nigel cooper, nigel cooper and paul sutcliffe- stable skyrmions in two-component bose-einstein...

Upload: pomac232

Post on 06-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    1/18

    Stable Skyrmions in

    Two-Component Bose-Einstein

    Condensates

    Nigel CooperT.C.M. Group, Cavendish Laboratory,

    University of Cambridge

    UMIST, 8 Feb 2002

    Richard Battye (Cambridge/Manchester),Paul Sutcliffe (Kent)

    [PRL 88, 080401 (2002)]

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    2/18

    Overview

    Atomic Bose-Einstein Condensates Multi-component condensates Topological Solitons

    Stable Skyrmions Summary

    1

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    3/18

    Bose-Einstein Condensation

    T

    a

    h2

    m2T kBT a n1/3

    T > a kBT

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    4/18

    Atomic Bose-Einstein Condensates

    kBTc h2m n2/3 100nK

    87

    Rb (JILA, 1995)7Li (Rice, 1995)23Na (MIT, 1995)1H (MIT, 1998)85Rb (JILA, 2000)4He (Orsay, 2001)

    [Anderson et. al. [JILA], Science 269, 198 (1995).]

    3

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    5/18

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    6/18

    Multicomponent Condensates

    Hyperfine interaction F = I + JTypically:

    J = S = 1/2 (Alkali gases)I = 3/2 (87Rb, 23Na, 7Li)

    |F = 2, m = 2,1, 0, 1, 2

    |F = 1, m =

    1, 0, 1

    Magnetic trap87Rb |F = 2, m = 2 and |F = 1, m = 1

    [Myatt et. al.[JILA], PRL78, 586 (1997)]

    87Rb

    |F = 2, m = 1

    and

    |F = 1, m =

    1

    [Hall et. al.[JILA], PRL81, 1539 (1998)]Optical trap

    23Na |F = 1, m = 1, 0, 1[Stenger et. al.[MIT], Nature 396, 345 (1998)]

    Different atoms / Isotopes85Rb and 87Rb [Bloch et. al.[Munich], PRA 64, 021402 (2001)]

    5

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    7/18

    Vortex in a two-component BEC[Matthews et. al. [JILA], PRL 83, 2498 (1998).]

    |1 = |1,1

    |2

    =

    |2, 1

    6

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    8/18

    Gross-Pitaevskii Mean-Field Theory

    N Ni=1

    (ri)

    N =

    d3r |(r)|2

    Minimise the expectation value of the energy

    E =

    d3r

    h2

    2m||2 + V(r)||2 + 1

    2U||4

    at fixed N (chemical potential) U a

    7

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    9/18

    Multi-component case

    N Ni=1

    (ri)|i

    N =

    d3r |(r)|2

    Energy (density)

    h2

    2m||2 + V(r)||2 + 1

    2

    ,

    U||2||2

    U all mutual two-body scattering lengths N conserved separate chemical potentials

    =

    12

    ... topological solitons ?

    8

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    10/18

    Topological Textures

    One-component condensate in one dimension.

    (r) =

    ei

    x0 L

    Topological invariant

    Q =1

    2

    L0

    d

    dxdx

    9

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    11/18

    Two-component condensate in three dimensions.

    12

    =

    cos(/2)ei1

    sin(/2)ei2

    Q =1

    82 sin ij1k2 ijkd

    3r

    Skyrmion

    [Al Kawaja and Stoof, Nature 411, 918 (2001);

    Ruostekoski and Anglin, PRL 86, 3934 (2001)]

    [Three components, textures vortices, monopoles...]

    10

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    12/18

    How to obtain stable Skyrmions

    Large Trap (|r| ) = 0 10 Constrain N2 =

    d3r |2|2

    Regime of phase separation: U212 > U11U22

    We study U11 U12 U22 s.t. (r) = 0.Find stable skyrmions of the form:

    Imprint with lasers [Ruostekoski and Anglin, PRL 86, 3934 (2001)]

    [cf. Cosmic vortons]

    11

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    13/18

    Mathematical Details

    12

    =

    0

    cos(/2)ei1

    sin(/2)ei2

    N2 = 0 sin2(/2)d3r

    Q = 182

    sin ij1k2 ijkd3r

    Energy density

    h20

    2m 14||2 + cos2(/2)|1|2 + sin2(/2)|2|2+sin2

    [ 18

    20 (2U12 U11 U22)]

    Lengthscales: h22m R2 = N20 1/3

    E(, N2) =

    h20R2

    m

    EQ()

    R2

    12

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    14/18

    Q=1

    13

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    15/18

    Q=2

    14

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    16/18

    Axisymmetric Ansatz

    (r, z), 1(r, z), 2 = m[(r,,z) are cylindrical polar co-ordinates]

    Q = mn

    0 10 20 30

    0

    100

    200

    300

    m,n=1

    m=7

    m=6

    m=5

    m=4

    m=3m=2

    m=1

    15

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    17/18

    Moving Vortex Rings

    Constrain the impulse (momentum)

    Pi =h

    2i

    d3r[rjij rjji]

    v =E

    P

    0 0.5 1 1.5 2

    p

    54

    54.5

    55

    Q=1

    67

    67.5

    68

    Q=2

    Q=1

    Q=2

    16

  • 8/3/2019 Nigel Cooper, Nigel Cooper and Paul Sutcliffe- Stable Skyrmions in Two-Component Bose-Einstein Condensates

    18/18

    Summary

    Atomic Bose-Einstein condensates offer thepossibility of studying interacting Bose gases with ahigh level of control (interaction strength,confinement, numbers of components).

    In the regime of phase separation, two-componentBECs have stable textures with the topology ofSkyrmions (Q = 1, 2).

    This regime is relevant for 2-component 87Rbsystems. We expect that textures imprinted by lasers

    will relax to these stable Skyrmion configurations.

    17