new generation ion conducting polymer electrolytes for electrochemical energy technologies maria...

39
New generation ion conducting polymer electrolytes for electrochemical energy technologies Maria Luisa Di Vona R. Narducci, L. Pasquini PhD of Industrial Engineering Research Activity on Energy 17th October 2014

Upload: elizabeth-blake

Post on 26-Dec-2015

216 views

Category:

Documents


2 download

TRANSCRIPT

New generation ion conducting polymer electrolytes for

electrochemical energy technologies

Maria Luisa Di Vona

R. Narducci, L. Pasquini

PhD of Industrial EngineeringResearch Activity on Energy

17th October 201417th October 2014

Systems based on Polymer Electrolyte Membranes (PEM)

2H+ +2e- → H2

cathodic process:

H2O

H2O + O2 H2 (+ H2O)

PEManode cathode

( H2O )

H+

H+

electrocatalyst layers

H2O → 1/2O2 + 2e- + 2H+

anodic process:

AEM-FC

PEM-FC

Redox flow batteries

Electrolysers

PhD of Industrial EngineeringResearch Activity on Energy

Anion Exchange Membranes

Cationic Exchange Membranes

O

O

CH3CH3

S

OO

N+

N+

Methylen ammonium Aromatic Polymers

Polymer electrolyte membranes (PEM)

fluorine

x yCF CF2

OCF2CF

CF3

O(CF2)2SO3H

CF2CF2

X = 6 - 10; y = z = 1

z

Nafion

PhD of Industrial EngineeringResearch Activity on Energy

4

Amphoteric Exchange Membranes

O

O

CH3 CH3

S

OO

OHH N+

R

RR

SO

O OH

HO-

PhD of Industrial EngineeringResearch Activity on Energy

A fuel cell consists of two bipolar graphite plates that hold a Membrane Electrode Assembly (MEA). Each MEA is a set of two electrodes sandwiched around a Polymer Electrolyte Membrane (PEM) .

High conductivityHigh conductivity

Chemical and thermal stabilityChemical and thermal stabilityLow costLow cost

Long lifeLong life

Low permeability to reactantsLow permeability to reactants

Controlled water absorption Controlled water absorption Mechanical strengthMechanical strength

Ideal Membranes

0

20

40

60

80

100

0 5 10 15

l

sm

ax/M

Pa

E. Sgreccia M. Khadhraoui, M.L. Di Vona Journal of Power Sources 178 (2008) 667–670

Reproduced from Introduction To Polymers R.J. Young and PA. Lovell. CRC Press 1991

PhD of Industrial EngineeringResearch Activity on Energy

Relations between membrane stiffness, hydration, morphology and conductivity

Possible solutions for improving membrane performances

….

Cross-linking

Composite

SiO2, TiO2, ZrO2….

Inorganic proton conductorsZirconium phosphates, heteropolyacids..

Oxides

Thermal treatments

Modification of the polymeric backbone

Functionalization

Polymer blends

Block copolymers

PhD of Industrial EngineeringResearch Activity on Energy

O

C

O

SO2

OSi(OH)3

O

C

O

O

O

C

O

O

SO3H

0.4

O

C

O

O

SO3H

Si(OH)3

0.2

0.4

H3O+

(OH-)

Fuel Cell Membrane

Hybrid Polymer Blends(SPEEK + SiPPSU)

Inorganic-Organic Nanocomposites

(F-TiO2)

(Cross-Linking)

Hybrid Organic-Inorganic Polymers(SOSiPEEK)

Composite MaterialsModified Polymers

BlendsThermal Treatments

FCH-JU LoLiPEM Project

www.lolipem.eu

Strategies for improving Polymer Electrolyte Membranes

Patent DE 10 2009 006 493A1Patent DE 10 2009 006 493A1

Chemical cross-link

Van der Waals interactions

Covalent bondsIonic bonds

Strategies for improving Polymer Electrolyte Membranes

PhD of Industrial EngineeringResearch Activity on Energy

Knauth P, Di Vona ML. Solid State Ionics, 2012, 225, 255-259Knauth P, Di Vona ML. Solid State Ionics, 2012, 225, 255-259

2 H2 + O2 = 2 H2OHigh efficiency (up to 60%?)

« Zero emission »!

Proton Exchange Membranes

DMSO,

Cross-linking of SPEEK by thermal treatments

PhD of Industrial EngineeringResearch Activity on Energy

80- 100 °C; RH 70-100%80- 100 °C; RH 70-100%

XL- induced properties:

low solubility in solvents

low fuel permeability

high dimensional stability

enhancement of tensile strength

reduction of ductility

decrease of free volume

enhancement of glass transition temperature

Cross-linked (XL) aromatic polymers

H. Hou, M. L. Di Vona, P. Knauth Durability of Sulfonated Aromatic Polymers for Proton-Exchange-Membrane Fuel Cells ChemSusChem 2011, 4, 1526

H. Hou, M. L. Di Vona, P. Knauth Building bridges: Crosslinking of sulfonated aromatic polymers-A review. Journal of Membrane Science 2012, 423, 113

 

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

l

T/°

C

4 SPEEK(0.9) 160 (DMSO)

1 SPEEK(0.6) 120+160 (DMSO)

2 SPEEK(0.6) 160 (DMSO)

3 SPEEK(0.9) 120+160 (DMSO)

5 SPEEK(0.6) 120 (DMSO)

6 SPEEK(0.6) 120 + 160 (DMAc)

12

3

4

5

6

7 SPEEK(0.9) 120 (DMSO)

7

soluble soluble

soluble

soluble

soluble

soluble

Cross-link

No cross-link

SPEEK solvent

annealing

Cross-linking of SPEEK by thermal treatments

Di Vona ML, Pasquini L, Narducci R, Pelzer K, Donnadio A, Casciola M, Knauth P. Journal of Power Sources, 2013, 243, 488-493; Di Vona ML, Sgreccia E, Muthusamy T, Khadhraoui M,

Chassigneux C, Knauth P. Journal of Membrane Science, 2010, 354, 134-141

Di Vona ML, Pasquini L, Narducci R, Pelzer K, Donnadio A, Casciola M, Knauth P. Journal of Power Sources, 2013, 243, 488-493; Di Vona ML, Sgreccia E, Muthusamy T, Khadhraoui M,

Chassigneux C, Knauth P. Journal of Membrane Science, 2010, 354, 134-141

How does the cross-link (XL) reaction occur ?

O

O

C

O

O

C

O

O

O

SO3H

C

O

O

OSO2+

Yx

+

O

O

C

O

SO3H

SO2

O

O

O

C

O

SO2

O

O

O

O

SO3H

SO2

O

O

O

O

C

O

O

SO2

O

O

a

bb

bc

a

b

c

Covalent cross-linking during heat treatmentsof SPEEK membranes at T ≥ 140 °C occurs in presence of small quantities of DMSO. Electrophilic aromatic substitution by sulphonium ions (-SO2

+)in activated positions occurs preferentially.

Mechanical properties: traction experiment

0

500

1000

1500

2000

0 0,1 0,2 0,3 0,4 0,5 0,6DXL

E/M

Pa

Dry

Stiffness explores essentially weak bonds (low displacements): Van der Waals bonds; Defects, such as entanglements; Presence of water (distance between chains)

H2O and DMSO: high dielectric constant solventsReduce ionic bond strengthReduction of stiffness and strength

Influence of Water:Influence of Water:

Dynamic Mechanical Analysis

E. Sgreccia, J.-F. Chailan, M. Khadhraoui, M. L. Di Vona, P. Knauth Journal of Power Sources 195 (2010) 7770–7775

60 80 100 120 140 160 180 200 220 2401

10

100

1000

10000

1

E' /

MP

a

T / °C

1 S-PEEK(0,9) DMSO untreated2 S-PEEK(0,9) DMAc untreated3 S-PEEK(0,77) DMSO untreated4 S-PEEK(0,6) DMSO untreated5 S-PEEK(0,9) DMSO 140°C6 S-PEEK(0,9) DMSO 160°C7 S-PEEK(0,6) DMSO 160°C

2

34

56

7

No cross-link

Solid State Proton Conductors Eds. P. Knauth and ML Di Vona, 2012 WileyDi Vona ML, Alberti G, Sgreccia E, Casciola M, Knauth P. International J Hydrogen Energy, 2012,

37, 8672-8680

Cross-linkCross-link

Optimisation of proton conductivity: calculated and experimental data for SPEEK

17

Conductivity maximum at l

At 100 °C, sS/cm forl

This plot allows determining: the maximum achievable conductivitythe conductivity for a certain hydration

Knauth P, Pasquini L, Maranesi B, Pelzer K, Polini R, Di Vona ML Fuel Cells,13, 79 (2013)

100 °C

25 °C

Hydration of XL-SAP at high a(H2O) and high T! Only XL membranes can do this! Hydration of XL-SAP at high a(H2O) and high T! Only XL membranes can do this!

SPEEK GF l (25°C) s (S/cm)

Swelled 100°C 54 25°C=5,8 10∙ -2

40°C=6,5 10∙ -2

60°C=7,3 10∙ -2

80°C=7,9 10∙ -2

Swelled 110°C 73 25°C=9,3 10∙ -2

40°C=1,1 10∙ -1

60°C=1,3 10∙ -1

80°C=1,4 10∙ -1

“Memory Effect”

Polarization results for MEAs based on cross-linked SPEEK membranes (EX-330) and a Nafion212 membrane (triangles).

Polarization results for MEAs based on cross-linked SPEEK membranes (EX-330) and a Nafion212 membrane (triangles).

Excellent fuel cell characteristics for XL-SPEEK

G. Barbieri, M. L. Di Vona, P. Knauth, R. Hempelmann, L. D. Beretta, B. Bauer, M. Schuster, L. F. Vega Journal of Power Sources, submitted

LoLiPEM ProjectLoLiPEM Project

Anion Exchange Membranes

R R

N+ N

+

R

RR

R

RR

OH-

OH-

1/2 O2 +H2O + 2e

2OH-

2OH- +

H2

2H2O

+ 2e

OH -O2 + H2OH2

-H2O

H2 + 2OH- 2H2O + 2e

½ O2 + H2O + 2e 2OH-

H2 +1/2O2 H2O

Ec = 0.39 V

(pH = 14)

Ea = -0.84 V

Use of non-noble metalsUse of non-noble metals Low stability Low stability Low ionic conductivity Low ionic conductivity

AEM-FC 60°C, RH 100%60°C, RH 100%

H

HR N+

H H

RR

OH-

NR

R CH2

R+

N+

R

R

R

R

H

Hofmann elimination

Stability of cationic groups

E2: antiperiplanar mechanism

Is it possible to prevent E2 reactions?

YES

N+R

R

R

N+

RR

R1

R1

R1

R, R' bulky groups

N RR

ROH

-

OH +

NR

RR OH+

SN2 reactionStability of cationic groups

or………..

Is it

pos

sible

to

prev

ent S

N2

reac

tions

?

Maybe

1,4-diazabicyclo[2.2.2]octane (DABCO)

1,5-Diazabicyclo[4.3.0]non-5-ene (DBN)

N+

N

N

N+

positive charge delocalized by resonance in the system

Stability of cationic groups

positive charge delocalized by long range interaction

AM-PSU

Stability of backbones

O

O

CH3CH3

SO O

N+

HO-

Is it

pos

sible

to

prev

ent

degr

adat

ion

reac

tions

?

Two strategies:

Polymer cross-linking

Delocalization of the positive charge

N+

N

N

N+

Maybe

Di Vona, M. L. Narducci, R. Pasquini, L. Pelzer, K Knauth, P.INTERNATIONAL J HYDROGEN ENERGY 39, 14039-14049, 2014

Di Vona, M. L. Narducci, R. Pasquini, L. Pelzer, K Knauth, P.INTERNATIONAL J HYDROGEN ENERGY 39, 14039-14049, 2014

Mechanical properties of PSU-TMA membraneMechanical properties of PSU-TMA membrane

Typical tensile stress-strain curves of rigid TMA–PSU derivatives in hydroxide form (black: DAM = 0.39, red: DAM = 0.93) obtained at 25°C and ambient humidity

DAM/% 39 93

E/MPa 980±70 840±90

σMAX/MPa 28±6 27±1

ε@ break/% 5±2 5±1

E: elastic modulus

σMAX: tensile strength

ε @ break : elongation at break

Sample IEC WU (%)s (mS/cm)

in H2O

s (mS/cm) in H2Oafter treatment

in KOH 2M (60°C, 168h)

TMA 0.81 19 2.2 -TMA 1.34 40 4.6 -

TMA 1.64 53 12 -

DABCO 1.10 33 5.3 -DABCO 1.70 504 6.7 -

DBN 0.91 35 0.2 0.2XL(5%)-

TMA120°C 24h

0.81 17 1.0 -

XL(5%)-TMA

120°C 24h1.19 32 2.2 -

XL(5%)DBN

120°C 24h0.91 34 0.2 0.2

O

O

CH3CH3

SO O

N+

HO-

conductivity in Hconductivity in H22OO

Manning condensation?

Redox flow batteries

Stationary electricity storage (“Smart grid”)

Redox flow battery is a  rechargeable battery where rechargeability is provided by two chemical components dissolved in liquids contained within the system and separated by a membrane

Redox flow battery is a  rechargeable battery where rechargeability is provided by two chemical components dissolved in liquids contained within the system and separated by a membrane

Anion-Conducting Sulfamminated Aromatic Polymers by Acid Functionalization

Cl- Br- NO3- HSO4

- H2PO4- CH3CO2

-

O

O

O

SO O

NH+CH3

CH3

SA-PEEK

Anion Exchange Membranes

L. Pasquini, P. Knauth, K. Pelzer, M. L. Di Vona, Solid State Ionics, SubmittedL. Pasquini, P. Knauth, K. Pelzer, M. L. Di Vona, Solid State Ionics, Submitted

Conductivity properties in water at 25 °C.

0.00E+005.00E-041.00E-031.50E-032.00E-032.50E-033.00E-033.50E-034.00E-034.50E-03

HClHBr

H2SO4

HNO3

H3PO4

CH3CO

OH

Diethyl

Dimethyl

The conductivity is stable after 1 week

0.05.0

10.015.020.025.030.035.040.045.0

Diethyl

Dimethyl Water uptake at 25 °C

The anion conductivity occurs in a range of low pH values

Applications are interesting in all vanadium redox flow battery (high concentration of sulfuric acid; the hydrogen sulfate anion is the major charge carrier)

.

B Schwenzer et al. ChemSusChem 2011, 4, 1388

A higher ionic conductivity is expected due to

the contribution of both hydrogen sulfate anions

and protons

Mechanical properties

high tensile strength (1460 MPa)

high elastic modulus (53 MPa)

low elongation at break (6 %)

High rigidity polymers potentially useful for separation membranes

The vanadium permeability measured with dimethyl- and diethylamine sulfamminated polymers is 1.3x10-9 and 5x10-10 cm2/min, respectively. These values are 3 orders of magnitude lower than those of Nafion measured under similar conditions (1.4x10-6 cm2/min).

The vanadium permeability measured with dimethyl- and diethylamine sulfamminated polymers is 1.3x10-9 and 5x10-10 cm2/min, respectively. These values are 3 orders of magnitude lower than those of Nafion measured under similar conditions (1.4x10-6 cm2/min).

PermeabilityPermeability

Micro-scale energy storage and conversion

Micro-scale energy storage and conversion

Riccardo PoliniLuciana LuchettiEmanuela Sgreccia Tamilvanan Muthusamy Riccardo NarducciLuca Pasquini

@

Italian Ministry for University and Research

Franco-Italian University (Vinci project) Thesis E. SgrecciaCap III: R. Narducci, L. Pasquini

Acknowledgments

@Giulio AlbertiMario CasciolaAnna Donnadio

Dr. Jedeok Kim NIMS (Japan)

Prof. E. Smotkin Northeastern University, Usa

Dr. Jedeok Kim NIMS (Japan)

Prof. E. Smotkin Northeastern University, Usa

@

Financial support:

EU Fuel Cells and Hydrogen Joint Undertaking

Acknowledgments

www.lolipem.eu

ITM-CNR (G. Barbieri)

Edison (D. Beretta)

MatGas (L. Vega)

UMarseille (P. Knauth)

USaar (R. Hempelmann)

Fumatech (M. Schuster) CUT (B. Grochola)

URoma2 (ML Di Vona)

Hybrid systems:Synergic effect between Organic and Inorganic phases not

achievable by physical mixing

Covalent or iono-covalent or Lewis

acid-base bonds

Class II

No covalent or iono-covalent bonds

Class I

Strategies to Form Hybrid Membranes

Class II hybrids: Silylate-polymers

Strain

Blends:

Silicon enhances membrane strength!

Soft materials

E. Sgreccia et al., Journal of Power Sources, 178, 667 (2008)

S-PPSU 7%

SiS-PPSU 7%

Si-PPSU 7%

E [MPa] s max [MPa]400±

100

10±3 8±1

1200±300

26±4 4±1

1500±100

41±2 4±1

max [%]

Sulfonation reduces membrane strength!

Mechanical properties: Tensile stress

Phenyl-silanol group

O

O

SO O

Si(OH)2

SO3H

SO3H

S

O

OO O

SO3H

SO3H0.95

0.05

O

SO3H

O

C

O

O

SO3H

O

C

O

O

SO3H

O

C

O

O

SO3H

O

C

O

O

SO3H

O

C

O

O

SO3H

O

C

OO

SO3H

O

C

O

O

SO3H

O

C

O

O

SO3H

O

C

O

O

SO3H

O

C

O

O

SO3H

O

C

O

O

SO3H

O

C

O

Si-PPSU: calculated conformation

limited chain mobility leads to a strong increase of Tg with respect to pure SPEEK

s (S

cm-1) SPEEK

SPEEK/Si-PPSU

y = 2E-05e0,0817x

y = 8E-06e0,0912x

0,0001

0,001

0,01

0,1

0 20 40 60 80 100

RH/%

Conductivity is measurable and continues to increase at high RH

Improvement in comparison to unmodified SPEEK, which swells!

T = 100°C

Conductivity properties