next generation dna sequencing introduction · 2012-02-23 · 2012‐02‐23 1 next generation dna...

11
20120223 1 Next Generation DNA Sequencing Introduction Introduction MVE360 – Bioinformatics, 2012 Erik Kristiansson, [email protected] Agenda Part 1: Sequencing Techniques The history of DNA sequencing Sanger sequencing (first generation sequencing) Next generation sequencing Massively parallel pyrosequencing Sequencing by synthesis Sequencing by ligation Data analysis Next lecture: Applications History of DNA sequencing Structure of the DNA discovered in 1953. First sequences in 1965. R id DNA i Rapid DNA sequencing developed by Frederick Sanger 1977. Watson & Crick Fred Sanger History of DNA sequencing Bacteriophage Phi X 174 First sequenced genome. Done by Fred Sanger. 11 genes, 5,386 bases Published 1977 Haemophilus influenzae First sequenced free living organism 1800 genes, 1.8 million bases Published 1995 History of DNA sequencing Saccharomyces cerevisiae First sequenced eukaryote Genome consists of 6000 genes and 12 million bases Published 1997 – the project took 7 years Homo sapiens The Human Genome Project Genome consists of ~21.000 genes and 3.25 billion bases HGP – The Human Genome Project Initiated 1990 – finished 13 year later Largest research project 200 research groups worldwide Total cost was $3 billion Sequence still not 100% complete The Holy Grail: $1000 genome!

Upload: others

Post on 05-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Next Generation DNA Sequencing Introduction · 2012-02-23 · 2012‐02‐23 1 Next Generation DNA Sequencing ‐Introduction MVE360 – Bioinformatics, 2012 Erik Kristiansson, erik.kristiansson@chalmers.se

2012‐02‐23

1

Next Generation DNA Sequencing‐ IntroductionIntroduction

MVE360 – Bioinformatics, 2012

Erik Kristiansson, [email protected]

Agenda

• Part 1: Sequencing Techniques

– The history of DNA sequencing

– Sanger sequencing (first generation sequencing)

– Next generation sequencing

• Massively parallel pyrosequencing

• Sequencing by synthesis

• Sequencing by ligation

– Data analysis

• Next lecture: Applications

History of DNA sequencing

• Structure of the DNA discovered in 1953.

• First sequences in 1965.

R id DNA i• Rapid DNA sequencing developed by Frederick Sanger 1977.

Watson & Crick Fred Sanger

History of DNA sequencing

Bacteriophage Phi X 174 First sequenced genome. Done by Fred

Sanger. 11 genes, 5,386 basesg , , Published 1977

Haemophilus influenzae First sequenced free living organism 1800 genes, 1.8 million bases Published 1995

History of DNA sequencing

Saccharomyces cerevisiae First sequenced eukaryote Genome consists of 6000 genes and

12 million bases Published 1997 – the project took 7

years

Homo sapiens The Human Genome Project Genome consists of ~21.000 genes

and 3.25 billion bases

HGP – The Human Genome Project

• Initiated 1990 – finished 13 year later

• Largest research project

– 200 research groups worldwide

– Total cost was $3 billion

• Sequence still not 100% complete

• The Holy Grail: $1000 genome!

Page 2: Next Generation DNA Sequencing Introduction · 2012-02-23 · 2012‐02‐23 1 Next Generation DNA Sequencing ‐Introduction MVE360 – Bioinformatics, 2012 Erik Kristiansson, erik.kristiansson@chalmers.se

2012‐02‐23

2

100,000,000

10,00,000,000

NA seq

uen

cing

>1000,000,000,000 bases/year

Number of DNA bases / year and 

person

1965 1977 1986 1997 2003 2011

100

10,000

1,000,000

, ,

Sanger sequencing

Partial automation

First sequence

Second gen

eration DN

Genome sequencing

Vertebrate species distribution

Planned whole-genome sequencing projects for vertebrates

Sanger sequencing

• “First generation” sequencing

– Introduced 1977

– Cloning in bacteria

Ch i t i ti bi d– Chain‐termination combined with gel electrophoresis

– Originally 80 bases fragments, today up to 1000 bases

– High accuracy

Sanger sequencing

Gel used for base‐calling Multiple sequencing machines at the Sanger institute

ACGTCTACGT…

Traditional (Sanger) sequencing

Next generation sequencing

TGTCCAGTCGTGTCCAGTCG…

GGGCATTAGC…

AGTTCCCATG…

CCAGTTACCC…

Page 3: Next Generation DNA Sequencing Introduction · 2012-02-23 · 2012‐02‐23 1 Next Generation DNA Sequencing ‐Introduction MVE360 – Bioinformatics, 2012 Erik Kristiansson, erik.kristiansson@chalmers.se

2012‐02‐23

3

Next generation DNA sequencing

• Introduced in 2005

• From serial to parallel – multiple fragments of DNA sequenced simultaneously

• Many techniques on the market

– Massively parallel pyrosequencing (454)

– Sequencing by synthesis (Illumina)

– Sequencing by ligation (SOLiD)

454 sequencing

• Massively parallel pyrosequencing

• Introduced 2005 by 454 Life Sciences/Roche/

• Read length around 1000 bases

• One sequencing run

– Generates 1,2 million reads, 500 million bases

– Takes four hours

GS FLX Pyrosequencer

454 sequencing 454 sequencing

Nucleotides are flowed sequentially (a)

A signal is generated for each nucleotide incorporation (b)

A CCD camera is generating an image after each flow (c)

The signal strength is proportional to the number of incorporated nucleotides.

454 sequencing

Page 4: Next Generation DNA Sequencing Introduction · 2012-02-23 · 2012‐02‐23 1 Next Generation DNA Sequencing ‐Introduction MVE360 – Bioinformatics, 2012 Erik Kristiansson, erik.kristiansson@chalmers.se

2012‐02‐23

4

454 sequencing

• Advantages

– Handles GC‐rich regions (fairly) well

– Long reads 

• Disadvantages

– Low throughput

– Error rate at 1%

– Homopolymeric regions 

0

200

400

600

800

1000

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

– Fast sequencing runs are problematic

Megabases/day

Sanger

454 GS

454 FLX 454 FLX Titanium

454 FLX +

Illumina sequencing

• Developed by Solexa (acquired by Illumina)

• Sequencing by synthesis –cyclic reverse termination

• HiSeq 2000– 3 billion reads, 35‐100 bases/read

– Up to 600 billion bases/run, 25 gigabases/day

• Long sequencing times HiSeq 2000

Illumina sequencing Illumina sequencing

Illumina sequencingCycle 1 Cycle 2

Cycle 3 Cycle 4

Cycle 5 Cycle 6

From Metzker, M. (2010). Sequencing Technologies – the next generation. Nature Reviews.

Page 5: Next Generation DNA Sequencing Introduction · 2012-02-23 · 2012‐02‐23 1 Next Generation DNA Sequencing ‐Introduction MVE360 – Bioinformatics, 2012 Erik Kristiansson, erik.kristiansson@chalmers.se

2012‐02‐23

5

• Around 100,000 high-resolution images are analyzed during an sequencing run (terabytes of data).

Raw image Pseudo‐colored image

Illumina sequencing

• Advantages

– High throughput (max 600 gigabases/run)

– Low cost per base

• Disadvantages

– Error rate at 1% ‐ only substitutions

– Problems with AT‐ and GC‐rich regions

– Long sequencing times (dependent on the read length)

SOLiD sequencing

• Life Technologies/ABI

• Amplification with emulsion PCR

• Sequencing by ligation

• 5500xl

– 5 billion reads, 35‐75 bases/read

– Up to 300 billion bases/run, 30 gigabases/day

• Long sequencing times

Sequencing by ligation

From Metzker, M. (2010). Sequencing Technologies – the next generation. Nature Reviews.

From Metzker, M. (2010). Sequencing Technologies – the next generation. Nature Reviews.

SOLiD sequencing

• Advantages

– High throughput (max 300 gigabases/run)

– Low cost per base

– High accuracy when a reference genome is– High accuracy when a reference genome is available

• Disadvantages

– Few software working with “color space”

– Problems with AT‐ and GC‐rich regions

– Long sequencing times (dependent on the read length)

Page 6: Next Generation DNA Sequencing Introduction · 2012-02-23 · 2012‐02‐23 1 Next Generation DNA Sequencing ‐Introduction MVE360 – Bioinformatics, 2012 Erik Kristiansson, erik.kristiansson@chalmers.se

2012‐02‐23

6

Pacific Bioscience

• Real‐time sequencing

• Long fragments – average length 1000 bases

• High error rate (up to 10%)

From Metzker, M. (2010). Sequencing Technologies – the next generation. Nature Reviews.

Overview of NGS technologies

Technology Company Throughput Cost/base Read length

Parallelpyrosequencing

454 Life Sciences /Roche

0.5Gb/day $0.01 ~700 bases

Illumina sequencing

Solexa/Illumina 100 Gb/day $0.000001 35‐100 bases

SOLiD Life Technologies 100 Gb/day $0 000001 35 75 basesSOLiD Life Technologies 100 Gb/day $0.000001 35‐75 bases

HeliScope Helicos Biosciences 5 Gb/day $0.005 25‐55 bases

PacBio RS Pacific Biosciences Unknown Unknown ~1000 bases

Traditional sequencing

0.00005Gb/day 0.5$up to 1000 

bases

10 000 000

100 000 000

1 000 000 000

of tran

sistors

The development of NGS

Doubling time: 22 months

1 000

10 000

100 000

1 000 000

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Number o

Year

1000

10000

100000

10 000 000

100 000 000

1 000 000 000

tran

sistors B

ase pai

Doubling time: 22 months

The development of NGS

0,1

1

10

100

1 000

10 000

100 000

1 000 000

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Number of 

Year

irs/$

1000

10000

100000

10 000 000

100 000 000

1 000 000 000

of tran

sistors

Base

 pai

Doubling time: 22 months

The development of NGS

0,1

1

10

100

1 000

10 000

100 000

1 000 000

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Number o

Year

irs/$

Doubling time: 6 months

1000

10000

100000

100

1000

10000

ytes/$

Base

 pai

Doubling time: 13 months

Kryder’s Law

0,1

1

10

100

0,01

0,1

1

10

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Megaby

Year

irs/$

Doubling time: 6 months

Page 7: Next Generation DNA Sequencing Introduction · 2012-02-23 · 2012‐02‐23 1 Next Generation DNA Sequencing ‐Introduction MVE360 – Bioinformatics, 2012 Erik Kristiansson, erik.kristiansson@chalmers.se

2012‐02‐23

7

4

2

01

0.01

4$/base)

8

6

4

1985 1990 1995 2000 2005 2010

10‐4

10‐6

10‐8

Cost ($

Will 2012 be the year of the holy grail?

• Yes, according to Life Technologies

– Ion Torrent Proton: Sequencing of a human genome in 2 hours for less than $1000.

Next generation sequencing

• Unprecedented amount of data

• Computationally efficient methods needed

• Lack of biostatisticians/bioinformaticians for h f ?the future?

Spruce genome sequencing project

Genome: 20 billion basesCollaboration between UU, KTH and SU.Sequenced using Illumina and 454Supercomputers needed for the analysis

Data analysis

• Large data volumes

– Optimized algorithms

– Computationally heavy – high performance computing and eSciencecomputing and eScience

• Different algorithms for different read lengths

• Different platforms have different error patterns

• Many classical bioinformatical tools are still useful

Preprocessing • Image analysis• Base calling• Removal of redudancy• Filtering of bad quality reads

• Read mapping

• Proprietary software• Special QC algorithms

Low‐level analysis• Read annotation• De novo assembly

• Bioinformatical analysis• Statistics• Biological interpretation

• High data volume• Special NGS algorithms

High‐level analysis• Lower data volume• Classical tools

Preprocessing

• Quality assessment of NGS data is essential!

– High error rate

– Problematic regions

A ti t i lit• Actions to increase quality

– Removing bad sequencing runs

– Filtering/trimming bad reads

– Removing redundant reads

– Multiplexing: Reads without interpretable barcode

• Low cost/base – possible to throw away more

Page 8: Next Generation DNA Sequencing Introduction · 2012-02-23 · 2012‐02‐23 1 Next Generation DNA Sequencing ‐Introduction MVE360 – Bioinformatics, 2012 Erik Kristiansson, erik.kristiansson@chalmers.se

2012‐02‐23

8

Error patterns in 454 sequencing

Balzer et al. (2010). Characteristics of 454 pyrosequencing data—enabling realistic simulation with flowsim Bioinformatics 26 (18). 

• Sequencing quality decreases with read length

• Homopolymeric errors are more likely for long repeats

CAAGACAAATCTTAGTTACGCTAATTTTT—-CTAGAGTCATATTAGAAAAAAGTGCGAACTGTGGGAAAATCGCCAAGACAAATCTTAGTTACGCTAATTTTT--CTAGAGTCATATTAGAAAAA-GTGCGAACTGTGGGAAAATCGCCAAGACAAATCTTAGTTACGCTAATTTTT--CTAGAGTCATATTAGAAA---GTGCGAACTGTGGGAAAATCGCCAAGACAAATCTTAGTTACGCTAATTTTT--CTAGAGTCATATTAGAAAA--GTGCGAACTGTGGGAAAATCGCCAAGACAAATCTTAGTTACGCTAATTTTT--CTAGAGTCATATTAGAAAA--GTGCGAACTGTGGGAAAATCGCCAAGACAAATCTTAGTTACGCTAATTTTTTTCTAGAGTCATATTAGAAAAA-GTGCGAACTGTGGGAAAATCGC***************************** ****************** **********************

KTNLSYANFSRVILEKSANCGKIKTNLSYANFSRVILEKVRTVGKS

DNA alignment

Protein alignment

• Around 50% of all errors in 454 data are related to homopolymers

• Substitutions should not be present in theory but  exist (they are rare).

KTNLSYANFSRVILEKVRTVGKSKTNLSYANFSRVILE-SANCGKIKTNLSYANFSRVILEKCELWENRKTNLSYANFSRVILEKCELWENRKTNLSYANFFLESYKKCELWENR*********

Error patterns in Illumina sequencing

Based on 10 million reads from one sequencing run on a Genome Analyzer IIx.

Error patterns in Illumina sequencing

• High variability between runs!

Error patterns in Illumina sequencing

Page 9: Next Generation DNA Sequencing Introduction · 2012-02-23 · 2012‐02‐23 1 Next Generation DNA Sequencing ‐Introduction MVE360 – Bioinformatics, 2012 Erik Kristiansson, erik.kristiansson@chalmers.se

2012‐02‐23

9

quencing runs

Filtering of ~500 Illumina sequencing runs

Illuminaseq

Reads discarded (%)

Preprocessing • Image analysis• Base calling• Removal of redudancy• Filtering of bad quality reads

• Read mapping

• Proprietary software• Special QC algorithms

Low‐level analysis• De novo assembly

• Bioinformatical analysis• Statistics• Biological interpretation

• High data volume• Special NGS algorithms

High‐level analysis• Lower data volume• Classical tools

Read Mapping

• Comparison of reads against a reference genome

• Traditional algorithm: Smith‐Waterman (e.g. BLAST))

• Faster algorithms

– Hash tables of k‐meres (e.g. SSAHA2)

– Burrows‐Wheeler transform (e.g. bwa)

– Suffix‐arrays (e.g. vmatch)

• Complexity scales linear to the amount of data

Read Mappingonal Cost

Smith‐Waterman

Sensitivity

Computatio

BLAST100 times faster than Smith‐Waterman

Read Mapping

nal Cost

Smith‐Waterman

Sensitivity

Computation

BLAST100 times faster than Smith‐Waterman

vmatch100 times faster than BLAST

Read Mapping

• Applications

– Genome/exome resequencing

• Genetically linked diseases

• Cancer researchCancer research

• Infectious diseases

– Transcriptomics (RNA‐seq)

• Large‐scale gene expression analysis

Page 10: Next Generation DNA Sequencing Introduction · 2012-02-23 · 2012‐02‐23 1 Next Generation DNA Sequencing ‐Introduction MVE360 – Bioinformatics, 2012 Erik Kristiansson, erik.kristiansson@chalmers.se

2012‐02‐23

10

Gene

RNA‐seq ‐ RNAseqDe novo assembly

• Form the sequenced fragments into a contiguous stretch of DNA

• Applications:– Genome sequencingq g

– Transcriptome sequencing

• Naïve algorithm

1. Compare all fragments with each other using pairwisealignments.

2. Identify the fragments with the best overlap ‐merge

3. Repeat

Genome assembly

Genome

Fragmentsg

Reconstructured genome

Assembly

Genome assembly ‐ challenges

• Computationally heavy

– Computational complexity: o(n2) 

– Memory complexity: o(n2)

• Sequencing errors

• Repetitive regions

Page 11: Next Generation DNA Sequencing Introduction · 2012-02-23 · 2012‐02‐23 1 Next Generation DNA Sequencing ‐Introduction MVE360 – Bioinformatics, 2012 Erik Kristiansson, erik.kristiansson@chalmers.se

2012‐02‐23

11

Assembly of the spruce genome

• Large and complex genome

– 20 gigabases (6 times as big as the human genome)

– Many repetitive regions

A bl t ti ti• Assembly statistics

– 1 terabases sequenced (mainly Illumina)

– 3 million contigs longer than 1000 bases – 30 % of the genome

– Assembly had to be done on a supercomputer with 1 TB RAM.

Summary – Next Generation Sequencing

• Next generation sequencing enables sequencing of billions of DNA fragments simultaneously

• Huge amount of sequence data are todayHuge amount of sequence data are today generated in short time

• Novel bioinformatical approaches are need to handle and analyze the produced data

• High applicability in many areas of biology and medicine