nishimori

35
Quantum Annealing ― Basics and … Hidetoshi Nishimori Tokyo Institute of Technology

Upload: fisicamusica

Post on 05-Jan-2016

214 views

Category:

Documents


2 download

DESCRIPTION

Nishimori

TRANSCRIPT

Page 1: Nishimori

Quantum Annealing ― Basics and …

Hidetoshi Nishimori

Tokyo Institute of Technology

Page 2: Nishimori

2

Motivation

Page 3: Nishimori

Combinatorial optimization

∑−= jiijJH σσ

Ground state of Ising SG

Minimization of cost function : Multivariable (discrete) & Single-valued

3

Page 4: Nishimori

Travelling salesman problem

Minimize the cost function (=tour length)

Configuration 1 Configuration 2 N N-1

N-2 N!

4

Page 5: Nishimori

Simulated Annealing (SA) • Generic, approximate algorithm

• Phase-space search by thermal fluctuations

tcNtTln

)( ≥t

cNtTln

)( ≥

5

Page 6: Nishimori

Quantum Annealing (QA) • Generic, approximate algorithm

• Phase-space search by quantum fluctuations

6

Page 7: Nishimori

Problems

¾Quantum vs thermal fluctuations:

Is QA useful for optimization purposes?

¾Related with quantum computation?

Yes, but be careful…

Yes, equivalent. Aharonov et al (2007)

7

Page 8: Nishimori

Implementation

∑∑ Γ−−=+= xi

zj

ziij tJHHtH σσσ )()( quantumclassical

t

Γ

8

Page 9: Nishimori

Experiments

∑ ∑Γ−−=i

xi

zj

ziijJH σσσ

9

Page 10: Nishimori

Magnetic material

Brooke, Bitko, Rosenbaum, Aeppli (1999)

10

(Copyrighted material here)

Page 11: Nishimori

Numerical evidence ∑ ∑Γ−−=

i

xi

zj

ziijJH σσσ

11

Page 12: Nishimori

) (Finite ∑−= TJH jiij σσ

Amit, Gutfreunt, Sompolinsky (1985)

T vs Γ : Hopfield model

∑=

=p

jiijJ1µ

µµξξ

12

(copyrighted material here)

Page 13: Nishimori

)0( ∑ ∑ =Γ−−= TJHi

xi

zj

ziij σσσ

Nishimori & Nonomura (1996)

T vs Γ: Hopfield model

13

(copyrighted material here)

Page 14: Nishimori

Frustrated system

Ferro interaction Antiferro interaction

14

(copyrighted material here)

Page 15: Nishimori

Master eqn vs. Schrödinger eqn

Kadowaki & Nishimori (1998)

Spin glass (SK model) with 8 spins

ttT 3)( =

tt 3)( =Γ

Schrödinger

Master /Equilibrium

15

(copyrighted material here)

Page 16: Nishimori

16 16 16 16 16 16 16

Monte Carlo for TSP

true)( :energy Residual EH −τ

Martonak, Santoro &Tosatti (2004)

quantumclassical 1)( HtHttH −+=ττ

cf: classical SA 0)( large)0( =⇒= τTT

classicalquantum )()0( HHHH =⇒= τ

16

(copyrighted material here)

Page 17: Nishimori

Monte Carlo for 3SAT

Battaglia, Santoro, Tosatti (2005)

QA

QA

SA

true?be Can

)falseor true(

21

2142

3211

FCCF

xxxxCxxxC

i

∧==

∨∨=∨∨=

17

(copyrighted material here)

Page 18: Nishimori

Theoretical foundation ∑ ∑Γ−−=

i

xi

zj

ziijJH σσσ

18

Page 19: Nishimori

Convergence theorem

∑∑ Γ−−=+= xi

zj

ziij tJHHH σσσ )(quantumclassical

Nctt /)( −=Γ Morita & Nishimori

(Geman-Geman for SA)

Convergence condition

Control parameter

19

Page 20: Nishimori

20 20 20 20 20 20 20 20 20 20

)lnlnexp( ln

)(

)lnexp( )( /

δδ

δδ

bNtt

cNtT

aNttt Nc

=⇒==

=⇒==Γ −

Computational complexity

Page 21: Nishimori

21 21 21 21 21 21 21 21 21 21 21 21 21

Classical-quantum mapping

Classical equilibrium state Quantum ground state

ZeA

AH

T∑ −

=)()( σβσ )()( TATA ψψ=

0)( =THq ψ2/2/ )(1 HH

q eTMeH ββ −−=

Adiabatic condition (Quasi) equilibrium

tcNtTln

)( = Nctt /)( −=Γ

Somma, Batista & Ortiz (2007)

∑−

σβ

σψZ

eTzH 2/)(

)(

TFIM

Page 22: Nishimori

22 22 22

Remark: Type of the dynamics

Nctt /)( −=Γ

Convergence condition (methods of proof)

9Real-time Schrödinger (adiabatic condition)

9Imaginary-time Schrödinger (adiabatic condition)

9Quantum Monte Carlo (reduction to SA by Suzuki-Trotter)

22

Page 23: Nishimori

Adiabatic evolution

23

Page 24: Nishimori

24 24 24 24 24 24 24 24

Quantum adiabatic evolution

t

E

zj

ziij

xi JtttH σσ

τσ

τ ∑∑ −−−= 1)(

Trivial initial state Non-trivial final state

∆ εψψ

=∆

∂∂

2

0

)(

)()(

t

tt

Htm

τ1

24

Page 25: Nishimori

25 25 25 25 25 25 25 25 25 25 25 25 25

Computational complexity

Adiabatic theorem 2−∆∝τ

∝∆−

b

aN

Ne

Gap scaling

Finite-size analysis

Complexity ∝(easy) (hard)

2

2

b

aN

Ne

τ

E

t

25

Page 26: Nishimori

26 26 26 26 26 26 26 26 26 26 26 26 26 26 26

View from quantum computation

Any problem hard classically but easy quantum mechanically?

Maybe (Fahri, Goldstone, Gutman, Lapan, Ludgrenm, Preda, 2001)

No (Young, Knysh, Smelyanskiy, 2010)

“Exact cover”

26

Page 27: Nishimori

“XORSAT”

No (Jörg, Krzakala, Semerjian, Zamponi, 2010)

27

(copyrighted material here)

Page 28: Nishimori

28 28 28 28 28 28 28 28 28 28 28

p-spin ferromagnet

( ) )/( 11

)(11

τσσ tssN

sNsHN

i

xi

pN

i

zi =−−−= ∑∑

==

Jörg, Krzakala, Kurchan, Maggs, Pujos (2010) “The problem that quantum annealing cannot solve”

• 1st order transition at finite s

• Exponentially small energy gap.

• Exponentially large time for adiabatic computation.

aNe−∝∆

bNe∝τ

0 1 s

QP F

Seki and Nishimori (2012) “The problem that quantum annealing CAN solve” 28

Page 29: Nishimori

29 29 29 29 29 29 29 29 29 29 29 29 29

An additional quantum term

( ) TFAFF0 )1()1(),( HsHHssH −+−+= λλλ2

1AFF

1= ∑

=

N

i

xiN

NH σ

Conventional case: λ=1

Start: s=0, λ=any Goal: s=1, λ=1

( ) TF0 )1( ),( HsHssH −+=λ

∑∑==

−=−=N

i

xi

pN

i

zi H

NNH

1TF

10 ,

1 σσ

s

λ 0

1

1

0 29

Page 30: Nishimori

30 30 30 30 30 30 30 30 30 30

Result

1st 1st 2nd

p=3 p=5 p=11

( ) TFAFF0 )1()1(),( HsHHssH −+−+= λλλ30

Page 31: Nishimori

Is essential?

kN

i

xi

k

NNH = ∑

=1

)(AFF

1 σ

( ) TF)(

AFF0 )1()1(),( HsHHssH k −+−+= λλλ

It works fine for k>2 as well.

Seoane and Nishimori (2012)

2

1AFF

1= ∑

=

N

i

xiN

NH σ

31

Page 32: Nishimori

Summary

32

Page 33: Nishimori

33 33 33 33 33 33 33 33 33 33 33 33

Summary

9QA works fine as a generic, approximate algorithm.

9“Better” than SA.

9Negative evidence for a few difficult problems.

9But there should be ways to avoid 1st order transitions.

33

Page 34: Nishimori

34 34 34 34 34 34 34 34 34 34 34

Collaborators

zTadashi Kadowaki

zHelmut G. Katzgraber

zYoshiki Matsuda

zSatoshi Morita

zYoshihiko Nonomura

zMasayuki Ohzeki

zMasuo Suzuki

zSei Suzuki

zYuya Seki

zBeatriz Seoane

34

Page 35: Nishimori

35 35 35 35 35 35 35 35 35 35 35 35 35 35

History

9Apolloni, Carvalho, de Falco (1989)

“QA”, algorithmic

9Finnila, Gomez, Sebenik, Stenson, Doll (1994)

Schrödinger, continuous (Lennard-Jones)

9Tanaka & Horiguchi (1997)

Image restoration, algorithmic

9Kadowaki & Nishimori (1998)

Transverse-field Ising, Schrödinger

9Fahri, Goldstone, Gutmann, Lapan, Lundgren, Preda (2001)

“Adiabatic computation”, complexity , not independent of KN