new frontier with laser spectroscopy of muonium · 2019-10-13 · of muon mass low-emittance muon...

26
New frontier with Laser spectroscopy of Muonium Okayama University Riken A The University of British Columbia B KEK C Peking University D Satoshi Uetake Koji Yoshimura Collaborators: T. Hiraki, H. Hara, Y. Imai, K. Ishida A , S. Kamal B , N. Kawamura C , Y. Mao D , T. Masuda, T. Mibe C , Y. Miyake C , Y. Miyamoto, M. Otani C , K. Shimomura C , K. Suzuki C , T. Yamazaki C , M. Yoshida C , K. Yoshimura, M. Yoshimura, C. Zhang D

Upload: others

Post on 26-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • New frontier with Laser spectroscopy of Muonium

    Okayama University

    RikenA, The University of British ColumbiaB,

    KEKC, Peking UniversityD

    Satoshi UetakeKoji Yoshimura

    Collaborators:T. Hiraki, H. Hara, Y. Imai, K. IshidaA, S. KamalB, N. KawamuraC, Y. MaoD, T. Masuda, T. MibeC, Y. MiyakeC, Y. Miyamoto, M. OtaniC, K. ShimomuraC,K. SuzukiC, T. YamazakiC, M. YoshidaC, K. Yoshimura, M. Yoshimura, C. ZhangD

  • Introduction to Okayama University Group Brief introduction of the SPAN project Macro-coherent amplificationFundamental Physics using Hydrogen-like atoms History and present of Hydrogen spectroscopy Muonium spectroscopy and New physics Muonium 1S-2S Laser Spectroscopy project at J-PARC Motivation and goal Project overview and time schedule Recent status: simulation study and hydrogen testFuture prospects High brightness muon source by 1S-2S ionization of Mu High power 244 nm laser systemSummary

    Outline

  • Okayama-U Group

    ・Particle physics, Cosmology・Atomic/Molecular/Optical Phys・Nuclear Physics・Physical chemistry

    K. Yoshimura, M. Yoshimura, N. Sasao, T. Masuda, T. Hiraki, S. Uetake, H. Hara, Y. Imai, K. Imamura, A. Yoshimi, Y. MiyamotoStudents: K. Okai, H. Kaino, A. Fujieda, T. Kobayakawa, M. Kobayashi, A. Gomi, H. Hiruma, S. Yamamoto

    11 staff8 students

  • SPAN: SPectroscopy with Atomic NeutrinoMeasure important neutrino parameters using atoms/molecules Radiative Emission of Neutrino Pair: RENP

    「原子を用いたニュートリノ質量分光」, 高エネルギーニュース,33, 99 (2014)

    β decay of 3H

    18100 keV# of electron

    Endpoint Spectrum

    XeEnergy [eV]

    0

    8.315 18.6

    0

    Energy [keV]

    −1−2E − 18.6 keV

    (cf.)

    Photon Energy [eV]

    Rat

    e [H

    z]

    1 2 3 4

    Endpoint Spectrum

    4.1565 4.1570 4.1575 eV

    0.02

    0.04

    0.06

    0.08

    m0=1 meVm0=10 meVm0=50 meVNH/ IH

    145 GHz

    0

    two-photonemission

    RENP

    −0.1Freq. [GHz]

  • Neutrino Mass Spectroscopy with Atoms and LasersStimulate the process with laser

    Neutrino mass difference of 1 meV → Corresponds to freq. shift of 100 MHzFrequency Resolution of Laser :

  • Y. Miyamoto, SU, et al., Prog. Theor. Exp. Phys. 2015, 081C01 (2015)

    Demonstration of Macro-Coherent Amplification

    PPSLT LBO

    CW864 nmECLD+TA

    CW684 nmECLD

    PPLN

    Nd:YAG

    Nd:YAG

    SHG532

    13864.59µm

    4.59 µm

    5.05 µm

    684nm

    532nm

    LBO

    KTA1064

    p-H2

    Damper

    LPFs

    Monochromator

    MCTDetector

    4.59 µm

    5.05 µm

    Coherence preparationwith Raman process

    Two-photonis triggered with4.59 um laser

    532 nm684 nm

    (v = 1)

    (v = 0)

    Succeeded to Enhance E1×E1 two-photon emission rate : 1019 Gain

    Macro coherent E1×M1 two-photon, three-photon emission; solid-state target development

  • Okayama-U group interests:Fundamental Physics using state-of-the-art AMO technique → Manipulation of quantum state of atoms/molecules by lasers

    Application of Macro-coherent amplification to RENP processDetail study of Electroweak to TeV scale physics in Laboratory Determine yet unknown neutrino parameters (SPAN project) Development of narrow/high-power laser system

    340 nK~Tc

    806040200

    Num

    ber o

    f ato

    ms

    x103

    40

    20

    0-60 -40 -20 0 20 40

    Frequency [kHz]

    ~140 nK

    goal

    tool

    Laser Spectroscopy of Bose-Einstein condensation(previous work)

    (AMO: Atomic/Molecular/Optical)

    New!!Precision test of electroweak theoryby laser spectroscopy of Muonium

  • Introduction to Okayama University Group Brief introduction of the SPAN project Macro-coherent amplificationFundamental Physics using Hydrogen-like atoms History and present of Hydrogen spectroscopy Muonium spectroscopy and New physics Muonium 1S-2S Laser Spectroscopy project at J-PARC Motivation and goal Project overview and time schedule Recent status: simulation study and hydrogen testFuture prospects High brightness muon source by 1S-2S ionization of Mu High power 244 nm laser systemSummary

    Outline

  • Hydrogen-like Atoms: Simplest bound-system Precise theoretical calculation is possible →Quantum Mechanics / QED development Energy levels correspond to forces between positive/negative charge

    Coulomb potential

    Spectroscopy of One-Electron Atoms

    1s1/21s1/2

    2p1/2

    2p3/22s1/2

    n = 1

    n = 2

    1s

    2s, 2p

    Bohr Dirac QED

    2s1/2, 2p1/2

    2p3/2

    ……

    potential ofCoulomb+new force

    Electroweak

    Hadronic effect

    Compare Precise experiment / theoretical calculation↓

    Precision test of electroweak theory may be possible

  • 1S-2S Laser Spectroscopy of Hydrogen

    T. W. Hänsch, Nobel Lecture Slides (2005), with recent results

    1999: Optical frequency comb invention

    1960: Laser invention

    uncertainty [exp]: 11 Hz [1]

    [1] Phys. Rev. Lett. 110, 230801 (2013)

    T. W. Hänsch [theo] 44 kHz [2]

    →due to proton structure (proton radius puzzle)3 order discrepancy between exp & theory

    [2] Eur. Phys. J. 172, 109 (2009)

    Proton: compositparticle of 3 quarks

    quark

  • Hydrogen vs Pure leptonic systemH [Hydrogen (ep)] : lifetime >1034 yrsBound system of Proton & Electron

    Mu [Muonium (μ+e–)]:lifetime 2.2μsBound system of positive muon & electron

    lepton(=point charge)

    quarklepton

    Yes

    NoLarge

    Very Difficult

    Composite particle of Hadrons and lepton

    Components / Structure

    only Leptons(point charges)

    Precise theoreticalcalculation

    Uncertainty fromNuclear structure

    ・QED・Electroweak・Found discrepancy between theo. & exp.?→May be an evidence of Beyond the standard model (new Yukawa-type potential)

    Vacuum polarization(hadronic) +232.7(1.4) HzSov. J. Nucl. Phys. 53, 626(1991)

    1st order Electroweak -65 HzPRA 53, 2953 (1996)

    Ultra-precision Test

  • A new scalar or vector boson coupled to electron and muon gives rise to a Yukawa-type potential:

    Constraints from astrophysics (e.g. stellar cooling effects) are very strongNew physics search through Mu spectroscopy: Can be done in a laboratory experiment Independent of a specific model

    Spin-independent Dark Forces Spin-dependent Dark Forces

    10- 13

    10- 11

    10- 9

    10- 7

    10- 5

    10- 3

    PresentMu 1S–2S(9.8 MHz)

    Mu 1S–2S (10 kHz)

    C. Frugiuele et al., Phys. Rev. D 100, 015010 (2019)

    10-3 10-1 10110-510-18

    10-16

    10-14

    10-12

    10-10

    10-8

    10-6

    10-4

    10-2

    100

    10-8 10-6 10-4 10-2 100 102 104 106

    Ps

    HPresentMu 1S-HFS120 ppb

    Mu 8 Hz

    New physics New Physics

    Constraints fromastrophysics

  • Introduction to Okayama University Group Brief introduction of the SPAN project Macro-coherent amplificationFundamental Physics using Hydrogen-like atoms History and present of Hydrogen spectroscopy Muonium spectroscopy and New physics Muonium 1S-2S Laser Spectroscopy project at J-PARC Motivation and goal Project overview and time schedule Recent status: simulation study and hydrogen testFuture prospects High brightness muon source by 1S-2S ionization of Mu High power 244 nm laser systemSummary

    Outline

    This project is funded byJSPS KAKENHI Grant-in-Aid for Scientific Research (S) [FY2019-2023]S. Uetake (PI), K. Shimomura, M. Yoshida, T. Yamazaki, M. Yoshimura

    About to submit S type research project of J-PARC MLF

  • Mu Energy Level

    Present Precision and Our Goal

    Laser Spectroscopy

    mass uncertaintymass uncertainty

    ppb: 10–9

    mass

    1S-2S Laser Spectroscopy

    Microwave

    mass

    1S-HFS microwavespectroscopy

    Uncertainty u[ ]Theo. : 1.4 MHz(comes from mass uncertainty of 120 ppb)

    Uncertainty u[ ]Theo. : 515 Hz [2](comes from mass uncertainty of 120ppb)

    Electroweak Frequency shift: -65 Hz[2] M. I. Eides, Phys. Lett. B 795, 113 (2019)

    1S-2S Goalu[ ]exp.: 10 kHz(RAL 1999: 9.8 MHz[1])

    Goal (a) : 1S-2S SpectroscopyReduce the mass uncertainty

    120 ppb 1 ppb

    11 Hz

    [1] V. Meyer et al., PRL 84, 1136 (2000)

    MuSEUM Goalu[ ]exp.: 8 Hz(LAMPF1998: 53 Hz)

    Goal (b) :1S-HFS SpectroscopyPrecision Test of EW Theory &

    Search BSM physics

  • Latest 1S-2S measurement (@Rutherford Appleton Laboratory, 1999)VOLUME 84, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 7 FEBRUARY 2000

    Measurement of the 1s-2s Energy Interval in Muonium

    V. Meyer,1 S. N. Bagayev,5 P. E. G. Baird,2 P. Bakule,2 M. G. Boshier,4 A. Breitrück,1 S. L. Cornish,2 S. Dychkov,5G. H. Eaton,3 A. Grossmann,1 D. Hübl,1 V. W. Hughes,6 K. Jungmann,1 I. C. Lane,2 Yi-Wei Liu,2 D. Lucas,2

    Y. Matyugin,5 J. Merkel,1 G. zu Putlitz,1 I. Reinhard,1 P. G. H. Sandars,2 R. Santra,1 P. V. Schmidt,1 C. A. Scott,3W. T. Toner,2 M. Towrie,3 K. Träger,1 L. Willmann,1 and V. Yakhontov1

    p.1136

    Retroreflector!µ+

    AlexandriteLaser

    VacuumApparatus

    Tripler Fast BeamDiagnostics

    Cavity ControlElectronics

    MCP

    732 nm244 nm

    Uncerntainty from ResidualDoppler → 3.4 MHzPulse laser was usedlinewidth ~ 10 MHz

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    640 660 680 700 720νLaser-νIodine [MHz]

    Even

    ts p

    er L

    aser

    Pul

    se [1

    0-4 ]

    MuoniumF=1 → F=1

    Signal

    Theory

    ~20 MHz

    Previous Muonium Laser Spectroscopy

    No sophisticated optical frequency measurement technique available# of μ:105μ+ /s; # of Mu in interaction region:1.5 /pulse

    Results:2 455 528 941.0(9.8) MHz

  • 1S-2S Laser Spectroscopy Plan: Overview

    2009 2012 2017 2020

    Worldʼs highest intensity pulsed muon beam source108 µ/s beam will be available from 2020

    Phase 1 (uncertainty 1 MHz, ~Mar. 2021):S2 area (Starts from 2020B)Phase 2 (uncertainty 10 kHz, ~Mar. 2024):S2 area and H1 area

    # of muon

    x14

    RAL1999

    J-PARC MLF

  • 1S-2S Laser Spectroscopy Plan: Overview

    2009 2012 2017 2020

    Worldʼs highest intensity pulsed muon beam source108 µ/s beam will be available from 2020

    Phase 1 (uncertainty 1 MHz, ~Mar. 2021):S2 area (Starts from 2020B)Phase 2 (uncertainty 10 kHz, ~Mar. 2024):S2 area and H1 area

    # of muon

    x14

    RAL1999

    J-PARC MLF

    G. A. Beer et al., Prog. Theor. Exp. Phys. 2014, 091C01

    Efficient muonium production by Silica aerogel

    Total Mu yield: 3%0

    500

    1000

    1500

    2000

    2500

    3000

    Region 110 < z < 20 (mm) # of muonium

    (in laser volume):RAL1999 1.5 /pulseH-Line ~104 /pulse

  • 1S-2S Laser Spectroscopy Plan: Overview

    Aerogel

    Surfacemuon beam

    244 nm opticalcavity

    SOAlens

    LensElectrostaticmirror

    Bending magnet

    scintillator

    MCP

    Frequency stabilizationOptical fiber comb

    Laser diode976 nmcw, 30 mW

    SHG2.4W@488nm

    FHG0.5W@244nm

    Ionization355nm Nd:YAG

    Fiber AmplifierNarrow-linewidth Laser system

    2S Muonium Detection 244 nm244 nm355 nmIonization

  • 1S-2S Laser Spectroscopy Plan: OverviewTime schedule

    Develop CW High-power 244nm laser

    S2 area preparation@J-PARC

    Phase 2 exp10 kHz uncertaintywith slow-MumeasurementPrecise measurementof muon mass

    Low-emittance muonsource via 1S-2S ionization(g-2 exp., Mu BEC etc.)

    Low-TempSlow-muonium

    R&D

    Develop 244nmpulse laser system

    Test exp. with HFY 2019 FY 2020 FY2021 FY2022~

    Phase 0 experimentDetection system testby pulsed laser ionizationof Muonium

    Phase 1 exp.Laser spectroscopyby narrow-linewidthlaser1 MHz uncertainty

    High-powerpulse laser

    High-powerCW laser

    RAL 1999Phase 1(2 years)

    Phase 2(5 years)

    µ+ intensity 1.8x105 cps 6x106 cps

    (S line)1x108 cps

    (H line)

    Mu yield 6x102 cps 6x104 cps 1x106 cps

    Laser Pulsed CW 10W CW 40W

    Exp. Linewidth 20 MHz ~10 MHz ~0.5 MHz

    Stat. uncertainty 9.1 MHz

  • Simulation Study of 1S-2S ExcitationExpected resonance curves are calculated in three steps: Surface muon beam distribution (by G4beamline) Mu generation and tracking in thermal diffusion model by MC 1S-2S excitation is described by optical-Bloch equation

    Excitation probability is obtained by solving optical-Bloch equation for each muonium diffused from silica aerogel

    Visit Poster PN-06 by C. Zhang MLFPN-10 by T. Masuda

  • Develop whole detection system usinghydrogen spectroscopy apparatus

    Test Experiment with Hydrogen

    resonant 2-photonionization signal

    Hydrogen

    243 nm

    243 nm

    Muonium

    244 nm

    244 nm

    [H generation]2.45 GHz Microwavedischarge

    Discharge ON

    Discharge OFF

  • Introduction to Okayama University Group Brief introduction of the SPAN project Macro-coherent amplificationFundamental Physics using Hydrogen-like atoms History and present of Hydrogen spectroscopy Muonium spectroscopy and New physics1S-2S Laser Spectroscopy project at J-PARC Motivation and goal Project overview and time schedule Recent status: simulation study and hydrogen testFuture prospects High brightness muon source by 1S-2S ionization of Mu High power 244 nm laser systemSummary

    Outline

  • High Brightness Muon Production

    Present beam: target(e.g. μSR )

    target

    emittance~1000� mm∙mrad

    Proton

    π production

    decay

    Future application of the Phase 0 experiment (1S-2S ionization)

    1S-2S Laserionization@244 nm

    Alternative to the on-goingLyman-α ionization @122 nm

    Silicaaerogel

    SOA Lens

    High brightnessmuon beam

    Difficultto focus

    >20 mm

  • Conventional technique

    Collaborating with M. Yoshida (KEK)

    Conventional technique

    Developing forphase 0 exp.

    New!High-Power 244 nm Laser Source

    Ti:Scrystal

    Pump

    CW laser SOA

    arb. form pulse~30mW976 nm ~30mW×1μs→30 nJ

    ~600 mJpulse

    x N stageamplifier

    SHG400mJ

    @488nm

    FHG200mJ

    @244nm

    Similar Yb:YAG multi-pass amplifier system developed at KEK

    Developing 244 nm high power laser is much easier than developing Lyman-α

    Conventional technique can be usedEasy handling (air is transparent at 244 nm, while Lyman-α is strongly absorbed)

  • Similar ionization fraction→may become a good

    alternative of Lyman-α

    1S-2S Laser Ionization of Muonium

    Wavelength PowerIonization

    fraction81,946 Mu tot.

    Lyman-α 122 nm (VUV) 3 μJ 3.0%

    1S-2S REMPI 244 nm 200 mJ 1.6%

    1S-2S ionization →

    ↑ Lyman-α ionization

  • The goal of this project:Realize the highest precision by use of state-of-the-art technologies developed in AMO physics (Ultrafine laser spectroscopy) Particle/Nuclear physics (High intensity accelerator)

    1S-2S Laserspectroscopy

    Accelerator technologies

    Muon g-2

    MuSEUM

    Precision test of electroweak theory and search for new physics beyond the Standard Model

    by laser spectroscopy of purely leptonic atoms

    Precision EW test

    JSPS KAKENHI Grant-in-Aid for Scientific Research (S) [FY2019-2023]

    interdisciplinaryresearch project

    High power laserLaser ionizationMu production