new - natural gas properties

Upload: art-rodriguez

Post on 03-Jun-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 New - Natural Gas Properties

    1/35

    CONSTANTS

    R = 10.73 (psi*ft3)/(lb-mol*R

    o)

    Mair= 28.97 lb/lb-mol

    Psc = 14.65 psia

    Tsc = 60 oF 520 oR

    Convert Gas Gravity in separator to Gas Gravity in reservoir (need to account for liquids):

    FIRST METHOD IS VIA SEPARATOR EQUATIONS - SECOND IS VIA YIELD EQNS

    1 stage separator 2 or 3 stages: dry gas sg at end of 1st, liq sg at end of last

    API, cond = 50 a3 -0.0001785

    y,o = 0.779614 a2 1.25

  • 8/12/2019 New - Natural Gas Properties

    2/35

    M,o = 144.8385 a1 9.13875382

    Vo [scf/stb] 717.5929 scf/stb Rs 11.4048379 scf/stb gas in sol af

    ps1 55 psia

    rho,g b4 sep= 0.108294 lbm/ft3 ts1 520 oR

    Rg scf/stb = 3333.333 Vo [scf/stb 728.997688 scf/stb

    yg,sp = 0.65

    rho,l = 48.64793 lbm/ft3

    y,g res = 1.417462 y,g res = 1.418556

    EQUATION USING YIELD TO DETERMINE y,g res

    YIELD = 300 STB/MMSCF

    y,g res = 1.421

    FOR COND WELLS WHERE THERE IS 2 PHASE IN RES:

    above Dew Point - liq only - same as wet gas above

    below dew point - dual phase

    need to use two-phase z-factor:

    when c7+ > 4%. Knowing sg of flowing gas

    yc7+ = 11.14%

    pr 1.81 ?

    tr 1.55 ?

    z,tp = 0.66847

    Rt = 4062.331

    Bt (total) = 43.93421 cf/stb

  • 8/12/2019 New - Natural Gas Properties

    3/35

    T = 100 oF 560 oR

    P = 1216 psi

    yg,corr

    for nonHC

    MOLECULAR Pc Tc Vc

    COMPOUND WEIGHT psiaoR ft

    3/lb Zc yi

    Methane C 1 H 4 16.04 667.8 343 0.0091 0.2884 0.786

    Ethane C 2 H 6 30.07 707.8 549.8 0.0788 0.2843 0.07

    Propane C 3 H 8 44.10 616.3 665.7 0.0737 0.2804 0.01

    n-Butane C 4 H 10 58.12 550.7 765.3 0.0702 0.2736 0.002

    iso-Butane C 4 H 10 58.12 529.1 734.7 0.0724 0.2824 0.006

    n-Pentane C 5 H 12 72.15 488.6 845.4 0.0675 0.2623 0.003

    iso-Pentane C 5 H 12 72.15 490.4 828.8 0.0679 0.2701 0.001

    neo-Pentane C 5 H 12 72.15 464 781.11 0.0674 0.2537

    n-Hexane C 6 H 14 86.18 436.9 913.4 0.0688 0.2643 0.001

    n-Heptane C 7 H 16 100.20 396.8 972.5 0.0691 0.2633 0.001

    n-Octane C 8 H 18 114.23 360.6 1023.9 0.069 0.2587

    n-Nonane C 9 H 20 128.26 332 1070.3 0.0684 0.2536

    n-Decane C 10 H 22 142.28 304 1111.8 0.0679 0.2462

    Ethylene C 2 H 4 28.05 729.8 508.6 0.0737 0.2765

    Propene C 3 H 6 42.08 669 656.9 0.0689 0.2752

    Acetylene C2

    H2

    26.04 890.4 555.3 0.0695 0.2704

    Carbon Dioxide C 1 O 2 44.01 1071 547.6 0.0342 0.2742 0.05

    Hydrogen Sulfide H 2 S 1 34.08 1306 672.4 0.0459 0.2831 0.02

    Sulfur Dioxide S 1 O 2 64.06 1145 775.5 0.0306 0.2697 0

    Nitrogen N 2 28.13 493 227.3 0.0514 0.2916 0.05

    Water H 2 O 1 18.02 3208 1165 0.05 0.235 0

    1

    yhc =

    A =

    B =

    e =

    FORMULA

    PHYSICAL CONSTANTS FOR PURE COMPONENTS

  • 8/12/2019 New - Natural Gas Properties

    4/35

    ter 1st stg

  • 8/12/2019 New - Natural Gas Properties

    5/35

    yg Ppr Tpr Z (graph) rhog [lb/ft3] B mu,g [cp] mu,g [cp]

    0.70 1.81 1.55 0.830 4.43 0.010815 0.013354 0.014715

    0.63 112.4068 K 124.1448

    5.464533 X 0.007225

    0.70 1.307093 Y 1.367877

    6.324058

    0.07109

    yiMWi yiPci yiTci added high

    12.61 524.89 269.60

    2.10 49.55 38.49

    0.44 6.16 6.66

    0.12 1.10 1.53

    0.35 3.17 4.41

    0.22 1.47 2.54

    0.07 0.49 0.83

    0.00 0.00 0.00

    0.09 0.44 0.91

    0.10 0.40 0.97

    0.00 0.00 0.00

    0.00 0.00 0.00

    0.00 0.00 0.00

    0.00 0.00 0.00

    0.00 0.00 0.00

    0.00 0.00 0.00

    2.20 53.55 27.38

    0.68 26.12 13.45

    0.00 0.00 0.00

    1.41 24.65 11.37

    0.00 0.00 0.00

    20.38 691.99 378.12

    663.29 377.59 SUTTON: HIGH MW, RICH IN C7+, MINOR C02 AND N2, NO H2S. 0.57

  • 8/12/2019 New - Natural Gas Properties

    6/35

  • 8/12/2019 New - Natural Gas Properties

    7/35

    Rsw, scf/stb R,brine

    9.967435084 7.689965

    K 3.73583 50000 S, ppm

    SIG 0.005420337

    Y -2.43143E-07

    X

    rho,g

    er MW particles

    G

  • 8/12/2019 New - Natural Gas Properties

    8/35

    Hall-Yarborough (1973) z-factor calculation

    Hall, K.R. & Yarborough, L. (1973): A New Euation of State for Z-factor Calculations,

    The Oil and Gas Journal, June 18, 82-92

    Molecular weight oxygen, MO 15.9994 g/mole

    Molecular weight sulfur, MS 32.07 g/mole

    Molecular weight, carbon, MC 12.01 g/moleMolecular weight, hydrogen, MH 1.01 g/mole

    Molecular weight air, MA 28.97 g/mole

    Components Molecular weight Mole fraction Tci Tci Pci Pci

    g/mole yi oR K psia Mpa

    Methan, CH4 16.042 0.786 343 190 667.8 4.61

    Ethan, C2H6 30.07 0.07 549.8 305 708 4.88

    Propan, C3H8 44.10 0.01 665.7 370 616 4.25

    i-Butane, C4H10 58.12 0.006 734.7 408 529 3.65

    n-Butane, C4H10 58.12 0.002 765 425 551 3.80

    i-Pentane C5H12 72.15 0.001 829 460 491 3.39

    n-Pentane C5H12 72.15 0.003 845 469 489 3.37

    Hexane C6H14 86.18 0.001 913 507 437 3.01

    Heptane C7H16 100.21 0.001 972 540 397 2.74

    Hydogen, H2 2.02 0 60 33 187 1.29

    Nitrogen, N2 28.01 0.05 227.4 126 492 3.39

    Oxygen, O2 32.00 0 277.8 154 731 5.04

    Carbon dioxid, CO2 44.01 0.05 547.6 304 1071 7.38

    Hydrogensulfid, H2S 34.08 0.02 672.4 373 1306 9.01

    Dihydrogenoksid, H2O 18.02 0 1165 647 3199 22.06

    Mole fraction1.0000

    Total molecular weight gas 20.38 g/mole

    Spesific gravity 0.70

    Temperature 37.78oC 310.93 K

    Pressure 8.384E+06 Pa

    Method used (1, 2 or 3) 1

    Compressebility factor, z 0.8298

    Method 1 (Properties from composition, Key's rule)

    Pseudo critical temperature

    TPc (oil field units) 378.13 oR

    TPc (SI units) 209.74 K

    Pseudo critical pressure

    PPc (oil field units) 691.90 psia

    iiyPPPc

    iiyTTPc

  • 8/12/2019 New - Natural Gas Properties

    9/35

    PPc (SI units) 4.8E+6 Pa

    Method 2 (Sutton's correlations)

    Pseudo critical temperature

    TPc (oil field units) 378.43 oRTPc (SI units) 209.90 K

    Pseudo critical pressure

    PPc (oil field units) 662.87 psia

    PPc (SI units) 4.6E+6 Pa

    Method 3 (Standing's correlation)

    Pseudo critical temperature If we have a "

    TPc (oil field units) 390.42 oR

    TPc (SI units) 216.57 K

    Pseudo critical pressure

    PPc (oil field units) 659.00 psia

    PPc (SI units) 4.5E+6 Pa

    Pseudo reduced properties

    TPR 1.482PPR 1.757

    Hall-Yarborough

    t 0.675

    a 0.037

    Reduced-density parameter, y0 0.01

    Continue until f(y) < 1x10^(-5)

    Iteration 1

    f(y) -54.5E-3

    Derivated of f(y), df(y) 0.945

    Newton Rapson: Reduced- density parameter, y1 0.067670896

    Compressebility factor, z 0.9486

    Iteration 2

    dy

    ydf

    yf

    prTt 1

    pc

    prp

    pP

    pc

    pr

    T

    TT

    75=PPc

    169.TPc

    168pcHCT

    667pcHCp

    y

    pZ

    pr

    a

  • 8/12/2019 New - Natural Gas Properties

    10/35

    f(y) -7.0E-3

    Derivated of f(y), df(y) 0.731

    Newton Rapson: Reduced-density parameter y2 0.077219952

    Compressebility factor, z 0.8313

    Iteration 3

    fy -95.9E-6

    Derivated of f(y), df(y) 0.712

    Newton Rapson: Reduced-desity parameter y3 0.077

    Compressebility factor, z 0.8298

    Iteration 4

    f(y) -16.3E-9

    Derivated of f(y), df(y) 0.712

    Newton Rapson: Reduced-density parameter y4 0.077

    Compressebility factor, z 0.8298

    Iteration 5

    f(y) -478.6E-18Derivated of f(y), df(y) 0.712

    Newton Rapson: Reduced-density parameter y4 0.077

    Compressebility factor, z 0.8298

    yfy

    yy ii'

    1

  • 8/12/2019 New - Natural Gas Properties

    11/35

    Convertion

    oC -> K 273.15

    atm -> bar 1.01325

    cp -> Pas 1.00E-03

    bar -> Pa 1.00E+05

    m m -> m 1.00E-03

    oR -> K 0.56

    psig -> bar 0.07

    oF -> oR 460

    Instructions

    1. Insert mole fractions.

    2. Insert temperature [C] and pressure [Pa].

    3. Choose which pseudo method you will use.

    4. Read your z-factor beneath.

    (Insert values in cells where the font color is red)

    Methods for finding pseudo critical pressure and

    pseudo critical temperature

    1. Properties from composition, Key's rule (Preferred choice).

    Newton-Rapson iteration.

    2. Sutton's correlations

    3. Standing's correlations

  • 8/12/2019 New - Natural Gas Properties

    12/35

    ry" gas, SG < 0,75 If we have a "wet" gas, SG 0,75

    tttyttt

    y

    yyyy 2324

    432

    2,2427,9082,218,216,952,1952,291

    4441

    pr ytttytttyyyyy

    ap 32232

    3

    432

    4,422,2427,9058,476,976,1410

    2

    g3.6-131,0-6.8 g

    2

    gg 74,0-349.5+2

    25,1225 gHCgHC

    25,370,5 gHCgHC

    25,71330187 gHCgHCpcHCT

    21,117,51706 gHCgHCpcHCp

    212,106125,0 tet

  • 8/12/2019 New - Natural Gas Properties

    13/35

  • 8/12/2019 New - Natural Gas Properties

    14/35

  • 8/12/2019 New - Natural Gas Properties

    15/35

    tyt 82,218,134,2

    t82,218,

  • 8/12/2019 New - Natural Gas Properties

    16/35

    Drainage Area Ad = ac

    Net Pay h = ft

    Porosity

    Initial W.Sat Swi =

    Temp T = 123oF

    Specific Gravity yg = 0.64Initial Press. pi = 1422 psia

    Water Compress cw=

    Date Pressure z p/z Gp Bg F/Eg

    psia MMSCF cf/scf MMscfD

    1 1661 0.8287 2004 166 0.008232 #DIV/0!

    2 1406 0.8456 1663 293 0.009923 1719.085

    3 1135 0.8687 1307 406 0.012628 1166.195

    4 847 0.8841 958 490 0.017222 938.6614

    5 0 0 #DIV/0! 0 #DIV/0! #DIV/0!

    6 0 0 #DIV/0! 0 #DIV/0! #DIV/0!

    7 0 0 #DIV/0! 0 #DIV/0! #DIV/0!

    8 0 0 #DIV/0! 0 #DIV/0! #DIV/0!

    9 0 0 #DIV/0! 0 #DIV/0! #DIV/0!

    10 0 0 #DIV/0! 0 #DIV/0! #DIV/0!

    11 0 0 #DIV/0! 0 #DIV/0! #DIV/0!

    12 0 0 #DIV/0! 0 #DIV/0! #DIV/0!

    13 0 0 #DIV/0! 0 #DIV/0! #DIV/0!

    14 0 0 #DIV/0! 0 #DIV/0! #DIV/0!

    15 0 0 #DIV/0! 0 #DIV/0! #DIV/0!16 0 0 #DIV/0! 0 #DIV/0! #DIV/0!

    17 #DIV/0! #DIV/0! #DIV/0!

    18 #DIV/0! #DIV/0! #DIV/0! Second plo

    19 #DIV/0! #DIV/0! #DIV/0! First plot -

    VOLUMETRIC: 0 MMSCF

    P/Z PLOT: 13000 MMSCF

    F/EG PLOT: 13000 MMSCF

    GENERAL INPUT

    PRODUCTION CALCULATED0

    500

    1000

    1500

    2000

    2500

    p/z,psia

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    F/Eg,

    MMscf

  • 8/12/2019 New - Natural Gas Properties

    17/35

    leads to less error for VOLUMETRIC DEPLETIONS

    asks any forms of depletion, the F/Eg plot gives more insight

    0 100 200 300 400 500 600 700 800 900 1000

    Gp, MMscf

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0 10000 20000 30000 40000 50000

    Gp, MMscf

  • 8/12/2019 New - Natural Gas Properties

    18/35

    Res. Press pr = 3500 psia Gas Viscosity

    Res. Boundary re = 1589 ft

    Gross hg = 24 ft Velocity Coeff

    Net hn = 24 ft Non-D Coeff.

    Permeability k = 0.13625 md

    WB Radius rw = 0.34 ft

    SGU gas yg = 0.7Skin S = 0 Linear flow ends

    Res. Temp T = 190 oF 650 P.Radial Begins

    Porosity phi = 0.11 PSS time start

    Compressibilit ct = 0.00024 /psi DIM FRAC COND =

    Water Sat. Sw = 0.35 Eff WB Radius

    Fract Cond kf*w = 582 mD-ft

    Half Length xf = 369 ft

    25

    P2 VALID UP TO 3000 PSI

    pwf p2

    psia qsc McfD

    3500 0

    3000 73

    2000 185

    1000 252

    500 269

    0 275

  • 8/12/2019 New - Natural Gas Properties

    19/35

    ug = 0.020578 cp

    z = 1.00

    Beta = 2.5528E+11 1/ft

    D 0.0003548

    ug, avg= 0.01872 D/MSCF Find u at 1750 psi

    agp = 44626.0538 2177120.07

    bgp = 2.06440509 100.3209782tL,end = 10 days

    t,pr beg= 257 days

    tpss = 419 days in transient flow

    cfd = 11.5760424

    rw'/xf = 0.44 from figure 4.24 based on cfd

    rw' = 162.36 ft

    agt = 312110

    p2-nonD m(p)

    qsc McfD qsc McfD qsc McfD

    0 7.82E+08 0 0 0

    73 5.61E+08 102 101 709.5342

    183 3.10E+08 217 215 1511.796

    249 7.70E+07 324 319 2258.874

    266 1.87E+07 351 345 2445.585

    271 0.00E+00 359 353 2505.504

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    0 100 200 300

    pwf,psia

    Flow Rate, MSCFD

    P2 method

  • 8/12/2019 New - Natural Gas Properties

    20/35

    A B C

    1212678 1915.7 0.878

    1212678 1915.7 0.878

    5118.7 355.9 1.4871

    5118.7 355.9 1.4871

    111 0 1.9365

    108.03 0 1.9635

    400

    p2 Darcy

    p2 non-Darcy

    m(p) Darcy

    m(p) non-Darcy

  • 8/12/2019 New - Natural Gas Properties

    21/35

    CALCULATING BHP FROM WHP GIVEN RATE: Dry Gas:

    Single Phase water or Undersaturated oil: No Viscosity/Density changes with T,P

    WHP = 2534 PSI Qg, MMcf/

    Depth 8500 ft Depth

    Visc of water uw = 1 cp BHP =

    Water Rate qw 1680 bpd 1.17 bpm ID =

    roughness e = 0.00005 ft 70 bph e =Angle (+90 up) theta = 90 degrees T =

    Inside Diameter ID = 3.826 in SGU =

    Density pg = 62.5 lbm/ft3 Theta =

    1500

    Superficial Velocity 8500 Assumptio

    v = 1.37 ft/sec

    Re = 40548.49 TURBULENT IF > 2100 TURBULENT P avg =

    f = 0.022316 z (from INP

    0.127134 psf/ft friction first term ug (from IN

    neglect kinetic second term

    62.5 psf/ft gravity third term Nre =

    dp/dl= 0.434911 psi/ft TOTAL f =

    3696.741 Delta P from 1 to 2 if (-) then WHP < BHP C2 =

    BHP = 6231 psi 7.504422

    3689.236 c1/c2 =

    WHP =

    IN SINGLE PHASE, BOTH FORCES ACT DOWNWARD WHEN PRODUCING AT

    INCREASING RATES, SO VLP CURVE ALWAYS INCREASES.

    0 784010000 7920

    20000 8064

    50000 9115

    90000 11811

    95000 122510

    5000

    10000

    15000

    0 20000 40000 60000 80000 100000

  • 8/12/2019 New - Natural Gas Properties

    22/35

    HP from BHP while flowing:

    d 10 Input Yellow boxes and Green assumption

    5000 ft Find z and ug

    2500 psi Use WHP at bottom as new assumption

    2.91 inches Type in Green Box.

    0.00005 ft Find new z and ug110 F repeat til convergence.

    0.7

    90

    = 1500 psi WHP

    2000

    UT) = 0.754 Type Pavg, T, and SGU into I&R sheet

    PUT) = 0.0174 Type Pavg, T, and SGU into I&R sheet

    2765493.542

    0.0142

    3.05389E-05

    843753.6892

    2094

    30 40 50 60 70

    1500 0.29 0.72 1 1.32

    8500 1.67 4.12 5.69 7.5

    1.96 0 4.84 6.69 8.82

  • 8/12/2019 New - Natural Gas Properties

    23/35

    BOTTOMHOLE PRESSURE FROM SURFACE

    Pwh = 1050 psig p2

    Depth = 9500 ft

    yg = 0.72

    T_bar = 100 oF

    Theta = 90 degrees (going up) find p1 (BHP)

    Assume

    p1 (bhp) = 1383 psig Guess

    pbar = 1216.5 psig

    z = 0.83 Pick

    C2 = 2.9E-05

    p1 = 1384 Make this new guess, find new z, til convergence

    1383.589 alternative equation

    This is how gas lift injection at bottom is calculated

    0.15 psi/ft

  • 8/12/2019 New - Natural Gas Properties

    24/35

    BOTTOMHOLE PRESSURE FROM SURFACE

    Pwh = 1050 psig p2

    Depth = 9500 ft

    yg = 0.72

    T_bar = 100 oF

    Theta = 90 degrees (going up) find p1 (BHP)

    Assume

    p1 (bhp) = 1383 psig Guess

    pbar = 1216.5 psig

    z = 0.83 Pick

    C2 = 2.9E-05

    p1 = 1384 Make this new guess, find new z, til convergence

    1383.589 alternative equation

    This is how gas lift injection at bottom is calculated

    0.15 psi/ft

  • 8/12/2019 New - Natural Gas Properties

    25/35

    GAS FLOWRATE THROUGH AN ORIFICE

    yg = 0.72

    Valve Size = 0.375 inch

    P1, upstream, Pinj at depth = 950 psig

    P2, downstream, Flowing Prod Press = 900 psig

    T1, Inj gas temp at depth, TgD = 140 deg F

    qgsc = 1311.23593 Equation for chart, need to correct for Temp

    CgT = 1.13068277

    qga = 1159.68507 Mscf/d

    Rate for new choke size:

    Orifice size = 0.5 inch

    qgc = 2331.08609 Mscf/D

  • 8/12/2019 New - Natural Gas Properties

    26/35

    Ground Elevation = 438 ft Patm= 14.43 psi

    WH Flow Rate qsc = 2.5 MMscfD

    Gas Specific Grav. yg = 0.72

    Suct Pressure ps = 35 psig pabs = 49.4 psia

    Suct Temp Ts = 100 oF Tabs = 560 oR

    Z-factor zs = 0.72

    Disch Pressure pd = 1100 psig pabs = 1114.4 psia

    Z-factor zd = 0.72 zavg = 0.72

    Specific Heat k = 1.25

    Adiabatic Eff na = 1 (n-1)/(nk) = 0.267

    Polytropic Eff np = 0.75

    Mech Efficiency Em = 0.95

    scan eo vs rp plot

    scan type vs rate plot

    THERMODYNAMIC PROPERTIES

    EFFICIENCY

    CALCULATED VALUESGENERAL INPUT

    San Antonio, TX is 650 ft

    Laredo, TX is 438 ft

    GAS PROPERTIES

    SUCTION SIDE

    DISCHARGE SIDE

  • 8/12/2019 New - Natural Gas Properties

    27/35

  • 8/12/2019 New - Natural Gas Properties

    28/35

  • 8/12/2019 New - Natural Gas Properties

    29/35

    THERMODYNAMIC COMPARISON

    ISOTHERMAL

    HEAD = 92,975 [(ft-lbf)/lb]

    POWER REQ'D = 310 HP

    ADIABATIC

    HEAD = 129,025 [(ft-lbf)/lb]

    POWER REQ'D = 431 HPPOLYTROPIC

    HEAD = 144,941 [(ft-lbf)/lb]

    POWER REQ'D = 645 HP

    DESIGN PROCESS

    1. NUMBER OF STAGES

    Total Compression Ratio RT = 22.55

    Discharge Temperature Td = 279 oF

    Number of Compress Stages # STG = 3

    Compression Ratio per Stage rp = 2.82

    Factor F = 1.1

    2. RATE

    Actual cubic feet per minute ACFM = 400 cfm

    Type based on rate/pressure From Figure

    3. POWER - for general compressor

    Quick eqution calculation BHP = 513 HP

    Precise equation calculation BHP = 435 HP

    SPECIAL CASE - RECIPROCATING COMPRESSOR

    Engine Speed N = 1100 RPM

    Stroke Length St = 3.5 in

    Cylinder Diameter D = 4.3 in

    Rod Diameter d = 1.25 in

    Clearance C = 15 %

    Overall Eff based on rp Eo = 0.84 From Figure

    Piston Displacement

    Single Acting Pd,s = 32 cfm

    Double Acting Pd,d = 62 cfm

    Select: double

    Volumetric Efficiency EV = 70.9 %

    Capacity Q = 44.0 cfm

    Piston Speed Ps = 642 fpm Keep between 600-800

    Tension Load Tl = 14098 lbf

    Power Required BHP = 356 HP

    -15%

  • 8/12/2019 New - Natural Gas Properties

    30/35

  • 8/12/2019 New - Natural Gas Properties

    31/35

    single

    double

  • 8/12/2019 New - Natural Gas Properties

    32/35

    Orifice Diameter d1 = 0.323 in.

    Pipe ID d2 = 3 in.

    Static Pressure pf = 200 psia

    Differential hw = 100 in. of water

    Specific Gravity yg = 0.6

    Base Pressure p = 14.6 psiaBase Temperature T = 75

    oF

    z = 0.99

    qsc = 1.54 MMSCFD

    Fb = 341.7 TABLE

    Ftb = 1.028846

    Fpb = 1.008904

    Fg = 1.290994

    Ftf = 0.985882

    b = 0.0332 TABLE Calculates Fr = 1.000235

    Fpv = 1.005038

    Beta = 0.107667 hw/pf = 0.5 Find Y = 1.003 TABLE

    C ' = 455.2

    GENERAL INPUT

    CALCULATING FLOW RATE - ORIFICE METER

    fwsc phCq '

  • 8/12/2019 New - Natural Gas Properties

    33/35

    FT PSIA

    0 14.70

    328 14.50

    500 14.40

    656 14.301000 14.20

    1312 14.00

    1500 13.90

    2000 13.70

    2500 13.40

    3000 13.20

    3500 12.90

    4000 12.70

    4500 12.40

    5000 12.20

    5500 12.00

    6000 11.80

    6500 11.50

    7000 11.30

    7500 11.10

    8000 10.90

    8500 10.70

    9000 10.50

    10000 10.10

  • 8/12/2019 New - Natural Gas Properties

    34/35

    y = -0.0005x + 14.665

    13.60

    13.80

    14.00

    14.20

    14.40

    14.60

    14.80

    0 500 1000 1500 2000 2500

  • 8/12/2019 New - Natural Gas Properties

    35/35

    Series1

    Linear (Series1)