÉÊ�Í� -? IR& ��Ü1 Fig. 2� �ÖY×5. ´§�

Cu Dw� Cu-ACs& IR��Ü1 û � Cu gh& �Un ��� �

�_r 3,450 cm−1 b�& �U7 ́ §� Cu Dw 0 §s§R� x �

R� ¬7� ¸1 �� � � �×RJ, Dw3�- ¬7�� ue �

w� ¬7�� ��- ���×5. - �U� K�� ACs & �T −OH

�U7 �Ö�� +-J, �� ´/=- �7�×1 �T ´/�& �

U7 �Ö�� +-5. ��� 3,450 cm−1 b�& �U& �B ¬7�

−OH �U& Kã� ¬7­ ��� ´/�- ù#�×/ ��R� �

��5. ́ §� Cu Dw1 Ú� »�� Cu r Æ!e ̀ aÛ& CuxOy

ùâ& complex7 ù#�×/ ��R� ���5[21].

Table 2� ´§� Cu Dw §0& Cu-ACs }�& C, O C Cu& �

#È8n ÉÊ�/ W� XPS cÙ��& aÛÜ1 �Ö� ¸-5. �

�ÜR�bç Dw- z{�� ue Cu2p& Ì- x �R� ¬7��

¸1 �� � � �×RJ, ��� O1s& ÜD ã�� ¬7�� ¸1 É

Ê� � �×5. �6 C1s& ÜB §sQR� ¼A�Í5. DwR� ~

� È8� �A& ¥Û C ]�& ¥Û1 ÉÊ�/W� O1s/C1sÜ C

Cu2p /C1sÜ1 ]��Ç5. ��& Ü1 û � /ÁQR� Dw3�- ¬

7�� ue   Ü F  ¬7�×RJ, ue, Cu-40�, 7N �B Ü

~ 0.138 C 0.061n �ÖY×5. -�bç W�, �� �­ k- Cu

Fig. 2. FT-IR results of the electrolessly Cu-plated activated carbons.

Table 2. Chemical composition of electrolessly Cu-plated activated carbons

Sample O1s (%) C1s (%) Cu2p (%) O1s/C1s Cu2p /C1s

as-received 9.6 89.8 - 0.107 -Cu-5 10.7 85.6 2.9 0.125 0.034Cu-15 11.0 84.4 4.2 0.130 0.049Cu-40 11.6 83.6 5.1 0.138 0.061

Fig. 3. Copper subpeaks in Cu2p XPS spectra as a function of the plat-ing time.

HWAHAK KONGHAK Vol. 41, No. 6, December, 2003

798 ��������Kawasaki, J.

& Dw 3 »�� CuZ� CuxOy ùâ�D �" aD Dy�5� ��

�J, -� Fig. 2� �Ö� ´/� �U& ¬7­ .Ú�� ��� É

Ê�5. �8� ]�& �#n é~�/W� XPS& Cu2p �U& sub-

peakn *�QR� c��Í� -n Fig. 3� �ÖY×5. ÉÊ ��, D

w3�- ¬7¥� ue Cu metal& .�Q~ Ì�5 Cu(OH)2& Ì-

�qQR� ¬7�� ¸1 ��� � �×5. -:� ��� Î�, �

� Cu7 Dw� i#jA& �A¥Û- ¬7 C �8]�& �#­

$ b%�� ¸R� ���5.

Fig. 4� ´§� Cu Dw §0& ACsn ÉÊ� ¸-5. ÉÊ �� }

�- $&Q '(� K�� 36� $� Cu-5­ Cu-15& �T ã�&

particle«- ÉÊ �×RJ, Cu-40B )E*� �-� +;ù1 , =

>«- �ð� ¸- ÉÊ�×5. -:� ��� ´§� Dw3 �ÛR

� ù#� Cuyg«- ACs }�� ¬m�_ -�� ,� ./ 0� ù

#� ¸R� ÉÊ�5.

3-3. ����

Fig. 5� ´§� Cu DwpR� ��� Cu-ACs& 77K/N2 % lm

��1 �Ö� ¸-5. ���_ ½B 36� �1_ Cun Dy� 3

6« F  �/ 2B .�Þ�, lmÛ- �� .3�57 G -

0�� .�Þ1 * d4D � -. ¬7�_ ½� 5ù.â� D�

¥- ÉÊ�×RJ, -� BET cÐ ? K)/�- $ ���� ��

Type 161 é~ � � �×5[15]. -­ k- K)/�R� -^�z

jA#à& /��,� lm�& 7� lm> cg­& ~Ä, � lm

N- ?8�� - *�,& lm9B 8�5. lm9& 8� �¡

lm� cg� äm�/ �4:_J, - ��� lm�� cg� $�

äm�� cg& $7 �; °Æ_� �� lm�& lmÄ- 8�

5. �� ºHù F<�, /�& �� cg& => s�& $7 3-� ̀

�, -:� (.B ST U� ̀ ��� �J, -� ue % lm��B º

��, ��� .3�� Type 1& % lm��1 �ÖY� �5[22].

Fig. 6B � 36& K)/�b�n D-R plotR� �Ö� ¸-5. �

h� K)/� ]�n ?� lm�� &� lmB 2B .�ÞÄ��

,� lm>� &� )�t@� &�, -0�� lm� }��,& 5

cgA lm- �ð�� ¸R� ���� �5. D-R plot� &� K)

/�& b�*�B Æî& æ (4)n Ú�9 P/P0=0.001-0.05 O-�,

±�z ÜR� ¶�& GîBn ±� Yß6 Ü1 Ôh>A& /hb�

� ���9 ]�Í�, è /�b�� õø lmÛ� È� .�

(0.001547)1 C�9 ]�ÍRJ, - ��Ü«B Table 3� �ÖY×5.

(4)

9/�, W� .�Þ� u� lm� b�, W0� K)/�b�, B�

structural constant, β� affinity coefficient G�� T� D-5.

Fig. 7B Horvath-Kawazoe& slit pore F<& æ (5)� /��9 /�

¶�- 2 nm -�~ K)/�«& @Q/�b�(cumulative pore

volume)n �Ö� GD-5.

(5)

9/�, 2d� /�& ¶�1 &K�5.

Fig. 7�, ACs& K)/�- H� 3-10 E aD U/n 7_� /�

R� ]#�� �5� ¸1 é~� � �×RJ, 4 E -�& /�U/

n 7_� /�& $ê- �F1 Å � �×5. �� Fig. 6& ��Ü1

� Cu-5 36& �T K�� 36� K)/�& b� C /�& c

¤7 V& q-n �-_ ½� s� Cu-15­ Cu-40& �T K)/�

Wlog W0log B T β⁄( )2log2 P0 P⁄( )–=

Ψ 2d( ) PP0

----- ln=

62.382d 0.64–---------------------–

1.895 103–×2d 0.32–( )3

---------------------------- 2.7087 107–×2d 0.32–( )9

-------------------------------– 0.05014– 0=

Fig. 4. SEM images of the electrolessly Cu-plated activated carbon sur-faces.

Fig. 5. Adsorption isotherms of N2 at 77 K on the electrolessly Cu-plated activated carbons.

Fig. 6. D-R plots for N2 at 77 K on the electrolessly Cu-plated acti-vated carbons.

���� �41� �6� 2003� 12�

� �� �� �� ����� NO �� 799

GH& b�7 x �R� I�J ¸1 Å � �×5. -:� ¼AK-

� ´§� Cu Dw1 Ú� i#jA& K)/� GH� `b /� �

µ- `�L5� ���5. -� Fig. 4& % lm���, �sb&

log scale Ü1 û � lm& 3°�� ÞÄB Dw- z{�� ue 3

6�, �ÞMR� [- LTL� ̧ - ���×�� -� lm9& ¼

A C lmÄ- ¼A� ~¥R� ����z5. ��� .�Þ- 10−6

b��, ÉÊ�� ,NK)/�� &� lm- Cu-15 C Cu-40�,

V& �Ö�_ ½B ¸1 ÉÊ � � W�, _Q� �� ´§� Cu D

w� &� K)/� �µR� /~� (.-e� ���5.

Fig. 8B Kelvinæ� /�� BJHp1 -o�9 ´§� Cu Dw��

§·0& Cu-ACs& ?/� È8Ü1 @Q/�b� Ü1 Ú�9 ÉÊ�

��Ü-J, ÜB Æî& æ (6), (7) G�� (8)� /��9 ]�Í5.

(6)

(7)

(8)

9/�, rk� Kelvin s_�, rBJH� BJHp� &� /�& s_�, VmB

lm>& Ob�, σ� lm>& }�NÄ, RB /h.�, t� t-plot�

&�  P G�� T� Dn &K�5.

W æ«�bç ±B Fig. 8& ��Ü�, K)/�& È8K-­ $

Q�� Cu Dw3�- ¬7�� ue /�& b�7 ¼A�� ��1

��� � �×5. �_r K)/�& �T Cu-15 C Cu-40- Cu-5�

$� x �R� ¼A�Í�� ?/�& �T G ¼A K-7 $&Q $

Q�Í5. �_r Cu-40& �T /� s_�- 10 Å b��, b�&

¬77 V& �� ¸1 ��� � �×5. -� 5� 36«�, RÆ

û � �� (.R� ƳD Fig. 4& SEM Oz�,D ÉÊ �×�-

�D� Cu Dw� &� ù#� Cu yg«� &� K)/�� ?/�

O-& GH, � /� ¶�- 10-20 Å b�& /�«& �µ- U� `

�� ¸R� ÉÊ�5.

Table 3B ACs& ´§� CuDw §·0& $}�Q& È8, è/�b�,

/�s_�, BET .� C G�� »lm9(neat heat of adsorption)%1

�Ö� ¸R� -n Ú� ]hQ~ /��#& È8n ��� � �5.

$}�Q& �T Cu-5ª_� x ¼A7 �Ö�_ ½ÇR� Cu-40&

�T� ã 26%& $}�Q ¼A7 �ð�Í5. -S� x �& $}�

Q ¼A� Î�, _Q�Í�- Dw� &� T K)/� C 10-20 Å

U/& /�«& �µ- H� -;� �ð� ¸R�, -:� $}�Q

& ¼A� UK� è/�b� C K)/� b�D $Q� ��R� É

Ê�×5. �6 BET.� CÜ C »lm9& �T Dw3�- ¬7�

� ue ã�� ¼A�� ¸1 �� � � �×��, -� -K ��

Í�- Dw- z{�� ue ,N K)/�«- �µ- `�� §s

QR� lmÄ& ¼A7 �ð�Í/ ��R� é~�×5.

3-4. NO ���

Chen %[23]& ��� u�� NO� i#jA­ kB jA* ¯S�

&�, >A­ �A� �º�J, -� stð#=�� N2 C COx­ k

B b�=1 �ð34J, Æî­ kB �*!V1 �3�Í5.

NOüC-ACsWCO-ACsü1/2 N2 (9)

COüCO-ACsWCO2üC-ACs (10)

CO-ACsWCO (11)

9/,, C-ACs­ CO-ACs� �� i#jA+; }�& jA C �AÉ

RTPP0

----- ln 2σ

Vm

rk

-------–=

rk 4.14PP0

----- log=

rBJH rk tPP0

----- +=

Fig. 7. Cumulative micropore volume distribution of the electrolesslyCu-plated activated carbons.

Fig. 8. Cumulative mesopore volume distribution of the electrolesslyCu-plated activated carbons.

Table 3. Textural properties of the electrolessly Cu-plated activatedcarbons

as-received Cu-5 Cu-15 Cu-40

Specific surface area (m2·g−1) 1,162 1,123 954 861Total pore volumea (cm3·g−1) 0.484 0.460 0.398 0.357Micropore volumeb (cm3·g−1) 0.450 0.437 0.376 0.343Micropore volume fraction (%) 93.8 94.3 94.5 96.1Mesopore volumec (cm3·g−1) 0.034 0.023 0.022 0.014Mesopore volume fraction (%) 7.0 5.0 5.5 4.0Micro-/Mesopore ratio 13.2 19.0 17.1 24.5Average pore radiusd (Å) 8.33 8.01 8.39 8.29BET’s constant: C 948 945 940 932Neat heat of adsorptione (kj·mol−1) 4.403 4.401 4.397 4.392

Vaads

molar Volume of liquid N2molar Volume of gaseous N2

----------------------------------------------------------------------×

From D-R plot, b V total ads 0.001547×

Total pore volumec

Micro volume–

2d V total

SBET

------------×

∆eE E0 EL– RT CBET( )ln= =

HWAHAK KONGHAK Vol. 41, No. 6, December, 2003

800 ��������Kawasaki, J.

Ã/n �Ö�5. �6 Park %[24]& \]� u�� Cu7 Dy� ACF�

,& NO �V st& �T Æî& �*!V1 u�� ¸R� XYZ5.

NOüCu-ACFWCu2O-ACFü1/2N2 (12)

2Cu2O-ACFW4Cu-ACFüCO2-ACF (13)

kB [\�, �eû � ´§� Cu Dw� Cu-ACs& �T ACs }

��� »�� Cu C ã�& �8� Cu7 �#�J, NO& =�Q l

m C �ºB �� NO-Cu-ACs, NO-CuxOy-ACs C NO-C-ACs& st

1 Ú� `�� ¸R� ]Ý�5.

Fig. 9� K�� C ´§� CuDw- !3� Cu-ACsn -o�9 ´

�A��, He ëÏE& 1,000 ppm ìD& 7En -o�9 NO �V

!Ë1 !3� ��Ü-5. K�� 36& �T 90c^�, M��-

�ð�9 �� NO& ìD7 53 ¬7�� ��1 �Ö� s�

Cu-5� 150c G�� Cu-15� 200c aD�, M��- �ÖLRJ,

Cu-40& �T M��- 93��, �ÖL5.

Fig. 10� 11B �� ']�,& N2 C CO2ìDn �Ö� ̧ -5. Fig. 10

& N2& È8��1 û �, K�� 361 �Z� Cu7 Dy� 36«

& �T �/� 500 ppm� 7ª_ N2ìDn �Í5. -� W�, �

� �*!V� `L�� ��� 2�& NOcg7 c��� ��& N2

cgn ù#�� ¸R� ���5. st3�- ¬7�� ue K��

36& �T �/� 350 ppm aD& Ü1 �-57 �q ��� ¼

A�×5. -� Chen& ��­ k- i#jA ghD ã�& �ºÄ1

�-/ ��-J, N2ìD& �� ¼A� .�QR� D7 "` �

ºst�5 D7 a� NO& =�Q lmR� ~� a�� M���

55b/ ��R� ���5. s� Cu7 Dy� i#jA«B Cu­ NO

& 8¹Q~ �º°oR� ~� G N2ìD& ¼A7 K��36�c

��� `��_� ½� ¸- ���×5. Fig. 10& CO2�ðÛ1 ��

K�� 36& �T7 7N �� �Ö� s� DwÛ- ¬7�� ue

�qQR� CO2& Ì- ¼A�� ��- ÉÊ �×5. -� K�� 3

6& �T �/& �º°oR� ã�& CO2n �ð34_r d M��

� -�: G Ì- �� ¼A�� ¸-J, Cun ¤¥�� 36«&

�T i#jA gh& �ºÄ� &� �/�� ã�& CO2n �ð34

_r, Park%- �3� �*!V�c �ð� CO2«- =�QR� i#

jA� lm�� G Ì- U� Q�_� ¸-e ���5. �eQR�

NO �V stB K��<Cu-5<Cu-15<Cu-40 »R� �ÖLRJ, -�

/ÁQR� Dy� ]�& Ì� $��� ¸R� ÉÊ�×5. �_r

Cu-40& �T M��r1 û � 5� 36�5 x �R� G �Vê-

.3�Í�� -:� -;� Æî& OfR� ����z5.

Table 3�, micro-/mesopore& $Ü1 û � Cu-40& �T G Ü-

24.5� 5� 36� $� %�� UJ, -n Ú� K)/�& cê-

.�QR� �B ¸1 Å � �5. NO& lm3 NO gh� K)/�

� &� lm- �bc-_r NO cg7 K)/�� 55�/ W�,

� G Ú�7 �� ?/� C �/�& cê- ?©�5� � � �5

[22]. -� ?/�-� �/�& cê- g´ �1 �T lm� NO c

g«- K)/�ª_ -�_ -�� ?�� lm� 0 ¾� äm h 7

Ã#- �#�� �5. �_r Cu-40& �T Dy� Cu� &� K)/

��5 ?/�& �µ- U� `�LRJ - ��� K)/�& cê

- .�QR� ¬7�×5. ��� lm� NO& äm- o-�_ ½Ç

1 ¸R� ���5. �6 Î�, ��Íi �­k- Cu-40& �T

5� 36� $� Cu(OH)2& ¥Û- .�QR� �ÇRJ, - ���

T#ÉÃ/­ NO­& =�Q~ interaction- 8�×1 ¸R� ]Ý

�J, -7 Cu-40& NO �Vst�, � ©~R� °oj1 ¸R� �

��5[25].

-.R�, ACs& ´§� CuDwB ���_ ½B 36� $� NO�

V "ê- §sQR� ¬7�×RJ, �� Cu-40& �T M�� r1 û

� K��� $� G "ê- 400% -. ¬7�� ¸- ÉÊ�×5. -

¸R� �Æ i#jA& ´§� DwB ;o� }��� @p ?& �

�e� ���5. �� -:� (.& -;� /ÁQR� Dy�� Cu

& Ì� &��J, b�QR� micro-/mesopore& $ G�� T#ÉÃ

/� &� NO­& ~Ä %� Ék- �� ¸R� ÉÊ�×5. �_r

Fig. 9. Outlet concentration of NO as a function of plating time.

Fig. 10. Outlet concentration of N2 as a function of plating time.

Fig. 11. Outlet concentration of CO2 as a function of plating time.

���� �41� �6� 2003� 12�

� �� �� �� ����� NO �� 801

ath

n 50

o,

i-

re-

p-

s,”

ng,

er

per

,”

in

f

c-

of

I.

tile

by

,”

ur

-

.

ata-

i-

Cu& Dy� ue ACsgh& lmÃ, � $}�Q� K)/�b� %

B ¼A�Í5. NO& �V st- NO-C-ACs­ NO-Cu-ACs�, �3

� ̀ ��� ̧ 1 ¼�� � 5Û& Cu DyD �l¶�_r lm� g

h& lmÃ1 U� ¼A34_ ½� IW Y�, Cu& Dy- -^�

_� ¸- 7N -.Q` ¸R� ÉÊ�5.

4. � �

Á \]�,� ACs� ´§� DwpR� Cun Dy�ÍRJ, -n

-o�9 NO lm C �ºV�� KL� G�� ��9 �Ê�Í5.

Dw 3�- ¬7¥� ue ACs }�� Dy�� Cu& ÌB ¬7��,

s�� ACs& $}�Q, /� b� %& lm#>- ¼A�� ¸- É

Ê�×5. �� -n -o�9 NO �V !Ë1 � ��, Cu7 Dy�

FJ 36«B Dy�_ ½B ¸� $� �B NO �Vê1 �ÍRJ,

�� Cu-40 36& �T K�� 36� $� G "ê- 400% m� �

ÖL5. �_r NO& �V7 lm� gh�,D �ð�� ¸1 ¼��

� Cu& DyB lm� gh& lmÃ1 U� ¼A�_ ½� IW Y

�, -^�_� ¸- õQ-e� ÉÊ�5.

� �

Á \]� �¹/nb& �¹/nX�8O� (M1-0105-00-0059)&

_º� &�9 �{�ÍRJ, -� ¼O�o!5.

����

1. Calvert, S. and Englund, H. M., Handbook of Air Pollution Technol-

ogy, John Wiley & Sons, New York(1984).

2. Noll, K. E., Gounaris, V. and Hou, W. S., Adsorption Technology for

Air Water Pollution Control, Lewis, Michigan(1992).

3. Bansal, R. C., Donnet, J. B. and Stoeckli, F., Active Carbon, Marcel

Dekker, New York(1998).

4. Selvaraj, M., Pandurangan, A., Seshadri, K., Sinha, S. P. K. and Lal,

K. B., “Synthesis, Characterization and Catalytic Application of MCM-41

Mesoporous Molecular Sieves Containing Zn and Al,” App. Catal. A:

Gen., 242(2), 347-364(2003).

5. Subbiah, A., Cho, B. K., Blint, R. J., Gujar, A., Price, G. L. and Yie,

J. E., “NOx Reduction over Metal-Ion Exchanged Novel Zeolite

Under Lean Conditions: Activity and Hydrothermal Stability,” App.

Catal. B: Environ., 42(2), 155-178(2003).

6. Park, S. J. and Jang, Y. S., “Interfacial Characteristics and Fracture

Toughness of Electrolytically Ni-Plated Carbon Fiber-Reinforced

phenolic resin matrix composites,” J. Colloid Interface Sci., 237(1),

91-97(2001).

7. Carabineiro, S. A., McKee, D. W. and Silva, I. F., “Uncatalysed and

Catalysed CO2 Reaction Using Metal Catalysts and Binary Vana-

dium Mixtures Supported on Activated Carbon,” Carbon, 39(3), 451-

463(2001).

8. Matos, J. and Laine, J., “Ethylene Conversion on Activated Carbon-

supported NiMo Catalysts: Effect of the Support,”App. Catal. A:

Gen., 241(1-2), 25-38(2003).

9. Zemlyanov, D. and Schlögl, R., “Electron Inelastic Mean free P

Measured by Elastic Peak Electron Spectroscopy for 24 soLids betwee

and 3400 eV,”Surface Sci., 470(1-2), L20-L24(2000).

10. Carabineiro, S. A. C., Ramos, A. M., Vital, J., Loureiro, J. M., Órfã

J. J. M. and Fonseca, I. M., “Adsorption of SO2 using Vanadium and

Vanadium-copper Supported on Activated Carbon,” Catal. Today, 78(1-4),

203-210(2003).

11. Guo, J. and Lua, A. C., “Adsorption of Sulphur Dioxide Onto Act

vated Carbon Prepared From Oil-Palm Shells with and Without P

impregnation,”Sep. Purif. Technol., 30(3), 265-273(2003).

12. Ryu, S. K., Kim, S. Y., Gallege, N. and Edie, D. D., “Physical Pro

erties of Silver-Containing Pitch-Based Activated Carbon Fiber

Carbon, 37(10), 1619-1625(1999).

13. Ang, L. M., Hor, T. S. A., Xu, G. Q., Tung, C. H., Zhao S. P. and Wa

J. L. S., “Decoration of Activated Carbon Nanotubes with Copp

and Nickel,”Carbon, 38(3), 363-372(2000).

14. Park, B. J., Park, S. J. and Ryu, S. K., “Removal of NO over Cop

Supported on Activated Carbon Prepared by Electroless PlatingJ.

Colloid Interface Sci., 217(1), 142-145(1999).

15. Brunauer, S., Emmett, P. H. and Teller, E., “Adsorption of Gases

Multimolecular Layers,”J. Am. Chem. Soc., 60, 309-319(1938).

16. Dubinin, M. M. and Plavnik, G. M., “Microporous Structures o

Carbonaceous Adsorbents,”Carbon, 6, 183-192(1968).

17. Horvath, G. and Kawazoe, K., “Method for the Calculation of Effe

tive Pore Size Distribution in Molecular Sieve Carbon,”J. Chem.

Eng. Jpn, 16(6), 470-475(1983).

18. Khalili, N. R., Campbell, M., Sandi, G. and Golas, J., “Production

Micro- and Mesoporous Activated Carbon from Paper Mill Sludge:

Effect of Zinc Chloride Activation,” Carbon, 38(14), 1905-1915(2000).

19. Vaskelis, A., Coatings technology handbook, Marcel Dekker, New

York(1990).

20. Park, S. J., Jang, Y. S. and Rhee, K. Y., “Interlaminar and Duc

Characteristics of Carbon Fibers-Reinforced Plastics Produced

Nanoscaled Electroless Nickel Plating on Carbon Fiber SurfacesJ.

Colloid Interface Sci., 245(2), 383-390(2002).

21. Lee, S. H. and Choi, C. S., “Chemical Activation of High Sulf

Petroleum Cokes by Alkali Metal Compounds,”Fuel Process. Tech-

nol., 64(1-3), 141-153(2001).

22. Do, D. D., Adsorption analysis: Equilibria and kinetics, Imperial

College Press, London(1998).

23. Chen, Z., Mu, L., Ignowski, J., Kelly, B., Linjewile T. M. and Agar

wal, P. K., “Mathematical Modeling of Fluidized Bed Combustion

4: N2O and NOx Emissions from the Combustion of Char,”Fuel,

80(9), 1259-1272(2001).

24. Park, S. J., Jang, Y. S. and Kawasaki, J., “NO Adsorption and C

lytic Reduction Mechanism of Electrolytically Copper-Plated Act

vated Carbon Fibers,”HWAHAK KONGHAK, 40(6), 664-668(2002).

25. Park, S. J. and Kim, K. D., “Adsorption Behaviors of CO2 and NH3

on Chemically Surface-Treated Activated Carbons,”J. Colloid Inter-

face Sci., 212(1), 186-189(1999).

HWAHAK KONGHAK Vol. 41, No. 6, December, 2003