nilnumerical mdlim odeling of char particles ...158.110.32.35/euromech/presentations/marra.pdf ·...

23
N i lM d li f N i lM d li f NumericalModeling of NumericalModeling of Char Particles Char Particles Segreg ation Segreg ation in in Entrained EntrainedFlow Flow Slagging Slagging Gasifiers Gasifiers F IORENZO IORENZO A MBROSINO MBROSINO 1,4 1,4 , A NDREA NDREA A PROVITOLA PROVITOLA 2 , F RANCESCO RANCESCO S AVERIO AVERIO M ARRA ARRA 2 , F ABIO ABIO M ONTAGNARO ONTAGNARO 3 , P IERO IERO S ALATINO ALATINO 4 F ABIO ABIO M ONTAGNARO ONTAGNARO , P IERO IERO S ALATINO ALATINO 1. ENEA Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile, CR Portici, Piazzale Enrico Fermi 1, 80055 Portici (Italy) 2 Istituto di Ricerche sulla Combustione Consiglio Nazionale delle Ricerche 2 . Istituto di Ricerche sulla Combustione , Consiglio Nazionale delle Ricerche , Via Diocleziano 328, 80124 Napoli (Italy) 3. Dipartimento di Chimica , Università degli Studi di Napoli Federico II, Complesso Universitario del Monte di Sant’Angelo, 80126 Napoli (Italy) 4. Di p artimento di In g e g neria Chimica , Università de g li Studi di Na p oli Federico II , Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy)

Upload: others

Post on 29-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

N i l M d li fN i l M d li fNumerical Modeling of Numerical Modeling of Char Particles Char Particles Segregation Segregation ining gg g

EntrainedEntrained‐‐Flow Flow SlaggingSlagging GasifiersGasifiersFF IORENZOIORENZO AAMBROS INOMBROS INO1,41 ,4 ,  ,  AANDREANDREA AAPROVITOLAPROVITOLA22,  ,  

FFRANCESCORANCESCO SSAVERIOAVERIO MMARRAARRA22 ,  ,  FFAB IOAB IO MMONTAGNAROONTAGNARO33,, PP IEROIERO SSALAT INOALAT INO44FFAB IOAB IO MMONTAGNAROONTAGNARO ,  ,  PP IEROIERO SSALAT INOALAT INO

1 . E N E A ‐ A g e n z i a   N a z i o n a l e   p e r   l e   N u o v e   Te c n o l o g i e ,   l ' E n e r g i a   e   l o   S v i l u p p o  E c o n o m i c o   S o s t e n i b i l e ,   C R   P o r t i c i ,   P i a z z a l e   E n r i c o   F e r m i   1 ,   8 0 0 5 5   P o r t i c i   ( I t a l y )

2 I s t i t u t o d i R i c e r c h e s u l l a C o m b u s t i o n e C o n s i g l i o N a z i o n a l e d e l l e R i c e r c h e2 . I s t i t u t o   d i   R i c e r c h e   s u l l a   C o m b u s t i o n e ,   C o n s i g l i o   N a z i o n a l e   d e l l e   R i c e r c h e ,  V i a   D i o c l e z i a n o   3 2 8 ,   8 0 1 2 4   N a p o l i   ( I t a l y )

3 . D i p a r t i m e n t o   d i   C h i m i c a ,   U n i v e r s i t à   d e g l i   S t u d i   d i   N a p o l i   F e d e r i c o   I I ,C o m p l e s s o   U n i v e r s i t a r i o   d e l  M o n t e   d i   S a n t ’A n g e l o ,   8 0 1 2 6   N a p o l i   ( I t a l y )

4 . D i p a r t i m e n t o   d i   I n g e g n e r i a   C h i m i c a ,   U n i v e r s i t à   d e g l i   S t u d i   d i   N a p o l i   F e d e r i c o   I I ,p g g g pP i a z z a l e   V i n c e n z o   Te c c h i o 8 0 ,   8 0 1 2 5   N a p o l i   ( I t a l y )

Page 2: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

Coal GasificationCoal GasificationCoal is widely adopted worldwide and does not will last for at least Coal is widely adopted worldwide and does not will last for at least two centuries.two centuries.Need to adopt new combustion technologies to lower environmentalNeed to adopt new combustion technologies to lower environmentalNeed to adopt new combustion technologies to lower environmental Need to adopt new combustion technologies to lower environmental impactimpact and raise efficiency: oxyand raise efficiency: oxy‐‐fuel combustion.fuel combustion.IGCC powerIGCC power plants are flexible and prone to CCS.plants are flexible and prone to CCS.

rm diameter

m higth

x 2 m

∼10

 m

Feeding pulverized coal and oxygen, very pure Feeding pulverized coal and oxygen, very pure syngassyngas (H2 + CO) is produced.(H2 + CO) is produced.Impurities are mainly collected in the slag forming at the confining walls due to the deposition Impurities are mainly collected in the slag forming at the confining walls due to the deposition of particles driven by a swirled turbulent flowof particles driven by a swirled turbulent flowof particles driven by a swirled turbulent flow.of particles driven by a swirled turbulent flow.Factors affecting efficiency are very difficult to control.Factors affecting efficiency are very difficult to control.

Page 3: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

CharChar‐‐Wall interactionWall interactionSwirled flow aid to eliminate impurities (ash) but also migrate unburnt coal particles (char) towards h llA simple 1D model has highligthed that a very high migration of particles towards the walls occurs. 

the wall.

Mechanisms of particle‐wall interaction can be very complex and are affected by the regime of particle accumulation [Montagnaro e Salatino, 2010]:g. E) Entrapment

not desidered for combustion efficiencyS) SegregationS) Segregationnot likelySC) Segregation and coverage lik l d d i d l id ilikely and desired: long residence time

Is regime E or SC that occurs in a gasifier ?g g

Page 4: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

Experimental EvidenceExperimental EvidenceTwo streams of slag collected in the Puertollano gasifier (Spain):1 Sl

At a first look, elemental analysis on slag did not At a first look, elemental analysis on slag did not highlight the presence of carbonhighlight the presence of carbon

devolatilization/combustion zonecoal (WF)

( )

1. Slag2. Slag fines

g g pg g p

lean‐dispersed

O2 (WOX)H2O (WS)

dense‐dispersed

char, sootslag char, sootslag

syn‐gasfly ash (WFLY) slag (WSLAG)

syn‐gasslag fines (WSF) 

Page 5: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

Experimental EvidenceExperimental EvidenceTwo streams of slag collected in the Puertollano gasifier (Spain):1 Sl

devolatilization/combustion zonecoal (WF)

( )

1. Slag2. Slag fines

lean‐dispersed

O2 (WOX)H2O (WS)

SEM micrographs for the cross sections of: adense‐

dispersed

char, sootslagDifferent results were obtained by SEMDifferent results were obtained by SEM‐‐EDX of Slag:EDX of Slag:

SEM micrographs for the cross-sections of: a selected zones of slag particles magnfication=1600×).

char, sootslag•• Inorganic fraction (Si Inorganic fraction (Si –– Al): 47.5%Al): 47.5%•• Carbon: 9.3% (in segregated form: carbon content in the Carbon: 9.3% (in segregated form: carbon content in the 

darker region as high as about 50 %)darker region as high as about 50 %)

syn‐gasfly ash (WFLY) slag (WSLAG)

darker region as high as about 50 %).darker region as high as about 50 %).

Relevance of carbon entrapment into the slag fractionRelevance of carbon entrapment into the slag fraction

syn‐gasslag fines (WSF) 

Page 6: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

Experimental EvidenceExperimental EvidenceTwo streams of slag collected in the Puertollano gasifier (Spain):1 Sl

devolatilization/combustion zonecoal (WF)

( )

1. Slag2. Slag fines

lean‐dispersed

O2 (WOX)H2O (WS)

dense‐dispersed

char, sootslag

SEM micrographs for different whole slag fines particles: left porous (magnification=1600×); right dense (magnfication=3000×).

Results obtained by SEMResults obtained by SEM‐‐EDX of slag fines particles:EDX of slag fines particles:•• Porous (left) or compact (right) structurePorous (left) or compact (right) structurechar, sootslag Porous  (left) or compact (right) structurePorous  (left) or compact (right) structure•• Porous particles: Porous particles: Carbon Carbon 85% (85% (unreactedunreacted char)char)•• Dense particles: Dense particles: Carbon Carbon 15 % 15 % ‐‐ Si+AlSi+Al 34 % 34 % 

((intermediate properties between porous slag finesintermediate properties between porous slag fines

syn‐gasfly ash (WFLY) slag (WSLAG)

((intermediate properties between porous slag fines intermediate properties between porous slag fines and coarse slagand coarse slag))

•• Particle size Particle size ∼∼ 100 100 μμm  m  ‐‐ Particle density Particle density  ∼∼ 1000 kg/m1000 kg/m33

syn‐gasslag fines (WSF) 

Relevance of the establishment of a denseRelevance of the establishment of a dense‐‐dispersed phase dispersed phase 

Page 7: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

Numerical Simulation Numerical Simulation –– aim and scopeaim and scopeExisting numerical codes implement comprehensive models of the Existing numerical codes implement comprehensive models of the gasifiergasifier for for design purposes. Mostly based on Euler RANS for the gas phase  and DEM for the design purposes. Mostly based on Euler RANS for the gas phase  and DEM for the lid hlid hsolid phase .solid phase .

Correlations are adopted to predict coal Correlations are adopted to predict coal pyrolisispyrolisis, char , char devolatilizationdevolatilization, volatiles , volatiles combustion and particle deposition rates on the wall.combustion and particle deposition rates on the wall.

All the closures are based on empirical models.All the closures are based on empirical models.ExistingExisting modelsmodels ofof particleparticle depositiondeposition ratesrates taketake intointo accountaccount onlyonly thethe possibilitypossibility ofof

stick /nonstick /non stickstick impactimpact th tth t l dl d tt thth t bli h tt bli h t ff didiaa sticky/nonsticky/non stickysticky impactimpact,, thatthat leadsleads toto thethe establishmentestablishment ofof aa dispersedisperse‐‐entrapmententrapment regime,regime, makingmaking impossibleimpossible toto predictpredict thethe devolatilizationdevolatilization inin thethe densedensesegregatedsegregated regionregion characterizedcharacterized byby longlong residenceresidence timestimes..

Scope of this study is to develop a model for the Scope of this study is to develop a model for the predictionprediction of the mechanism of the mechanism leading to the occurrence of the segregation and coverage regime.leading to the occurrence of the segregation and coverage regime.

DetailedDetailed simulationssimulations (LES(LES LPT)LPT) ofof thethe particleparticle ladenladen flowflow areare tootoo CPUCPU demandingdemanding atatDetailedDetailed simulationssimulations (LES(LES‐‐LPT)LPT) ofof thethe particleparticle ladenladen flowflow areare tootoo CPUCPU demandingdemanding atatthethe fullfull sizesize ofof thethe gasifiergasifier.. ThereforeTherefore aa multilevelmultilevel approachapproach isis proposedproposed toto identifyidentifycomputationallycomputationally practicablepracticable configurationsconfigurations ableable toto representrepresent thethe actualactual particleparticle‐‐

llll i t tii t ti i ti t ifiifiwallwall interactioninteraction intointo aa gasifiergasifier..

Page 8: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

Numerical Simulation Numerical Simulation –– multilevel approachmultilevel approachLevel 0Level 0

1 D model help to establish order of magnitude of particle deposition rates and1 D model help to establish order of magnitude of particle deposition rates and1 D model help to establish order of magnitude of particle deposition rates and 1 D model help to establish order of magnitude of particle deposition rates and physical characteristics (size and density) of particles that reach the wall.physical characteristics (size and density) of particles that reach the wall.

Level 1Level 1

URANS model of the full URANS model of the full gasifiergasifier at proper particle load helps to identify at proper particle load helps to identify characteristic regions of the near wall zones where the behaviour of particle characteristic regions of the near wall zones where the behaviour of particle –– wall wall i t ti h l l id tifi bl f ti t ti h l l id tifi bl f tinteraction shows clearly identifiable features.interaction shows clearly identifiable features.

Level 2Level 2

Detailed Large Eddy Simulations of a very simplified models, where the previously Detailed Large Eddy Simulations of a very simplified models, where the previously identified features can be reproduced, are adopted to conduct parametric identified features can be reproduced, are adopted to conduct parametric investigation and identify the driving mechanisms of particleinvestigation and identify the driving mechanisms of particle‐‐slag interaction.slag interaction.

This study is at an initial stage: only preliminary results are shown, relevant to cases This study is at an initial stage: only preliminary results are shown, relevant to cases chosen mostly for proper validation.chosen mostly for proper validation.

Page 9: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

Numerical Simulation Numerical Simulation –– Software platformSoftware platform

The Open Source CFD Toolbox

Open Source CFD libraries and Open Source CFD libraries and codescodes

LagrangianLagrangian Particle Tracking provided Particle Tracking provided by theby the SolidParticleCloudSolidParticleCloud classclasscodescodes

Based on the Finite Volume Based on the Finite Volume method for the gas phasemethod for the gas phase

by the by the SolidParticleCloudSolidParticleCloud classclass1 way coupling1 way couplingForces: drag, weight and  Forces: drag, weight and  

Written in Object Oriented C++Written in Object Oriented C++Parallel by MPI standardParallel by MPI standardA wide network of developers isA wide network of developers is

bouyancybouyancySimple particleSimple particle‐‐wall interactionwall interaction

Needs to be further developed !Needs to be further developed !A wide network of developers is A wide network of developers is establishing worldwide, especially establishing worldwide, especially in the academic communityin the academic community

Needs to be further developed !Needs to be further developed !

Page 10: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

Numerical Simulation Numerical Simulation –– HardHardware platformware platform

ENEAENEA‐‐CRESCO High Performance Computing CentreCRESCO High Performance Computing Centre

≈ ≈ 3000 cores3000 cores≈ 300 machines≈ 300 machinesInfinibandInfiniband interconnectioninterconnection> 17 teraflops peak performance> 17 teraflops peak performance> 17 teraflops peak performance> 17 teraflops peak performance

Page 11: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

Numerical Simulation Numerical Simulation –– URANS of the URANS of the gasifiergasifier

Gasifier prototype: Sommerfeld and Qiu[Sommerfeld e Qiu, 1993]

• Provides a good data set of experimental results useful for lid tivalidation

• Validation data also available from detailed LES simulationdetailed LES simulation [Apte et al., 2003]

M i tMain parametersR = 0.096 m, L = 1.5 m, Rref = 0.032 m (outer annulus) 

Gas phase: Ambient air U f = 12 89 m/s Re f = 26200 Swirl number = 0 47Gas phase: Ambient air, Uref = 12.89 m/s, Reref = 26200, Swirl number = 0.47

Particle phase: average Dp = 0.45 μm, Particle loading ratio = 0.034 (about 106 particles in the domain)p

Page 12: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

Numerical Simulation Numerical Simulation –– URANS of the gasifierURANS of the gasifierGas PhaseGas PhaseFully compressible averaged Fully compressible averaged NavierNavier‐‐Stokes Stokes flow model equations flow model equations aiming to a prompt generalization to variable density flows.κκ –– ωω SST SST modelmodel [[MenterMenter etet al., 2001]al., 2001], [[ , ], ],adequate to capture the vortex core22ndnd order schemes order schemes in both time and space, PISO procedure for continuity closurePISO procedure for continuity closure3D computational mesh: 3D computational mesh: multi‐block and structured, composed of about 150000 cellsabout 150000 cellsParticle phaseParticle phase11‐‐way coupling, only Drag way coupling, only Drag and Gravity forceand Gravity forceTrack Track to Face algorithm for LPTto Face algorithm for LPT[Mc Pherson et al, 2009]About 250000About 250000 parcelsparcels in the domainin the domainAbout 250000 About 250000 parcelsparcels in the domainin the domain

Page 13: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

Numerical Simulation Numerical Simulation –– URANS of the gasifierURANS of the gasifierGas PhaseGas PhaseFully compressible averaged Fully compressible averaged NavierNavier‐‐Stokes Stokes flow model equations flow model equations aiming to a prompt generalization to variable density flows.κκ –– ωω SST SST modelmodel [[MenterMenter etet al., 2001]al., 2001], [[ , ], ],adequate to capture the vortex core22ndnd order schemes order schemes in both time and space, PISO procedure for continuity closurePISO procedure for continuity closure3D computational mesh: 3D computational mesh: multi‐block and structured, composed of about 150000 cellsabout 150000 cellsParticle phaseParticle phase11‐‐way coupling, only Drag force includedway coupling, only Drag force includedTrack to Face algorithm for LPTTrack to Face algorithm for LPT[Mc Pherson et al, 2009]About 250000About 250000 parcelsparcels in the domainin the domainAbout 250000 About 250000 parcelsparcels in the domainin the domain

Page 14: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

Numerical Simulations Level 1 Numerical Simulations Level 1 ‐‐ ResultsResultsParticle Particle pathlinespathlines coloured by particle coloured by particle velocity and superposed to the axial velocity and superposed to the axial velocity flood contours in thevelocity flood contours in the

Dp = 45 μmvelocity flood contours in the velocity flood contours in the midplanemidplane section.section.Essential particle motion features Essential particle motion features capturedcaptured

Dp = 102 μm Dp = Rosin‐Rammler

[Sommerfeld e Qiu, 1993][ f Q , ]

Page 15: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

Numerical Simulations Level 1 Numerical Simulations Level 1 ‐‐ ResultsResultsParticle Particle pathlinespathlines coloured by particle coloured by particle velocity and superposed to the axial velocity and superposed to the axial velocity flood contours in thevelocity flood contours in the

Dp = 45 μmvelocity flood contours in the velocity flood contours in the midplanemidplane section.section.Essential particle motion features Essential particle motion features capturedcaptured

Dp = 102 μm

[Sommerfeld e Qiu, 1993][ f Q , ]

Page 16: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

Numerical Simulations Level 1 Numerical Simulations Level 1 ‐‐ ResultsResults

Average particle concentration Average particle concentration (21 samples from 8 to 10 s)(21 samples from 8 to 10 s)( sa p es o 8 to 0 s)( sa p es o 8 to 0 s)

4 distinct regions identified:4 distinct regions identified:1.1. Low number of impactsLow number of impacts2.2. High inertia impactsHigh inertia impacts3.3. Parallel to the wall particle Parallel to the wall particle 

flowflowflowflow4.4. Lifted particles flowLifted particles flow

Aimed at extract data about the Aimed at extract data about the flow and particle velocities in flow and particle velocities in regions near the wall, particle regions near the wall, particle eg o s ea t e a , pa t c eeg o s ea t e a , pa t c eimpact velocities, particle load, impact velocities, particle load, etc.etc.

Volumes for LES simulations.Volumes for LES simulations.

Page 17: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

LES of particle laden boundary layersLES of particle laden boundary layersPeriodic turbulent channel flow Periodic turbulent channel flow 

at Reat Reττ=150=150

Gas PhaseGas PhaseFully compressible filtered Fully compressible filtered NavierNavier‐‐Stokes Stokes equationsequations aiming to a prompt generalizationττ equations equations aiming to a prompt generalization to variable density flows. Pressure force and work added in momentum and energy eq.L li d d i d l LDKM SGS lL li d d i d l LDKM SGS lLocalized dynamic model LDKM SGS closure,Localized dynamic model LDKM SGS closure,that solves an additional equation for the SGS turbulent kinetic energy [Menon et al. 1995]

dd

Aim and scope:Aim and scope:An almost obliged step for validationAn almost obliged step for validation

22ndnd order schemes order schemes in both time and space, PISO procedure for continuity closureParticle phaseParticle phase

Sensitivity of particle accumulation Sensitivity of particle accumulation at the wall upon different wall at the wall upon different wall characteristics (molten slag treatedcharacteristics (molten slag treated

11‐‐way coupling, only Drag force includedway coupling, only Drag force includedTrack to Face algorithm for LPT [Mc Phersonet al 2009]characteristics (molten slag treated characteristics (molten slag treated 

as inelastic surface, as inelastic surface, εε < 1)< 1)Possibility of incipient formation of Possibility of incipient formation of 

et al, 2009]100000 100000 particlesparticles in the domainin the domainSetup similar to Marchioli et al. (2008)

one among  one among  EE, , SS or or SC SC regimes.regimes.

Page 18: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

LES of particle laden boundary layers flowLES of particle laden boundary layers flow

St=5 St=25

3D computational mesh:3D computational mesh: Variable restitution coefficient Variable restitution coefficient εε to simulate to simulate Grid refinement sensitivity analysis:Grid refinement sensitivity analysis:

32x32x64 coarse or 48x48x96 fine

the presence of slag/covered slag:the presence of slag/covered slag:

Very weak dependence upon Very weak dependence upon εε

Page 19: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

LES of particle laden boundary layers flowLES of particle laden boundary layers flow

St=5 St=25St 5 St 25

3D computational mesh:3D computational mesh: Variable restitution coefficient Variable restitution coefficient εε to simulate to simulate Grid refinement sensitivity analysis:Grid refinement sensitivity analysis:

32x32x64 coarse or 48x48x96 fine

the presence of slag/covered slag:the presence of slag/covered slag:

Very weak dependence upon Very weak dependence upon εε

Page 20: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

LES of particle laden boundary layer flowsLES of particle laden boundary layer flows

The phenomenon is mostly driven by turbophoresis: particles have very low impact velocity.

Th l ti fThe accumulation of particles near the wall is not affected by wall properties

The accumulation of particles near the wallparticles near the wall takes a very long time, not comparable to the 

id i f i lresidence time of particles of few seconds in gasifiers.

Maximum normalized particle concentrationMaximum normalized particle concentration averaged along the homogeneous directions vs time

Page 21: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

LES of particle laden boundary layer swirled flowsLES of particle laden boundary layer swirled flowsPeriodic turbulent curve channel flow (rotating Couette flow)Periodic turbulent curve channel flow (rotating Couette flow)

ReReττ∼∼200200

6m

R=0.

096

2πh

FlowFlow y

R 2πh

2h

Impact under condition of Impact under condition of non parallel average flow non parallel average flow is essential to is essential to properly reproduce the fate of particles in highly swirled flowsproperly reproduce the fate of particles in highly swirled flows

zx2h

properly reproduce the fate of particles in highly swirled flowsproperly reproduce the fate of particles in highly swirled flows

Page 22: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

LES of particle laden boundary layer swirled flowsLES of particle laden boundary layer swirled flows

SatisticallySatistically (almost) (almost) steady state steady state conditions reached in conditions reached in times comparable times comparable with the residence with the residence time into a time into a gasifiergasifier;;

wall properties affect wall properties affect the accumulation of the accumulation of particles during the particles during the transient phase;transient phase;

Two different Two different behaviorsbehaviors of the of the 

i hi htransient phase transient phase varying varying εε..

Maximum normalized particle concentration averaged along theMaximum normalized particle concentration averaged along the homogeneous directions vs time (first 2 s enhanced)

Page 23: NilNumerical MdliM odeling of Char Particles ...158.110.32.35/Euromech/PRESENTATIONS/Marra.pdf · CharChar‐Wall interaction Swirled flow aid to eliminate impurities (ash) but also

Conclusions and Future workConclusions and Future workConclusionsConclusions•• A multilevel procedure (ExpA multilevel procedure (Exp → → 1D1D → 3D→ 3D--URANS → 3DURANS → 3D--LES) LES) has been has been 

established to investigate the fate of  particles into established to investigate the fate of  particles into slaggingslagging gasifiersgasifiers;;•• Need of accuracy improvements for smaller particles;Need of accuracy improvements for smaller particles;

P li i lt ll t id tif diti h th fP li i lt ll t id tif diti h th f•• Preliminary results allow to identify some conditions where the surface Preliminary results allow to identify some conditions where the surface property of slag play a roleproperty of slag play a role

Future workFuture workFuture workFuture work•• The particle clustering lead to high level of  concentration, claiming for the The particle clustering lead to high level of  concentration, claiming for the 

inclusion of a full 4inclusion of a full 4‐‐way coupling approach.;way coupling approach.;•• Char particles are not spherical; inclusion of a stickiness model also needed;Char particles are not spherical; inclusion of a stickiness model also needed;•• Char particle in the dense layer have to burn to complete carbon conversion, Char particle in the dense layer have to burn to complete carbon conversion, 

leading to a variable gas/solid ratio: inclusion of combustion models andleading to a variable gas/solid ratio: inclusion of combustion models andleading to a variable gas/solid ratio: inclusion of combustion models and leading to a variable gas/solid ratio: inclusion of combustion models and variable density flow.variable density flow.

Thank you for your kind attentionThank you for your kind attentionThank you for your kind attentionThank you for your kind attention