new shapes and shape coexistence at low and high angular …wolle/telekolleg/kern/pdf/... · 2007....

27
Colloque de GANIL 29.5.-2.6.2006 Andreas Görgen 1 Shapes and shape coexistence at low and high angular momentum Andreas Görgen CEA Saclay - DSM / DAPNIA / SPhN

Upload: others

Post on 22-Oct-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 1

    Shapes and shape coexistence at low and high angular momentum

    Andreas Görgen

    CEA Saclay - DSM / DAPNIA / SPhN

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 2

    Outline

    �� Shape coexistence at low spin: light Krypton isotopesShape coexistence at low spin: light Krypton isotopes

    �� Safe projectile Coulomb excitation of SPIRAL beamsSafe projectile Coulomb excitation of SPIRAL beams

    �� RDDS lifetime measurement after fusion evaporationRDDS lifetime measurement after fusion evaporation

    �� InterpretationInterpretation

    �� Perspectives: SPIRALPerspectives: SPIRAL--1 / SPIRAL1 / SPIRAL--22

    �� New symmetriesNew symmetries

    �� Extreme shapes at very high spins: challengesExtreme shapes at very high spins: challenges

    �� Very deformed structures in Very deformed structures in 108108CdCd

    �� Towards Towards hyperdeformationhyperdeformation with with RIBsRIBs ??

    �� Summary and conclusionsSummary and conclusions

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 3

    Shapes of atomic nuclei

    Prolate

    Oblate

    Quadrupole deformation of the nuclear ground states

    M. Girod, CEA Bruyères-le-Châtel

    � oblate ground states predicted for A~70 near N=Z� prolate and oblate states within small energy range⇒ shape coexistence

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 4

    Shape coexistence

    oblate prolate

    0+0+2+

    2+

    4+

    4+

    6+

    6+8+

    Shape isomer, E0 transition

    Configuration mixing:

    74Kr

    β

    γ

    proobl

    oblpro

    ba

    ba

    ϕϕψ

    ϕϕψ

    −=

    +=

    +

    +

    )0(

    )0(

    2

    1

    M. Bender

    M. Girod

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 5

    Systematics of the light krypton isotopes

    � Inversion of ground state shape for 72Kr

    � Coulomb excitationto determine the nuclear shapes directly

    0+

    2+

    6+

    0+

    4+

    710671

    612

    791

    0+

    0+

    2+

    4+

    6+

    508456

    768

    558

    52

    0+

    0+

    2+

    4+

    6+

    770

    424

    824

    611

    346

    0+

    0+

    2+

    4+

    6+

    1017

    455

    858

    664562

    72Kr 74Kr 76Kr 78Kr

    prolate oblate

    E. Bouchez et. al., Phys. Rev. Lett. 90, 082502 (2003)

    � energy of excited 0+

    � E0 strengths ρ2(E0)� configuration mixing

    Mixing of the ground state

    72 · 10-3 85 · 10-3 79 · 10-3 47 · 10-3 ρ2(E0)

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 6

    Coulomb excitation

    b

    projectile

    target

    If

    Ii

    a(1)

    1st order:

    if IEIa )2()1(

    M∝

    � safe energy:

    � purely electromagnetic process

    � excitatitation cross section is a direct measure of the Eλ matrix elements.

    fm5)(25.1 31

    31

    ++> PTd AAr

    If

    Ii

    a(1) a(2) a(2)

    2nd order:

    ∑∝j

    ijjf IEIIEIa )2()2()2(

    MM

    Ij

    Ij

    reorientation effect:

    ifff IEIIEIa )2()2()2(

    MM∝

    If

    Ii

    a(2)

    Mf

    σ(2

    +)

    [b

    ]

    0 50 100 1500.0

    0.5

    1.0

    Q = 2.90 eb

    Q =−1.85 eb

    θCM

    76Kr on 208Pb

    sensitive to diagonal matrix elements

    ⇒ intrinsic properties of final state:quadrupole moment including sign

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 7

    Radioactive beam production: SPIRAL

    78Kr68.5 MeV/u1012 pps

    74Kr4.7 MeV/u104 pps

    SPIRAL: Système de Production d’Ions Radioactifs en Ligne

    ECRISTarget

    SPIRAL

    CIME

    CSS2

    CSS1

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 8

    EXOGAM

    Double-sided silicon detector

    48 rings × 16 sectors

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 9

    Coulomb excitation of 74Kr and 76Kr

    SPIRAL beams 76Kr 5×105 pps74Kr 104 pps

    4.7 MeV/u

    EXOGAM

    Pb

    Acta Phys. Pol. B 36, 1281 (2005)

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 10

    Coulomb excitation analysis : GOSIA*

    *D. Cline, C.Y. Wu, T. Czosnyka; Univ. of Rochester

    � γ yields as function of scattering

    angle: differential cross section

    � least squares fit of ~ 30 matrix

    elements (transitional and diagonal)

    � experimental spectroscopic data

    � lifetimes

    � branching ratios

    � Yields from Coulomb excitation inconsistent with published lifetimes,especially for 4+ in 74Kr

    � New RDM lifetime measurement

    74Kr

    2+

    4+

    6+

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 11

    Lifetime measurement with GASP and the Köln Plunger

    40Ca(40Ca,a2p)74Kr

    40Ca(40Ca,4p)76Kr124 MeV

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 12

    Lifetime results

    2+

    4+

    Results consistent with Coulomb excitation.

    Lifetimes constrain GOSIA fit.

    ⇒ enhanced sensitivity for non-yrasttransitions and diagonal matrix elements

    74Kr 2+ 4+ 76Kr 2+ 4+

    new 33.8(6) 5.2(2) new 41.5(8) 3.67(9) [ps]

    28.8(57) 13.2(7) 35.3(10) 4.8(5) [ps]J. Roth et al., J.Phys.G, L25 (1984) B. Wörmann et al., NPA 431, 170 (1984)

    Eur. Phys. J. A 26, 153 (2005)

    � forward detectors (36˚)� gated from above

    74Kr

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 13

    Result of χχχχ2 analysis with GOSIA

    � 14 transitional E2 matrix elements

    12

    )2()2(

    2

    +=

    i

    if

    I

    IEIEB

    M

    � 18 transitional E2 matrix elements

    � 4 diagonal E2 matrix elements

    0020

    )2(

    12

    1

    5

    160

    II

    IEI

    IeQ

    M

    +=

    π

    � 5 diagonal E2 matrix elements

    complete description of collective properties:

    important input for ”beyond mean field” theories ⇒ M. Bender et al.

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 14

    Sensitivity to quadrupole moments

    )2(

    )4(

    1

    1

    +

    +

    γ

    γ

    I

    I

    74Kr

    59.0

    21.011

    33.0

    30.011

    02.14)2(4

    70.02)2(2

    +−

    ++

    +−

    ++

    −=

    −=

    E

    E

    M

    M

    ⇒ prolate shape

    full χ2 minimization:

    negative matrix element(positive quadrupole moment Q0)

    28.0

    23.022 33.02)2(2+−

    ++ +=EM

    ⇒ oblate shape

    positive matrix element(negative quadrupole moment Q0)

    74Kr

    )2(

    )2(

    1

    2

    +

    +

    γ

    γ

    I

    I

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 15

    Quadrupole moments Q0 in 74Kr and 76Kr

    74Kr 76Kr

    0+1

    2+1

    4+1

    6+1

    0+2

    2+2

    (4+ )2

    0+1

    2+1

    4+1

    6+1

    0+2

    2+3

    � direct confirmation of the prolate – oblate shape coexistence

    � first reorientation measurement with radioactive beam

    E. Clément et al., to be published

    + 1.85 eb+0.85-0.79

    + 2.11 eb+1.22-0.42

    + 3.13 eb+0.80-1.25

    − 0.86 eb+0.73-0.60

    + 2.50 eb+0.80-0.80

    + 4.66 eb+0.80-0.80

    + 5.07 eb+0.70-0.70

    − 3.40 eb+1.30-1.30

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 16

    Towards 72Kr

    � SPIRAL-1 at present: ~200 pps 72Kr measured before CIME

    ⇒ ~50 pps on target : not feasible

    � with 500 pps on target ⇒ precise B(E2) to first and second 2+ states

    � need for more intense primary beams of medium-heavy ionsbenefit for both SPIRAL and fragmentation beams at intermediate energy

    � heavy N≈Z nuclei� exotic decays beyond the proton drip line� search for isomers and measurement of moments near 78Ni

    � GTS source (Grenoble/GANIL) can deliver such intense beams

    example: ~20 eµA 78Kr at 73 A.MeV (3 kW) ⇒ gain ~ factor 10⇒ Letter of Intent

    0+

    2+

    0+

    4+

    0+

    0+

    2+

    4+

    0+

    0+

    2+

    4+

    72Kr 74Kr 76Kr

    2+

    2+

    2+?

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 17

    Coulomb excitation after fusion evaporation

    Example: 58Ni+12C → 68Se+2n (σ2n ≈ 3 mb, σtot ≈ 800 mb )

    beam energy: 210 MeV ⇒ recoil energy = 174 MeV = 2.56 A MeV

    300 µg/cm2 target and 100 eµA beam (20+) ⇒ 1.3 ·106 68Se recoils/s

    access to non-yrast states – important for shape coexistence

    very intense beam from LINAG

    rotating target wheel

    AGATAEXOGAM

    and Coulex target

    other example: 24Mg(58Ni,2n)80Zr

    with A/q=6 and heavier beams:48Ca(208Pb,2n)254No

    new separator

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 18

    Fission fragment beams from SPIRAL-2

    96Sr 98Sr 100Sr 102Sr 104Sr94Sr92Sr

    100Zr 102Zr 104Zr 106Zr98Zr96Zr94Zr

    94Kr 96Kr 100Kr 102Kr98Kr92Kr90Kr

    92Se 94Se 96Se 98Se90Se

    96Mo 98Mo 100Mo102Mo104Mo106Mo108Mo

    100Ru102Ru104Ru106Ru108Ru

    � shape coexistence and dramatic shape changes expected

    � accessible with SPIRAL-2 beams� technique well established with SPIRAL-1

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 19

    N. Schunck et al., Phys. Rev. C69, 061305(R) (2004)

    Shape coexistence in neutron-rich fission fragments

    Kr

    Sr

    Zr

    J. Skalski et al., NPA 617, 282 (1997)

    � prolate-oblate shape coexistence around N=60

    � new symmetries: tetrahedral shapes

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 20

    Tetrahedral and octahedral shapes

    += ∑ ∑

    +

    −=λ

    λ

    λµλµλµ ϕϑαϕϑ ),(1),( 0 YRR

    tetrahedral: α32 ≠ 0 octahedral: α40, α44 ≠ 0

    symmetry ⇒⇒⇒⇒ degeneracy ⇒⇒⇒⇒ shell gaps ⇒⇒⇒⇒ stability

    N. Schunck, J. Dudek

    � shape isomers� parity doublets� static octupole moment Q3

    experimentalsignatures:

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 21

    The superdeformed world

    sp

    he

    rica

    l

    su

    pe

    rde

    f

    hyp

    erd

    ef

    ob

    late

    SD

    harmonic oscillator,simple but instructive approach

    fission fission

    isomersisomers

    A A ≈≈ 6060particleparticle decaydecay

    A A ≈≈ 8080band band terminationtermination

    A A ≈≈ 190190octupoleoctupole

    vibrationsvibrationsLu Lu -- HfHf

    triaxial SDtriaxial SD

    wobblingwobblingA A ≈≈ 150150identicalidentical bandsbands

    A A ≈≈ 130130bindingbinding energiesenergies

    A A ≈≈ 4040SM pSM p--hh

    108108CdCd

    a unique casea unique case

    SD in neutron-rich nuclei:� new collective modes ?� neutron pairing correlations ?� influence of weak binding ?� neutron decay ?

    � unique laboratory to study nuclear structure under extreme conditions

    � fundamental properties E*, I, π unknown in most cases� many phenomena not yet understood� the closer we look, the more new and

    unexpected phenomena we find

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 22

    Very deformed structures in 108Cd

    R.M. Clark et al., PRL 87, 202502 (2001) A. Görgen et al., PRC 65, 027302 (2002)

    64Ni(48Ca,4n)108CdGammasphere @ LBL

    � γ-ray multiplicity⇒ spin range 40-60 ħ

    � Doppler shift

    ⇒ lower limit on Qt, β2 ≥ 0.6

    evidence for occupation of proton i13/2

    orbital

    C-T.Lee et al., PRC 65, 041301 (2002)

    projected shell model

    A.V. Afanasjev, S. Frauendorf, PRC 72, 031301 (2005)

    cranked RMF

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 23

    Intruder orbitals

    sin

    gle

    -part

    icle

    energ

    y(W

    oods-S

    axon)

    quadrupole deformation

    ND

    235U

    SD

    152Dy

    Z=48

    HD

    108Cdππππ i13/2� one major shell below (N-1)

    ⇒ normal deformed, e.g. 235U

    � two major shells below (N-2)super-intruder

    ⇒ Superdeformation, e.g. 152Dy

    � three major shells below (N-3)hyper-intruder occupied in 108Cd

    ⇒ Hyperdeformation ?

    νννν j15/2

    Where is the neutron hyper intruder j15/2 ?

    � expected to be occupied in 112Cd, 114Cd

    N=64

    two reasons to go more neutron rich:

    � towards doubly-magic hyperdef

    � higher angular momentum limit

    extreme deformation stabilized by rapid rotation hints for Jacobi shape transition in 108CdD. Ward et al., Phys. Rev. C 66, 024317 (2002)

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 24

    Angular momentum limit

    CdSn

    Te

    Xe

    Ba

    CeNd

    Sm

    Gd

    Dy

    Er

    Yb

    Hf

    64Ni

    48Ca + …70Zn

    76Ge

    82Se

    86Kr

    88Sr

    96Zr

    100Mo

    104Ru110Pd

    116Cd

    124Sn130Te

    94Kr + …

    26Mg30Si

    36S

    40Ar

    48Ca

    50Ti

    54Cr

    58Fe64Ni 70Zn 76Ge

    132Sn+48Ca

    136Te+48Ca

    compound nucleus reached � in 48Ca induced reaction� in 94Kr (or 132Sn) induced reaction

    new spin regime:

    70 - 80 ħ

    pushing the angular momentumalways led to new physics !

    � Hyperdeformation� Jacobi shape transition� Band termination� Collapse of pairing� …?

    Examples:48Ca+ 64Ni →112Cd*94Kr+ 26Mg →120Cd*

    94Kr+ 48Ca →142Ba*

    132Sn+ 48Ca →180Yb*

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 25

    Simulation GRETA, ε ε ε ε =0.25

    4-fold, I=10-5

    Simulation GS

    3-fold, I=10-3

    Simulation GS, ε ε ε ε =0.09

    3-fold, I=10-4

    64Ni ( 48Ca, 4n) 108Cd, Gammasphere

    Gamma-ray trackingI.-Y. Lee

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 26

    Future of γγγγ-ray spectroscopy at GANIL

    AGATA demonstrator @ GANIL� physics case completed� technical proposal to be submitted to ASC in June� campaign starting end 2008 / beginning 2009 ?

    SPIRAL-1 developments ?direct beam line CIME – G1/G2 !

    Most SPIRAL-2 experiments will involve γ spectroscopy.AGATA (in its various stages) and SPIRAL-2 make a very powerful combination.

    Working group ”Shapes and High Spins” (N. Redon & A.G.)Letter of Intent: Your ideas needed !

  • Colloque de GANIL 29.5.-2.6.2006Andreas Görgen 27

    Summary and conclusions

    � Low-energy projectile Coulomb excitation with RIB

    � direct confirmation of shape coexistence in 74,76Kr

    � first reorientation measurement with RIB

    � Plunger lifetime measurement after fusion-evaporation

    � complementary measurement of B(E2) values

    � importance of stable beams

    � Perspectives for A≈70 region:

    � intensity upgrade of SPIRAL-1

    � Coulex after fusion-evaporation using LINAG

    � Exotic shapes and shape coexistence in fission fragments

    � rich physics case for SPIRAL-2

    � Challenges in high-spin physics

    � push the angular momentum limit with SPIRAL-2

    � push the detection limit with AGATA