new new aspects of polyolefin quantitative analysis using 1d and … · 2009. 8. 2. · new aspects...

26
New Aspects of Polyolefin Quantitative Analysis Using 1D and 2D NMR A. Nuamthanom & P. L. Rinaldi University of Akron, Akron, OH 44325-3601 D. Baugh, A. Taha, D. Vanderlende & D. Redwine Dow Chemical Co., Freeport TX & Midland MI [email protected]

Upload: others

Post on 19-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • New Aspects of Polyolefin Quantitative Analysis Using

    1D and 2D NMR

    A. Nuamthanom & P. L. Rinaldi

    University of Akron, Akron, OH 44325-3601

    D. Baugh, A. Taha, D. Vanderlende & D. Redwine

    Dow Chemical Co., Freeport TX & Midland MI

    [email protected]

  • Acknowledgments

    • Funding• Dow Chemical• NSF (DMR-0073346, DMR-0330816,)• Kresge Foundation, Donors to Kresge Challenge Program at UAkron• Ohio Board of Regents, Research Challenge• University of Akron• Dupont

    StudentsM. MonwarA. Al-HamriD. SavantA. Nuamthanon

    StaffV. DudipalaS. StakleffT. WaglerJ. Massey

    PostdocsS. Sahoo

    StudentsR. Medsker

    H. Latz

    • Senior• D. Redwine• D. Baugh• A. Taha• D. Vanderlende

    • E. McCord• M. Buback

  • Outline

    • nD NMR

    • HC Double (Triple)

    Resonance 3D NMR

    • Polyolefins

    • Quantitative nD NMR

    • Conclusions

    http://www.dow.com/

  • A B CC C C

    H H HHcHAHB

    t1 t2

    COSYa

    decprep t1 t2Δ ΔC

    H

    HMQC

    b

    decprep t1 t2Δ Δ t3C

    H

    HMQC- COSY

    c

    1D, 2D & 3D NMR Spectra

    CA

    CCCB

  • E-centered B-centered C-centered

    EEEEEB

    BEB(2)CEECEC

    BEC/CEB

    BBB(3)EBB(2)

    EBECBB(2)/BBC(2)

    CBCEBC/CBE

    CCCECCECE

    BCC/CCBBCB(2)

    ECB/BCE

    E = ethylene C = carbon monoxide B* = 13C-n-butylacrylate72 B-centered pentad sequences

    Possible Triads of Poly(EB*C)Poly(ethylene-co-butylacrylate*-co-carbon monoxide)

  • 2D NMR Poly(EB*C)

    Monwar et al., Anal. Bioanal. Chem., 378, 1414 (2004).

  • Biological 3D-NMR Pulse Sequences

    H

    N C

    H

    C N

    H

    C

    H

    C

    O O

    a H N C

    H

    C N

    H

    C

    H

    C

    O O

    b

    H

    N C

    H

    C N

    H

    C

    H

    C

    O O

    c H N C

    H

    C N

    H

    C

    H

    C

    O O

    d

    H

    N C

    H

    C N

    H

    C

    H

    C

    O O

    e

    R1 R2

    R1 R2

    R1 R2

    R1 R2

    R1 R2

    HNCO HNCA

    HCACO

    HCA(CO)N

    15N-TOCSY-HMQC

    Clore & Gronenborn, Progress NMR Spectoscopy, 23, 43 (1991).Griesinger et al., J. Magn. Resonance, 84, 14 (1989).

    Biomolecular NMR Spectroscopy. J. Evans. Oxford University Press, New York, 1995.

    C C N

    H O H

    αC C N

    H O H

    α

    R1 R2

  • 1D 13C NMR of Labeled Poly(EBC)

    200 180 160 140 120 100 80 60 40 20 ppm

    Unlabeled

    O

    13C

    OBuO

    13CH

    OBuO13C

    X A

  • A B C D E GF

    gt1 gt2 gt3 gt4 gt5 gt7 gt8

    t313Caliph

    t1/2 t1/2

    T T T-t1/2

    GARP

    T+t1/2

    Gz gt6

    ∆ ττ

    ∆ ∆∆ ∆ ∆Waltz-16 Waltz-161H

    Waltz-16

    Grzsiek and Bax, J. Magn. Resonance, B102, 103 (1993). Xia et al., J. Magn. Resonance, 143, 407 (2000).Sahoo et al., Macromolecules, 36, 6695 (2003).

    13CC=O

    13C

    H

    X

    C

    (C)(D)

    (D)

    (B)(F)

    (E)

    (G)

    t1

    t3

    t2

    1JCH

    1JCC

    H2C

    HCACX 3D Pulse Sequence

    R1 C

    X

    R1

    C

    H

    H

    C

    R

    H

    C

    H

    H

    C

    H

    R

    1 42 3

  • 3D Slices HCACO Poly(EB*C)

    e

    ab c

    d

    47 4447 44

    42 3942 39

    46 45 41 40δC ppm

    δ H p

    pm

    δC ppm

    δC ppm

    HSQC

    HC

    AC

    X

    1.5

    2.5

    f1= 174.1

    174176

    f1= 174.6f1= 174.8

    ((( )) )p q r

    f1= 175.3

    Sahoo et al., Macromolecules, 36, 6695 (2003).

  • 13C

    H

    O OBu

    C(C)

    (D)

    (D)

    (B)(F)

    (E)

    (H)

    t1

    t3

    t2

    1JCH

    1JCC

    H2C

    A B C D E F H

    gt1 gt3 gt4 gt5 gt7 gt8gt2

    t313C

    t1/2 t1/2

    T T T-t1/2

    GARP∆ ∆ ∆ ∆

    T+t1/2

    Gz gt6

    ∆ ττ

    ∆ ∆∆ ∆ ∆1H

    DIPSI-2

    G

    (G)

    gt9

    HCACX-HH-TOCSY 3D Pulse Sequence

    Waltz-16 Waltz-16Waltz-16

    R1 C

    X

    R1

    C

    H

    H

    C

    R

    H

    C

    H

    H

    C

    H

    R

    1 42 3

    Sahoo et al., J. Magn. Reson, 168, 352 (2004).

  • 3D-NMR Planes Poly(EB*C)

    2.5

    1.5

    2.5

    1.5

    46 45

    a b

    41 40

    dc

    HSQC

    HMBC

    δC ppm

    δ H p

    pm

    176 174

    a

    b cd

    ppm

    47 44 47 4442 39 42 39

    F1=175.31 F1=174.8F1=174.14F1=174.56

    HC

    AC

    X

    a bc

    d

    a b c d

    HC

    AC

    X-H

    H-T

    OC

    SYF2 (ppm)

    ( (() ) )p q r

    poly(ethylene-co-n-butylacrylate*-co-carbon monoxide)

    Sahoo et al., J. Magn. Reson, 168, 352 (2004).

  • Poly(EB*C) 3D Planes at δCO=175.3, 174.8

    M. Monwar et al., Macromolecules, 38, 2886 (2006).A. Al-hamri et al. Macromolecules, 38, 5768 (2006).

  • ?Quantitation in nD NMR?

  • Quantitative nD NMR Complications

    • Relaxation times – range• J Coupling range• Multiplicity (C, CH, CH2, CH3)• Resonance offset effects

    Koskela,H.; Väänänen,T. Magn.Reson.Chem 2002,40,705

    Koskela,H; Kilpeläinen,I; Heikkinen,S. J.Magn.Reson 2005,174,237

  • 64% Octene

    98% Octene

    99% Octene

    1D 13C NMR Spectra of Poly(EO)

  • 1D 13C Expansion of αα Region

  • 1012023030

    13C NMR of (poly(ethylene-co-octene)

    45 40 35 30 25 20 15 10 5 (ppm)

    0 51 01 52 02 53 03 5

    1H NMR of poly(ethylene-co-octene)

    3.5 3.0 2.5 2.0 1.5 1.0 0.5 (ppm)

    1D NMR Poly(EO)

  • 13C

    1H

    decouple

    at

    d1 d2 d3 d3 d4 d4

    180° 90° 180°

    180° 90° 180° 90° 180°

    13C Detected 1H T1’s

    αα 1H T1’s ca. 200 ms

    D.P. Burum , R.R. Ernst, J. Magn. Resonance, 39(1), 163-168 (1980). Brown. et al., J. Magn. Resonance, Series A, 110(1), 38-44 (1994).

  • In the m-centered configuration, the magnetic environments for geminal methylene protons are different from each other thus have different chemical shifts

    In the r-centered configuration, both methylene protons have similar the magnetic environments and similar chemical shifts.

    = R group

    Chemical Shift Patterns

  • Copolymer A Copolymer B Copolymer C

    Expansions of gHMBC & gHSQCαα for of copolymer A,B and C

  • F1 (ppm)40.040.240.440.640.841.041.241.441.641.842.042.2

    F2(ppm)1.15

    1.20

    1.25

    1.30

    1.35

    1.40

    1.45

    321

    gHSQC

    1D & 2D Quantitative Data for Copolymer A

    1JCH = 125 HzRD = 1 sec

  • Copolymer A Copolymer B

    Quantitative analysis of copolymers A and B by 1D 13C and 2D gHSQC NMR

    1D & 2D Quantitative Data for Copolymer A & B

  • Maybe There is Hope After All Copolymer C

  • Copolymer A (~ % 64 Octene) mostly syndiotactic.

    Copolymer B (~ % 99 Octene) mixture of meso and racemic dyadspredominantly syndiotactic,approximately 75 % racemic dyads and 25 % meso dyads.

    Copolymer C (~ % 98 Octene) complex cross peaksmixture of meso and racemic diadsapproximately 48 % racemic dyads and 52 % meso dyads.

    Quantitative 2D NMR can give reliable results under the right conditions

    Perhaps there is even hope for extracting quantitative data from 3D NMR Spectra

    Conclusions

  • http://www.uakron.edu/colleges/artsci/depts/chemistry/magnet/presentations.p

    New Aspects of Polyolefin Quantitative Analysis Using 1D and 2D NMRAcknowledgmentsOutline 1D, 2D & 3D NMR SpectraPossible Triads of Poly(EB*C)��Poly(ethylene-co-butylacrylate*-co-carbon monoxide)2D NMR Poly(EB*C)Biological 3D-NMR Pulse Sequences1D 13C NMR of Labeled Poly(EBC)HCACX 3D Pulse SequenceHCACX-HH-TOCSY 3D Pulse Sequence3D-NMR Planes Poly(EB*C)Poly(EB*C) 3D Planes at δCO=175.3, 174.8?Quantitation in nD NMR?Quantitative nD NMR Complications