new sight on li-rich pegmatites within the austroalpine unit ......london, d. (1984): experimental...

1
A B INTRODUCTION CONCLUSIONS FIELD RELATIONS FRACTIONATION REFERENCES P-T Conditions during pegmatite formation AGE DATA B) Model melting reactions in the Qtz- saturated CKNASH system involving reaction curve position beside the one for the dehydration melting of muscovite (H2O) depend on the availability of H2O and XH2O in the fluid phase. This is indicated by the displacement of reactions (L) and (Ms) for XH2O = 0.7. Solid lines are valid for pure H 2 O-fluid in excess. Dashed lines are valid for a fluid of composition XH2O = 0.7. Abbreviations: alumino- silicate = Als; muscovite = Ms; plagioclase = Pl; K-feldspar = Kfs; melt = L; quartz = Qtz. Compiled from THOMPSON & ALGOR (1977) and KERRICK (1972). Stability fields of Li phases according to LONDON (1984). Figure 3 (right). P-T diagrams. A) KNASH-equilibrium phase diagram for common high-Al metapelites, showing the relationships between white micas and feldspars. Note that most of the equilibria shown on the right hand side of the H2O-saturated granite solidus become metastable in the presence of melt. Calculations for the diagram were made using Theriak/Domino software (DE CAPITANI & PETRAKAKIS, 2010) for the bulk composition shown above of the figure. Abbreviations: kaolinite = Kln; pyrophyllite = Prl; white mica = WM; feldspar = Fsp; quartz = Qtz; kyanite = Ky; andalusite = And; sillimanite = Sil; aluminosilicate = Als. Dashed lines indicate prograde Permian P-T paths for rocks of the sillimanite zone (black) and andalusite zone (grey) (modified from SCHUSTER at al., 2001). New sight on Li-rich Pegmatites within the Austroalpine unit (Eastern Alps) and their evidence for an anatectic origin In parts of the Austroalpine units, pegmatites with the incidence of Li-pyroxene spodumene (LiAl[Si2O6]) appear heterogeniously distributed over a distance of more than 400 km (Fig. 1, 2). There are two general views on the genesis of these pegmatites. On one hand tht Li-bearing pegmatites belong to the Rare Element class of pegmatites, which is thought to develop exclusively through fractionation of granitic parent plutons. On the other hand the associated barren pegmatites are considered as products of anatexis of metapelitic country rocks. Through the last years a new understanding of the geodynamic evolution of the Austroalpine basement could be revealed and field mapping results showed that in parts of the Austroalpine units migmatitic mica schists with interlayered barren pegmatites occur. In order to that in structural higher levels there are areas with enriched pegmatites like spodumene bearing pegmatites. ČERNÝ, P., & ERCIT, T. S. (2005): The classification of granitic pegmatites revisited. Can. Mineral., 43/6: 2005-2026. DE CAPITANI, C. & PETRAKAKIS, K. (2010): The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am. Mineral., 95:1006-1016. ERTL, A., MALI, H., SCHUSTER, R., KÖRNER, W., HUGHES, J.M., BRANDSTÄTTER, F. & TILLMANNS, E. (2010): Li-bearing, disordered Mg-rich tourmalines from the pegmatite-marble contact from the Austroalpine basement units (Styria,Austria). Miner. Petrol., 99/1-2: 89-104. GASSNER, M.(2001): Geochemische und petrologische Untersuchungen an ausgewählten steirischen Pegmatiten (Koralpe, Stubalpe, Kristallin von St. Radegund, Anger-Kristallin). Unveröff. Dipl. Arb., Leoben, 176 S. GÖD, R. (1989): The spodumene deposit at “Weinebene”, Koralpe, Austria. Miner. Deposita, 24: 270–278. KERRICK, D.M. (1972): Experimental detemination of muscovite+quartz stability with PH2O <Ptotal. Am. J. Sci., 271: 946-958. LONDON, D. (1984): Experimental phase equilibria in the system LiAlSiOn-SiOr-H2O: a petrogenetic grid for lithium-rich pegmatites. Am. Mineral., 69: 995-1005. LONDON, D. (2008): Pegmatites. Can. Mineral., Special Publication 10: 347 S. MALI, H. (2004): Die Spodumenpegmatite von Brettstein und Pusterwald (Wölzer Tauern, Steiermark, Österreich). Joannea - Mineralogie, 2: 5-53. SCHUSTER, R., & STÜWE, K., (2008): The Permian Metamorphic Event in the Alps. Geology, 36/8:303- 306. SIMMONS W.M.B., FOORD, E., & FALSTER A. (1996): Anatectic origin of granitic pegmatites, western Maine. USA GAC-MAC Ann. Mtng. Winnipeg, Abstr. Prog., 87 S. SENZENBERGER, D. (2001): Zonarbau und geochemische Charakteristik von Pegmatiten des Hohenwart (Wölzer Tauern, Steiermark). Unveröff. Dipl. Arb., Leoben, 176 S. STÖCKHERT, B. (1987): Das Uttenheimer Pegmatitfeld (Ostalpines Altkristallin, Südtirol) Genese und alpine Überprägung. Erlanger geol. Abh., 114: 83-106. THÖNI, M. & MILLER, CH. (2000): Permo-Triassic pegmatites in the eo-Alpine eclogite-facies Koralpe complex, Austria: age and magma source constraints from mineral chemical, Rb-Sr and Sm-Nd isotopic data. Schweiz. Min. Petro. Mitt., 80:169-186. Figure 5. Examples of Permian pegmatites from the Austroalpine unit: A) Spodumene bearing pegmatite with large spodumene crystals embedded in a quartz-rich matrix including feldspar and tourmaline (Mitterberg pegmatite, Übelbach valley, Styria). B) Comb structures with turmaline embedded in quartz and feldspar, reflecting the growth of tourmaline perpendicular to the wall rock. The deformation of the tourmaline is due to the Alpine overprint (Mitterberg pegmatite, Übelbach valley, Styria) C, D) Thin sections showing large spodumene crystals with overgrowths of myrmekite consisting of spodumene and quartz invading feldspar (Hohenwart, Niedere Tauern, Styria; width of image 11.5 and 3.5 mm respectively; crossed polarizers). Figure 6. Thin sections of two different spodumene-pegmatites showing: A, B) Large Permian spodumene crystals within a recrystallised matrix of quartz and feldspar (Falkenberg, Judenburg, Styria; width of image 11.5 mm; parallel and crossed polarizers). C, D) Turmaline and garnet crystals in a fine grained, recrystallized quartz matrix (Hohenwart, Niedere Tauern, Styria; width of image 7.5 mm; parallel and crossed polarizers). Figure 8. Age data from spodumene pegmatites: A) Hand picked garnet separate for Sm/Nd dating. B, C) Sm/Nd ages calculated from garnets and whole rocks of spodumene pegmatites. D) Rb/Sr age diagram calculated from spodumene, muscovite and feldspar. The Sm/Nd ages indicate crystallisation of the melts in Permian time at 265 Ma. The Rb/Sr ages determined from the same pegmatite as one of the Sm/Nd age diagrams yields also a Permian value. However, the ages calculated with muscovite and spodumene are slightly different. This might be due to incomplete equilibrium of the crystallizing minerals. As source rocks for the pegmatitic melts we expect Al-rich metapelites derived from marine shales. During the Permian event a temperature increase at more or less constant pressures caused melting of white mica, feldspar and quartz with additional H2O at 650-700 °C and 0.4–0.6 GPa, within the sillimanite stability field . Breakdown of staurolite may have served as additional source for Li in the primary melts. Subsequent internal fractionation lead to further Li-enrichment and crystallization of spodumene from the most evolved melts, whereas less enriched/fractionated melts formed co- genetic barren pegmatites . Further-looking the project should reveal the possibility of pegmatites with an anatectic origin through geochemical and geochronological investigation of spodumene- pegmatite, barren pegmatite and the surrounding metamorphic rocks of pegmatite fields within the Austroalpine unit. Additionally the aspire results are suitable for the prospection of spodumene-pegmatites. New data on trace element contents (e.g. U, Th, Li, Cs, Zn, As, Cd) in meta- pelites is going to be part of the geochemical recording of Austroalpine metamorphic rocks. Figure 4 (below). Panoramic view of the Hohenwart Region in the Niedere Tauern (Styria), one of the largest Spodumene-Pegmatite fields within the Austroalpine unit. The yellow arrow indicates a spodumene-pegmatite dike. Figure 1. Overview map showing the paleogeographic origin of the main tectonic units of the Alps. Figure 7. Chemical analysis of muscovites out of spodumene-pegmatites (blue) and barren pegmatites (red) taken from Koralpe, Gleinalpe, St. Radegund, Anger and Niedere Tauern (GASSNER, 2001, SENZENBERGER, 2001, MALI, 2004, and unpublished data). The data might reflect a continous fractionation trend from the barren to the spodumene pegmatites. Figure 2. Overview map showing the distribution of barren and spodumene bearing pegmatites within the Austroalpine , according to FRIEDRICH unit (1951), MALI (2004), SCHUSTER & STÜWE (2008) and references therein. Also indicated are major Permian pegmatite fields. Abbreviations: spodumene = Spd; b-spodumene = Bspd; eucryptite = Ecr; petalite = Pet; virgilite = Vrg. Dashed lines indicate expected cooling paths for pegmatites within their source areas (black) and for migrated fractionated pegmatites (grey). 1 Geological Survey of Austria, Neulinggasse 38, A-1030 Wien, Austria [email protected], [email protected] [email protected] Austroalpine Pegmatites 1 1 2 3 1 Tanja ILICKOVIC , Ralf SCHUSTER , Heinrich MALI , Konstantin PETRAKAKIS , Albert SCHEDL 2 Department für Angewandte Geowissenschaften und Geophysik, Montanuniversität Leoben A-8700 Leoben, Peter-Tunner-Straße 5, Austria, [email protected] 3 Departement of Geodynamics an Sedimentology, Althanstraße 14, A-1090 Wien, Austria [email protected] Geologische Bundesanstalt T [°C] T [°C] 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 200 300 400 500 600 0.1 0.3 0.5 0.7 0.9 1.0 700 800 P [GPa] P [GPa] 0.1 0.3 0.5 0.7 0.9 1.0 200 300 400 500 600 700 800 Ky And 2 Fsp 1 Fsp And Sil Ky Sil And Ky And Ky And Prl 3aQtz + Ky + H2O Kln + 2aQtz Prl + H2O aQtz bQtz 2 WM 1 WM 2 Fsp 1 Fsp 2 WM + Kln 2 WM + Prl 2 WM + And 2 WM + Ky Fsp + Sil WM + Fsp + Als WM + aQtz Spd Qtz Pet Spd Qtz Pet Spd Ecr Qtz Ecr Qtz Pet Bspd Qtz Pet Vrg Bsp H2O-saturated granite solidus L Kfs Pl Als L Kfs Pl Als Ms Pl Als Kfs L Ms Pl Kfsp L Ms Pl Als L Ms Pl Als Kfs (L) (Ms) (Als) (Kfs) (H2O) + H2O + Fluid XH2O = 1.0 XH2O = 0.7 H2O-saturated granite solidus ~ 40 °C/km KNASH-pelite: 0.55Als+0.20Ab+0.25Kfs A B C D Spd Spd Fsp Qtz Qtz Fsp Msc Fsp Qtz Qtz Grt Spd Tur Tur Grt Spd Fsp 14R16 spodumene pegmatite, Rappold Complex, Mitterberg, Übelbach valley, Styria 0.508 0.512 0.516 0.520 0.524 0 2 4 6 8 04R45 WR Io = 0.51190 ± 1 spodumene pegmatite, Rappold Complex Hohenwart, Styria 264 ± 3 Ma Nd/ Nd 143 144 Sm/ Nd 147 144 Grt 14R23 Sp-Fsp: Io = 0.629 ± 5 spodumene pegmatite Rappold Complex Mitterberg, Übelbach valley, Styria 272 ± 3 Ma 0.0 1.0 2.0 3.0 4.0 0 200 400 600 800 1000 Ms Sp Fsp 255 ± 3 Ma Ms-Fsp: Io = 0.817 ± 3 0.511 0.513 0.515 0.517 0.519 0.521 0 2 4 6 WR Io = 0.51188 ± 1 266 ± 3 Ma Nd/ Nd 143 144 Sm/ Nd 147 144 Grt Neogene and Quarternary sedimentary rocks Nappes derived from the Neotethys ocean (Meliata zone, Vardar zone, Sava belt) Adria derived units (e.g. Austro- alpine nappes, Southalpine Unit) Nappes derived from the Penninic (Alpine Tethys) oceanic realm (Penninic nappes) Europe derived units (e.g. Helvetic nappes, Subpenninic nappes) Mediterranean Sea Wien Maribor 48° 46° 44° 11° 13° 15° 17° 48° 46° Genève Wien Zagreb München Milano Zürich Maribor Adriatic Sea 11° 13° 15° 17° Fig. 2 without Permian metamorphic imprint Permian volcanic rocks Permian and Triassic granites Permian gabbros with lower greenschist facies imprint with upper greenschist facies imprint (garnet present) with amphibolite facies imprint and Permian pegmaties Late Paleogene to Neogene sediments and volcanic rocks Permian to Paleogene sediments and magmatic rocks faults and nappe boundaries Units of pre-Permian (meta)sediments and magmatic rocks Permian spodumene bearing pegmatites Periadriatic fault Adamello Molasse basin 12° 10° 11° 13° 14° 15° 16° 17° 48° 47° 46° 12° 10° 11° 13° 14° 15° 16° 17° 48° 47° 46° 49° Wien Passau München Maribor Drava Graz Pannonian basin Donau Inn Kreuzeck mountains Hohenwart area Weinebene St. Radegund Millstatt area Uttenheim pegmatite field Übelbach area Garnet concentrate from the spodumene pegmatite at Hohenwart (sample 04R45, width of image 1 mm) A B C D A B C D Spd Fsp 0 5 10 15 20 Cs [ppm] Tl [ppm] 0 500 1000 1500 2000 spodumene bearing zones spodumene free zones barren pegmatites A B

Upload: others

Post on 20-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: New sight on Li-rich Pegmatites within the Austroalpine unit ......LONDON, D. (1984): Experimental phase equilibria in the system LiAlSiOn-SiOr-H2O: a petrogenetic grid for lithium-rich

A

B

INTRODUCTION

CONCLUSIONSFIELD RELATIONS FRACTIONATION

REFERENCES

P-T Conditions during pegmatite formation

AGE DATA

B ) M o d e l m e l t i n g reactions in the Qtz-sa tura ted CKNASH s y s t e m i n v o l v i n g reaction curve position beside the one for the dehydration melting of muscovite (H2O) depend on the availability of H2O and XH2O in the fluid phase. This is indicated by the displacement of reactions (L) and (Ms) for XH2O = 0.7. Solid lines are valid for pure H2O-fluid in excess. Dashed lines are valid for a fluid of composition XH2O = 0.7.Abbreviations: alumino-silicate = Als; muscovite = Ms; plagioclase = Pl; K-feldspar = Kfs; melt = L ; q u a r t z = Q t z . C o m p i l e d f r o m THOMPSON & ALGOR (1977) and KERRICK (1972). Stability fields of Li phases according to LONDON (1984).

Figure 3 (right). P-T diagrams. A) KNASH-equilibrium phase diagram for common high-Al metapelites, showing the relationships between white micas and feldspars. Note that most of the equilibria shown on the right hand side of the H2O-saturated granite solidus become metastable in the presence of melt. Calculations for the diagram were made using Theriak/Domino software (DE CAPITANI & PETRAKAKIS, 2010) for the bulk composition shown above of the figure. Abbreviations: kaolinite = Kln; pyrophyllite = Prl; white mica = WM; feldspar = Fsp; quartz = Qtz; kyanite = Ky; andalusite = And; sillimanite = Sil; aluminosilicate = Als. Dashed lines indicate prograde Permian P-T paths for rocks of the sillimanite zone (black) and andalusite zone (grey) (modified from SCHUSTER at al., 2001).

New sight on Li-rich Pegmatites within the Austroalpine unit (Eastern Alps) and their evidence for an anatectic origin

In parts of the Austroalpine units, pegmatites with the incidence of Li-pyroxene spodumene (LiAl[Si2O6]) appear heterogeniously distributed over a distance of more than 400 km (Fig. 1, 2).

There are two general views on the genesis of these pegmatites. On one hand tht Li-bearing pegmatites belong to the Rare Element class of pegmatites, which is thought to develop exclusively through fractionation of granitic parent plutons. On the other hand the associated barren pegmatites are considered as products of anatexis of metapelitic country rocks.

Through the last years a new understanding of the geodynamic evolution of the Austroalpine basement could be revealed and field mapping results showed that in parts of the Austroalpine units migmatitic mica schists with interlayered barren pegmatites occur. In order to that in structural higher levels there are areas with enriched pegmatites like spodumene bearing pegmatites.

ČERNÝ, P., & ERCIT, T. S. (2005): The classification of granitic pegmatites revisited. Can. Mineral., 43/6: 2005-2026.

DE CAPITANI, C. & PETRAKAKIS, K. (2010): The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am. Mineral., 95:1006-1016.

ERTL, A., MALI, H., SCHUSTER, R., KÖRNER, W., HUGHES, J.M., BRANDSTÄTTER, F. & TILLMANNS, E. (2010): Li-bearing, disordered Mg-rich tourmalines from the pegmatite-marble contact from the Austroalpine basement units (Styria,Austria). Miner. Petrol., 99/1-2: 89-104.

GASSNER, M.(2001): Geochemische und petrologische Untersuchungen an ausgewählten steirischen Pegmatiten (Koralpe, Stubalpe, Kristallin von St. Radegund, Anger-Kristallin). Unveröff. Dipl. Arb., Leoben, 176 S.

GÖD, R. (1989): The spodumene deposit at “Weinebene”, Koralpe, Austria. Miner. Deposita, 24: 270–278.KERRICK, D.M. (1972): Experimental detemination of muscovite+quartz stability with PH2O <Ptotal. Am.

J. Sci., 271: 946-958.LONDON, D. (1984): Experimental phase equilibria in the system LiAlSiOn-SiOr-H2O: a petrogenetic grid

for lithium-rich pegmatites. Am. Mineral., 69: 995-1005.LONDON, D. (2008): Pegmatites. Can. Mineral., Special Publication 10: 347 S.MALI, H. (2004): Die Spodumenpegmatite von Brettstein und Pusterwald (Wölzer Tauern, Steiermark,

Österreich). Joannea - Mineralogie, 2: 5-53.SCHUSTER, R., & STÜWE, K., (2008): The Permian Metamorphic Event in the Alps. Geology, 36/8:303-

306.SIMMONS W.M.B., FOORD, E., & FALSTER A. (1996): Anatectic origin of granitic pegmatites, western

Maine. USA GAC-MAC Ann. Mtng. Winnipeg, Abstr. Prog., 87 S.SENZENBERGER, D. (2001): Zonarbau und geochemische Charakteristik von Pegmatiten des Hohenwart

(Wölzer Tauern, Steiermark). Unveröff. Dipl. Arb., Leoben, 176 S.STÖCKHERT, B. (1987): Das Uttenheimer Pegmatitfeld (Ostalpines Altkristallin, Südtirol) Genese und

alpine Überprägung. Erlanger geol. Abh., 114: 83-106.THÖNI, M. & MILLER, CH. (2000): Permo-Triassic pegmatites in the eo-Alpine eclogite-facies Koralpe

complex, Austria: age and magma source constraints from mineral chemical, Rb-Sr and Sm-Nd isotopic data. Schweiz. Min. Petro. Mitt., 80:169-186.

Figure 5. Examples of Permian pegmatites from the Austroalpine unit: A) Spodumene bearing pegmatite with large spodumene crystals embedded in a quartz-rich matrix including feldspar and tourmaline (Mitterberg pegmatite, Übelbach valley, Styria). B) Comb structures with turmaline embedded in quartz and feldspar, reflecting the growth of tourmaline perpendicular to the wall rock. The deformation of the tourmaline is due to the Alpine overprint (Mitterberg pegmatite, Übelbach valley, Styria) C, D) Thin sections showing large spodumene crystals with overgrowths of myrmekite consisting of spodumene and quartz invading feldspar (Hohenwart, Niedere Tauern, Styria; width of image 11.5 and 3.5 mm respectively; crossed polarizers).

Figure 6. Thin sections of two different spodumene-pegmatites showing: A, B) Large Permian spodumene crystals within a recrystallised matrix of quartz and feldspar (Falkenberg, Judenburg, Styria; width of image 11.5 mm; parallel and crossed polarizers). C, D) Turmaline and garnet crystals in a fine grained, recrystallized quartz matrix (Hohenwart, Niedere Tauern, Styria; width of image 7.5 mm; parallel and crossed polarizers).

Figure 8. Age data from spodumene pegmatites: A) Hand picked garnet separate for Sm/Nd dating. B, C) Sm/Nd ages calculated from garnets and whole rocks of spodumene pegmatites. D) Rb/Sr age diagram calculated from spodumene, muscovite and feldspar. The Sm/Nd ages indicate crystallisation of the melts in Permian time at 265 Ma. The Rb/Sr ages determined from the same pegmatite as one of the Sm/Nd age diagrams yields also a Permian value. However, the ages calculated with muscovite and spodumene are slightly different. This might be due to incomplete equilibrium of the crystallizing minerals.

As source rocks for the pegmatitic melts we expect Al-rich metapelites derived from marine shales.

During the Permian event a temperature increase at more or less constant pressures caused melting of white mica, feldspar and quartz with additional H2O at 650-700 °C and 0.4–0.6 GPa, within the sillimanite stability field .

Breakdown of staurolite may have served as additional source for Li in the primary melts. Subsequent internal fractionation lead to further Li-enrichment and crystallization of spodumene from the most evolved melts, whereas less enriched/fractionated melts formed co-genetic barren pegmatites .

Further-looking the project should reveal the possibility of pegmatites with an anatectic origin through geochemical and geochronological investigation of spodumene-pegmatite, barren pegmatite and the surrounding metamorphic rocks of pegmatite fields within the Austroalpine unit.

Additionally the aspire results are suitable for the prospection of spodumene-pegmatites. New data on trace element contents (e.g. U, Th, Li, Cs, Zn, As, Cd) in meta-pelites is going to be part of the geochemical recording of Austroalpine metamorphic rocks.

Figure 4 (below). Panoramic view of the Hohenwart Region in the Niedere Tauern (Styria), one of the largest Spodumene-Pegmatite fields within the Austroalpine unit. The yellow arrow indicates a spodumene-pegmatite dike.

Figure 1. Overview map showing the paleogeographic origin of the main tectonic units of the Alps.

Figure 7. Chemical analysis of muscovites out of spodumene-pegmatites (blue) and barren pegmatites (red) taken from Koralpe, Gleinalpe, St. Radegund, Anger and Niedere Tauern (GASSNER, 2001, SENZENBERGER, 2001, MALI, 2004, and unpublished data). The data might reflect a continous fractionation trend from the barren to the spodumene pegmatites.

Figure 2. Overview map showing the distribution of barren and spodumene bearing pegmatites within the Austroalpine , according to FRIEDRICH unit(1951), MALI (2004), SCHUSTER & STÜWE (2008) and references therein. Also indicated are major Permian pegmatite fields.

Abbreviations: spodumene = Spd; b-spodumene = Bspd; eucryptite = Ecr; petalite = Pet; virgilite = Vrg. Dashed lines indicate expected cooling paths for pegmatites within their source areas (black) and for migrated fractionated pegmatites (grey).

1Geological Survey of Austria, Neulinggasse 38, A-1030 Wien, Austria

[email protected], [email protected]@geologie.ac.at

AustroalpinePegmatites

1 1 2 3 1Tanja ILICKOVIC , Ralf SCHUSTER , Heinrich MALI , Konstantin PETRAKAKIS , Albert SCHEDL

2Department für Angewandte Geowissenschaften und Geophysik, Montanuniversität Leoben A-8700 Leoben, Peter-Tunner-Straße 5, Austria,

[email protected]

3Departement of Geodynamics an Sedimentology,Althanstraße 14, A-1090 Wien, Austria

[email protected]

Geologische Bundesanstalt

T [°C]

T [°C]

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

200 300 400 500 600

0.1

0.3

0.5

0.7

0.9

1.0

700 800

P [

GP

a]

P [

GP

a]

0.1

0.3

0.5

0.7

0.9

1.0

200 300 400 500 600 700 800

KyAnd

2 F

sp1 F

sp

And

SilKy

SilAnd

Ky

And

KyAnd

Prl

3aQ

tz +

Ky

+ H

2O

Kln

+ 2

aQ

tzP

rl +

H2O

aQ

tzbQ

tz

2 W

M1

WM

2 F

sp1 F

sp

2 W

M +

Kln

2 W

M +

Prl

2 W

M +

And

2 WM + Ky

Fsp + Sil

WM

+ F

sp +

Als

WM

+ a

Qtz

Spd Qtz

PetSpd Qtz

PetSpdEcr Qtz

Ecr Q

tz

P

etBspd Qtz Pet

VrgBsp

H2O

-satu

rate

d g

ranite

solid

us

L

Kfs P

l Als

L

Kfs P

l Als

Ms

Pl

Als

Kfs

L

Ms

Pl K

fsp

LM

s P

lA

ls L

Ms Pl

Als K

fs

(L) (Ms)

(Als) (Kfs) (H2O)+ H2O+ Fluid

XH2O = 1.0XH2O = 0.7

H2O

-satu

rate

d g

ranite

solid

us ~ 40 °C

/km

KNASH-pelite: 0.55Als+0.20Ab+0.25Kfs

A B

C DSpd

Spd

FspQtz

Qtz

FspMsc

Fsp

Qtz Qtz

Grt

Spd

Tur Tur

Grt

Spd

Fsp

14R16spodumene pegmatite,Rappold Complex,Mitterberg, Übelbachvalley, Styria

0.508

0.512

0.516

0.520

0.524

0 2 4 6 8

04R45

WRIo = 0.51190 ± 1

spodumene pegmatite,Rappold ComplexHohenwart, Styria

264 ± 3 Ma

Nd

/

Nd

143 1

44

Sm/ Nd147 144

Grt

14R23

Sp-Fsp: Io = 0.629 ± 5

spodumene pegmatite Rappold ComplexMitterberg, Übelbachvalley, Styria

272 ± 3

Ma

0.0

1.0

2.0

3.0

4.0

0 200 400 600 800 1000

Ms

Sp

Fsp

255 ± 3

Ma

Ms-Fsp: Io = 0.817 ± 3

0.511

0.513

0.515

0.517

0.519

0.521

0 2 4 6

WR Io = 0.51188 ± 1

266

± 3

Ma

Nd

/

Nd

143 1

44

Sm/ Nd147 144

Grt

Neogene and Quarternarysedimentary rocks

Nappes derived from the Neotethys ocean (Meliata zone, Vardar zone,Sava belt)

Adria derived units (e.g. Austro-alpine nappes, Southalpine Unit) Nappes derived from the Penninic (Alpine Tethys) oceanic realm (Penninic nappes)

Europe derived units (e.g. Helvetic nappes, Subpenninic nappes)

Mediterranean Sea

Wien

Maribor

5°7° 9°

48°

46°

44°

11° 13° 15°17°

48°

46°

Genève

Wien

Zagreb

München

Milano

Zürich

Maribor

AdriaticSea

11° 13° 15° 17°

Fig. 2

without Permian metamorphic imprint

Permian volcanic rocks

Permian and Triassic granites

Permian gabbros

with lower greenschist facies imprint

with upper greenschist facies imprint (garnet present)

with amphibolite facies imprint and Permian pegmaties

Late Paleogene to Neogene sediments and volcanic rocks

Permian to Paleogene sediments and magmatic rocks

faults and nappe boundariesUnits of pre-Permian (meta)sediments and magmatic rocks

Permian spodumene bearing pegmatites

Periadriatic fault

Adamello

Molasse basin

12°10° 11° 13° 14°15°

16°17°

48°

47°

46°

12°10° 11° 13° 14°15°

16°17°

48°

47°

46°

49°

Wien

Passau

München

MariborDrava

Graz

Pannonian basin

Donau

Inn

Kreuzeckmountains

Hohenwartarea

Weinebene

St. Radegund

Millstattarea

Uttenheimpegmatite field

Übelbacharea

Garnet concentrate from the spodumene pegmatite at Hohenwart (sample 04R45, width of image 1 mm)

A B

C D

A B

C D

Spd

Fsp

0 5 10 15 20

Cs [ppm] Tl [ppm]

0 500 1000 1500 2000

spodumene bearing zones

spodumene free zones

barren pegmatites

A B