neutron matter, symmetry energy and neutron...

27
Neutron matter, symmetry energy and neutron stars Stefano Gandolfi Los Alamos National Laboratory (LANL) Elba XII Workshop - Electron-Nucleus Scattering XII Marciana Marina, Isola d’Elba, June 25-29, 2012

Upload: others

Post on 28-Feb-2021

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Neutron matter, symmetry energy and neutronstars

Stefano Gandolfi

Los Alamos National Laboratory (LANL)

Elba XII Workshop - Electron-Nucleus Scattering XIIMarciana Marina, Isola d’Elba, June 25-29, 2012

Page 2: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Homogeneous neutron matter

Page 3: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Inhomogeneous neutron matter

W. Nazarewicz − UNEDF

Page 4: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Outline

• The model and the method

• Homogeneous neutron matter• Three-neutron force and the equation of state of neutron matter

• Symmetry energy

• Neutron star structure

• Inhomogeneous neutron matter: Skyrme vs ab-initio.• Energy

• Density and radii

• Conclusions

Page 5: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Nuclear HamiltonianModel: non-relativistic nucleons interacting with an effectivenucleon-nucleon force (NN) and three-nucleon interaction (TNI).

H = − ~2

2m

A∑i=1

∇2i +

∑i<j

vij +∑

i<j<k

Vijk

vij NN (Argonne AV8’) fitted on scattering data. Sum of operators:

vij =∑

Op=1,8ij vp(rij) , Op

ij = (1, ~σi · ~σj ,Sij ,~Lij · ~Sij)× (1, ~τi · ~τj)

Urbana–Illinois Vijk models processes like

π

π

π

π

π

π∆

π

π

π

π

+ short-range correlations (spin/isospin independent).

Page 6: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Quantum Monte Carlo

Evolution of Schrodinger equation in imaginary time t:

Ψ(t) = e−(H−ET )tΨ(0)

In the limit of t →∞ it approaches to the lowest energy eigenstate (notorthogonal to Ψ(0)).

Propagation performed by

ψ(R, t) = 〈R|ψ(t)〉 =

∫dR ′G (R,R ′, t)ψ(R ′, 0)

For a given microscopic Hamiltonian, this method solves the ground–statewithin a systematic uncertainty of 1–2% in a non-perturbative way.

GFMC: spin/isospin states included in the variational wavefunction.

AFDMC: spin/isospin states are sampled.

Page 7: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Light nuclei spectrum computed with GFMC

-100

-90

-80

-70

-60

-50

-40

-30

-20

Ener

gy (M

eV)

AV18

AV18+UIX

AV18+IL7 Expt.

0+

4He0+2+

6He 1+3+2+1+

6Li3/2−1/2−7/2−5/2−5/2−7/2−

7Li

0+2+

8He 2+2+

2+1+

0+

3+1+

4+

8Li

1+

0+2+

4+2+1+3+4+

0+

8Be3/2−1/2+5/2−1/2−5/2+3/2+

7/2−

3/2−

7/2−5/2+7/2+

9Be 3+1+

2+

4+

1+

3+2+

3+

10B

3+

1+

2+

4+

1+

3+2+

0+

12C

Argonne v18with UIX or Illinois-7GFMC Calculations

1 June 2011

Carlson, Pieper, Wiringa, many papers

Page 8: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Three-body force in neutron matter

Tsang et al., arXiv:1204.0466

Page 9: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Neutron matter

Assumptions:

• The two-nucleon interaction reproduces well (elastic) pp and npscattering data up to high energies (Elab ∼ 600MeV) in all channels.

• The three-neutron force (T = 3/2) very weak in light nuclei, whileT = 1/2 is the dominant part (but zero in neutron matter).Difficult to study in light nuclei.

• In neutron matter the short-range repulsive part of three-body forceis the dominant term.

Page 10: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Symmetry energyNuclear matter EOS:

E (ρ, x) = ESNM(ρ) + E (2)sym(ρ)(1− 2x)2 + · · · , ρ = ρn + ρp , x =

ρpρ

0 = 0.16 fm

-3

E0 = -16 MeV

symmetric nuclear matterpure neutron matter

Nuclear saturation

Symmetry energy

Page 11: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Neutron matter

We consider different forms of three-neutron interaction by only requiringa particular value of Esym at saturation.

0 0.1 0.2 0.3 0.4 0.5

Neutron Density (fm-3

)

0

20

40

60

80

100

120

En

erg

y p

er

Ne

utr

on

(M

eV

)

Esym

= 33.7 MeV

different 3N different 3N:

• V2π + αVR

• V2π + αV µR

(several µ)

• V2π + αVR

• V3π + αVR

• . . .

Page 12: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Neutron matter and symmetry energyWe then try to change the neutron matter energy at saturation:

0 0.1 0.2 0.3 0.4 0.5

Neutron Density (fm-3

)

0

20

40

60

80

100E

ne

rgy p

er

Ne

utr

on

(M

eV

)E

sym = 35.1 MeV (AV8’+UIX)

Esym

= 33.7 MeV

Esym

= 32 MeV

Esym

= 30.5 MeV (AV8’)

Gandolfi, Carlson, Reddy PRC (2012).

Page 13: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Neutron matter and symmetry energy

From the EOS, we can fit the symmetry energy around ρ0 using

Esym(ρ) = Esym +L

3

ρ− 0.16

0.16+ · · ·

30 31 32 33 34 35 36E

sym (MeV)

30

35

40

45

50

55

60

65

70

L (

Me

V)

Very weak dependence to the model of 3N force for a given Esym.

Page 14: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Neutron star structureEOS used to solve the TOV equations.

8 9 10 11 12 13 14 15 16R (km)

0

0.5

1

1.5

2

2.5

3

M (

Mso

lar)

AV8’ + modified TNI

Esym

= 33.7 MeV

M = 1.97(4) Msolar

M = 1.4 Msolar

different 3N

8 9 10 11 12 13 14 15 16R (km)

0

0.5

1

1.5

2

2.5

3

M (

Mso

lar)

Causality: R>2.9 (G

M/c2 )

ρ central=2ρ 0

ρ central=3ρ 0

error associated to Esym

35.1

33.7

32

Esym

= 30.5 MeV (NN)

1.4 Msolar

1.97(4) Msolar

Accurate measurement of Esym would put a constraint to the radius ofneutron stars, OR observation of M and R would constrain Esym!

M = 1.97Msolar recently observed – Nature (2010).

Page 15: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Neutron stars

Observations of the mass-radius relation of neutron stars are becomingavailable:

9 10 11 12 13 14 15

0.8

1

1.2

1.4

1.6

1.8

2

2.2

R (km)

)M

(M =Rphr

9 10 11 12 13 14 15

0.8

1

1.2

1.4

1.6

1.8

2

2.2

R (km)

)M

(M >>Rphr

Steiner, Lattimer, Brown, ApJ (2010)

Page 16: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Neutron star matter model

Neutron star matter model:

• ρ < ρt , ρt = 0.28 . . . 0.48 fm−3

EPNM = a

ρ0

)α+ b

ρ0

)βEsym = a + b + 16 , L = 3(aα + bβ)

Note:

a and α sensitive to the 2-neutron force.b (and β) is strongly related to 3-neutron force.

• ρ > ρt ,

Polytropes or Polytrope+Quark matter (Alford et al.)

Page 17: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Neutron star matter model

1 2 3 40

1

2

3

4

Fiducial

No corr. unc.

Quarks

Quarks, no corr. unc.

b (MeV)

Pro

bab

ilit

y d

istr

ibuti

on

2.1 2.2 2.3 2.4

1

2

3

4

Fiducial

No corr. unc.

Quarks

Quarks, no corr. unc.

β

Pro

bab

ilit

y d

istr

ibuti

on

8 9 10 11 12 13 14 15R (km)

0

0.5

1

1.5

2

2.5

M (

Mso

lar)

Esym

= 33.7 MeV

Esym

=32 MeV

Polytropes

Quark matter

Steiner, Gandolfi, PRL (2012)

New constraints to 3-neutron force (to combine with NN)!!

Page 18: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Neutron stars: symmetry energy

20 40 60 80 100

2

4

6

8

Fiducial

No corr. unc.

Quarks

Quarks, no corr. unc.

IAS

PDR

HIC

Masses

Pb (p,p)

L (MeV)

Pro

bab

ilit

y d

istr

ibu

tio

n

Steiner, Gandolfi, PRL (2012) Tsang et al., arXiv:1204.0466

Page 19: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Neutron drops

Now let’s study inhomogeneous neutron matter.

We confine neutrons by adding an external potential:

H = − ~2

2m

A∑i=1

∇2i +

∑i<j

vij +∑

i<j<k

Vijk +∑i

Vext(ri )

Vext is a Wood-Saxon or Harmonic well:

VWS = − V0

1 + exp[(r − R)/a]

VHO =1

2mω2r2

=⇒ different geometries and densities.

Page 20: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Neutron drops, harmonic oscillator well

External well: harmonic oscillator with ~ω=5, 10 MeV.

0.7

0.8

0.9

1

1.1E

/ ω

N4

/3

0 10 20 30 40 50 60N

0.7

0.8

0.9

1

1.1

E /

ωN

4/3

AFDMCGFMCSLY4SKM*SKPBSK17E

TFξ=0.5, 1

5 MeV

10 MeV

Skyrme systematically overbind neutron drops.

Page 21: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Neutron drops, harmonic oscillator well

Fixing Skyrme force:

0 10 20 30 40 50 60

N

0.7

0.8

0.9

1

1.1E

/ ω

N4

/3

AFDMC

SLY4

GFMC

closed-shell:gradient term

10 MeV

1p or 1h:spin-orbit

mid-shell:spin-orbitand pairing

The correction is very similar in all the Skyrme forces we considered.

Page 22: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Neutron drops, adjusted Skyrme forceNote: bulk term of Skyrme fit neutron matter.

We add the missing repulsion by adjusting the gradient term Gd [∇ρn]2,the pairing and spin-orbit terms.

0.7

0.8

0.9

1

1.1

E /

ωN

4/3

0 10 20 30 40 50 60N

0.7

0.8

0.9

1

1.1

E /

ωN

4/3

AFDMCGFMCSLY4SLY4-adj

5 MeV

10 MeV

Gandolfi, Carlson, Pieper, PRL (2011).

Page 23: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Neutron drops, adjusted Skyrme force

Neutrons in the Wood-Saxon well are also better reproduced by theadjusted SLY4.

8 10 12 14 16 18 20N

-14

-12

-10

-8

E/N

(M

eV)

AFDMCGFMCSLY4SLY4-adj

Gandolfi, Carlson, Pieper, PRL (2011).

Page 24: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Neutron drops: radiiCorrection to radii using the adjusted-SLY4.

2.0

2.5

3.0

3.5

4.0

4.5<

r2 >

1/2

(fm

)

GFMCSLY4SLY4-adj

8 10 12 14 16N

2.0

2.5

3.0

3.5

< r

2 >

1/2

(fm

)

10 MeV

5 MeVHO

WS

Gandolfi, Carlson, Pieper, PRL (2011).

Page 25: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Neutron drops: radial densityNeutron radial density:

0

0.1

0.2

0.3r2

ρ (f

m-1

)

ω = 5 MeV ω = 10 MeVSLY4-adj

SLY4

0 1 2 3 4 5 6r (fm)

0

0.1

0.2

0.3

0.4

0.5

r2ρ

(f

m-1

)

N=8

N=14

Gandolfi, Carlson, Pieper, PRL (2011).

Page 26: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Gradient term

Where is the gradient term important?

Just few examples:

• Medium large neutron-rich nuclei

• Phases in the crust of neutron stars

• Isospin-asymmetry energy of nuclear matter

Page 27: Neutron matter, symmetry energy and neutron starschimera.roma1.infn.it/OMAR/ElbaXII/Thursday_June_28/... · 2012. 7. 17. · Neutron matter, symmetry energy and neutron stars Stefano

Conclusions

• Effect of three–neutron forces to high-density neutron matter; thesystematic uncertainty due to 3N is relatively small.

• Esym strongly constrain L. Weak dependence to the model of 3N.

• Uncertainty of the radius of neutron stars mainly due Esym ratherthan 3N.

• Neutron star observations becoming competitive with terrestrialexperiments.

• Skyrme can be better constrained by ab-initio calculations.

Thanks for the attention