new concepts in the chemistry of soil fertility1

Download New Concepts in the Chemistry of Soil Fertility1

Post on 22-Dec-2016




0 download

Embed Size (px)



    R. H. Bray2

    The problem of determining the ferti-lizer needs of a soil by means of chemicalmethods has received considerable attentionwithin recent years. This has been due tothe introduction of new methods designed forthis purpose. Some of these methods arebased on new concepts as to how this shouldbe done which are at variance with the olderconcepts in this field. It is the purpose ofthis paper to explain these new concepts, tocompare them with the older concepts and toshow how the methods based on these new con-cepts have been made practical and how theycan be extended to apply to numerous new con-ditions.


    The study of soil fertility from thestandpoint of fertilizer needs has followed,mainly, three general methods: the experi-ment field methods, the pot culture method,and the chemical study of the soil and theplants growing in the soil. Each of thesemethods is more or less dependent on the re-sults of the other methods for the interpre-tation of the results secured. A well-bal-anced soil fertility study, therefore, re-quires that chemical studies of the soil bemade along with the experiment field or potculture studies.

    The first chemical studies concernedthemselves with the total analysis of thesoil but no practical correlations betweenthe total amount of an element and the needof the soil for- that element were secured.Toward the end of the last century the con-cept of measuring the availability of thefertility elements in the soil became fullydeveloped. The citric acid solubility methodof Dyer is the most striking example of thisschool of thought. This school of thoughtdeveloped mainly as a result of the lack ofsecuring any practical correlations betweenthe total amounts of an element present andthe crops' need for that element in the soilconcerned. The results secured were much

    more promising. Rather broad correlationsbetween the amounts of the elements extractedby such methods and the crop response to add-ed elements were secured. These studiesfailed to lead to specific correlations andno recommendations for the general use of anyof these methods as a practical indicator ofsoil fertility needs resulted. However, thisschool of thought greatly stimulated interestin soil chemistry, especially in that branchof chemistry attempting to measure the fer-tility needs of soils. The concepts on whichthis school of thought was based involved, notonly the idea of measuring the availability ofthe fertility elements in the soil but alsothe procedure to be followed in so doing. Itwas considered that the chemical method of ex-traction should simulate the feeding of theplant roots and that the amount of the elementextracted by such a solution should be a meas-ure of the availability of the element. Inthe light of the newer knowledge of soil chem-istry, these concepts and the methods whichresulted from them appear inadequate, although.they were based on apparently sound reasoningin the light of chemical knowledge at thattime. It is now> known, for example, thatbase-exchange equilibria in the soil preventsthe accurate measurement of the available Ca,Mg, and K, occurring as replaceable bases bymethods which try to simulate plant feedingpower.

    The New Concepts

    The new school of thought which hasdeveloped recently has the same objectives asthe old schoolthat is, the establishing ofmethods for determining the fertilizer needsof soils.

    The concepts, upon which the new schoolbases its method of study can be stated in afew sentences. Usually more than one form ofan element occurs in the soil at any one time.Each form contributes to a greater or lesserextent to feeding by plant roots. The signif-icance of each form to the growth of each crop

    "Contribution from the Division of Soil Fertility, Department of Agronomy, Illinois Agricultural ExperimentStation, Urbana, Illinois. Published with the approval of the director of the station.

    Assistant Chief in Soil Survey Analysis.175


    under varying conditions can be establishedby studies of plant growth and soil chemis-try. The form or forms found to be of mostsignificance to the immediate growth of theplant can be measured chemically and thisinformation can serve as a partial basis fortreatment recommendations. This is a briefstatement of the concepts of the new schoolof thought in the chemical study of soil fer-tility.

    This is a departure from the oldschool of thought in many particulars. Noattempt is made to measure the composite"availability" of all the forms of a givenelement present nor is the feeding power ofthe plant roots simulated in the extractingsolution used. Instead, the extracting so-lutions to be used are those- which can ex-tract all of that form or forms of the ele-ment being tested for and which have, there-fore, a purely chemical basis. The form orforms to be tested for must be determined bychemical and fertility studies using thetypes of crops and soils on which the testsare to be applied. Without any knowledge asto the availability of each form to eachcrop, an interpretation of the test would beimpossible, even though the proper form wasbeing measured correctly. The new school,therefore, requires that to be of most prac-tical use, the methods or tests must not onlymeasure the significant forms of the elements,but also correlations must be established be-tween the amounts of these forms of the ele-ments present and crop response to the fer-tility elements applied.

    A practical test or method is, there-fore, one which has been calibrated againstactual crop response under the conditionsconcerned. Attest practical for one condi-tion will not necessarily be practical foranother condition until the necessary corre-lations have been established.

    Designing a Test to Meet the New SchoolRequirements

    Designing a test or method meetingthe requirements of the new school is not aneasy matter. Many years of experimentalfield work must be carried on accompanied bychemical soil studies. It is the soil chem-1st who has experiment field soils with knownhistories of response and non-response onvarious soil types who has the facilities todevise such methods. The first step is tocompare responding soils with non-respondingsoils in chemical studies, the form or formsof most significance in the response are de-

    termined. This is the first and most impor-tant step. The studies must be broad enoughto eliminate chance agreements, and all pre-conceived ideas as to what forms should bemeasured must be eliminated from the study.For example, a good correlation between the Kin the soil .solution and K needs and response,might easily be obtained under very limited .conditions, and yet the measuring of the K inthe soil solution as a general means of esti-mating K needs has been shown to be impossi-ble.

    The second step is to correlate theamounts of these forms of a given elementpresent in the soil with the crop response tothe elements applied as .fertilizers. Theforms of the elements most available to cropfeeding or most significant in crop feedingmay be more or less similar in all soils. Theamounts of these forms which must be presentwhen no further response is obtained, however,will vary with the crop and the productivelevel of the soil type as limited by all theother conditions of growth. Information con-cerning individual crop requirements for, andresponse to, these forms and the soil's gen-eral ability to produce the crops is neededfor such correlations, and can only be ob-tained by some form of experiment field study.

    The third step is to devise a test orlaboratory method for the measurement of thesignificant forms of the given element as dis-cussed above. Such a method should measurethese forms quantitativelyat least, roughlysoand one should be sure that it is not in-terfered with by other substances in the soilor in the reagents used. For example, calciumcarbonate in a soil interferes with the appli-cation of the easily acid-soluble phosphorustest because it neutralizes the extractingacid and because in dissolving it may liberatephosphorus not as available to the plant asthe easily acid-soluble forms.

    In order to be of practical value to afarmer, the results of a test must be applica-ble under the soil management and croppingsystems used. This requires that the signifi-cant forms of a given element be measured, asto amount, around the transition range betweencrop response and non-response to fertilizerscontaining the element in question. Suppose,for example, that a method for replaceable po-tassium could distinguish between differentamounts accurately up to 60 pounds an acre,above which all readings were indistinguisha-ble "highs." The results would be misleadingto a corn belt farmer, for whose crops anyamounts less than 90 to 100 pounds an acre aredeficient, and amounts up to 140 pounds anacre are in the transition range between


    deficiency and sufficiency.It is obvious that in this example

    the method must distinguish sharply betweendifferent amounts of potassium from below 90to above 140 pounds. Even though all testsbelow this range read uniformly low and alltests above the range read "high" the teststill tells the farmer what he needs to know.On the other hand, suppose a method distin-guished different amounts accurately betweengOO and 600 pounds an acre of replaceable po-tassium and that below or above this rangethe readings were uniformly "low" or "high"respectively. Such a test would be uselessfor corn belt crops because the reading rangeis entirely above the significant range forthese crops. But it might be exactly rightfor some other crops, such as potatoes, pro-vided the transition from response to non-response of that crop to potash fertilizersoccurs at soil leve