neutrino physics l. oberauer, tu münchen graduiertenkolleg bad honnef, august 2006

53
Neutrino Physics Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Upload: jeremy-horn

Post on 27-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Neutrino PhysicsNeutrino Physics

L. Oberauer, TU München

Graduiertenkolleg

Bad Honnef, August 2006

Page 2: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

ContentContent

Neutrino sourcesNeutrino sources

Intrinsic propertiesIntrinsic properties

oscillationsoscillations

masses and mixing parametermasses and mixing parameter

Neutrinos as probesNeutrinos as probes

from the Earthfrom the Earth

from astrophysical sourcesfrom astrophysical sources

Page 3: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Charge 0 -1 +

2/3 -1/3

Why are neutrinos intresting ?

Neutrinos undergo only weak interactions

•Neutrinos are neutral – intrinsic properties

•Neutrinos as probes – astrophysical applications

Interactions w w

,e w,e,s

Page 4: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Natural Neutrino Sources

(experimentally verified)

Sun

(since 1970)

Earth (since 2005)

Supernovae (1987)

Atmosphere (since ~1990)

Page 5: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Natural Neutrino Sources

(not yet verified)

Big Bang

Active galactic nuclei

Supernovae remnants ?,

Gamma ray bursts ?,

Supernovae relic neutrinos ?...

Page 6: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Energy Spectra of Astrophysical neutrinos

thermal sources

Non-thermal sources

Page 7: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Neutrinos (homemade)

Nuclear Reactors

(beta decays of fission products: e)

Accelerators

pion production and subsequent decay in flight:

Page 8: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Intrinsic Neutrino Properties

• Neutrino masses ?

• Neutrino mixing ?

• Dirac or Majorana particle ?

• CP violation ?

• Neutrino magnetic moment ?

Neutrino oscillations observed,

Missing mixing angle 13

Absolute masses and hierarchy ?

Page 9: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

2

1

cossin

sincos

e

21

22

221 mmm

E

Lm

P ee

2sin)2(sin1

)(22122

Survival probability:

0 1 2 3L in Losz

Neutrino Oscillations

Page 10: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

L ≈ 20 km

L ≈ 13000 km

atmosphericneutrinos:Ev ~ GeV

E

LmP atm

atmx

222 27.1

sin2sin)(

Oscillations and Atmospheric Neutrinos

Pion production and subsequent decays (incl. muon)

Page 11: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Atmospheric Neutrinos and SuperKamiokande

Charged current reactions

+ N + N` and

e + N e + N`

50 kt Water Cherenkov Detector

Page 12: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

νμ

νe

Electron events Muon events

Up going Up going Neutrinos

e

No-oscillation

Oscillation

Page 13: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Result atmospheric Neutrino-Oscillations

Best fit:m2

atm = 2.5×10-3

eV2

sin22θatm = 1.0

Best fit:m2

atm = 2.5×10-3

eV2

sin22θatm = 1.0

Confirmed by

•MACRO (Gran Sasso)

•Soudan (USA)

•K2K accelerator long baseline (250 km) experiment

•MINOS (USA) acc. exp. in 2006

Page 14: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Oscillations and Solar Neutrinos

Neutrino Energy in MeV

MeV7.2622He4 4 eep

Page 15: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

The Solar Neutrino Problem

Solar Model

0,5

Page 16: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Sudbury Neutrino Observatory Sudbury Neutrino Observatory SNOSNO

charged current interaction (cc)

e + D p + p + e neutral current interaction (nc)

x + D x + p + n

elastic Neutrino-Electron scattering (cc

+ nc)

x + e x + e

1kt Cherenkov Detector with heavy water

Page 17: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

SNO ResultSNO Result

Flavour transition Flavour transition discovered: 7 sigma !discovered: 7 sigma !Reasonable Reasonable agreement with solar agreement with solar modelmodel

Neutrinos from the Sun (e) transform into or

Page 18: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Solar Neutrino OscillationSolar Neutrino Oscillation

Determination of Determination of

1212 ~ 34 ~ 3400

e e

mm22 ~ 8 x 10 ~ 8 x 10-5-5 eV eV22

Confirmation by reactor Confirmation by reactor experiment experiment KamLANDKamLAND

Page 19: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

The solar matter effect – evidence by The solar matter effect – evidence by GALLEX/GNOGALLEX/GNO

GALLEX/GNO

SNO

• Evidence for matter effect inside the Sun

• m2 > m1

• Why are neutrino masses so small?

• GUT

• Leptogenesis

Survival probability electron neutrino

pp- 7Be

8B

Page 20: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Phys. Rev. Lett. 90 (2003) 021802

Evidence for Oscillation

ILL 1979ILL 1979

Gösgen (1986)Chooz (1998)

nepe Reactor Experiments

Bugey (1994)

Page 21: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

KamLAND: Energy spectrumKamLAND: Energy spectrum

Page 22: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

3

2

1

1212

1212

1313

1313

2323

2323

100

0

0

0

010

0

0

0

001

cs

sc

ces

esc

cs

sci

ie

θsol

θ13, δθatm

Parametrization Neutrino mixing

Flavor Eigenstates Mass Eigenstates

2 mixing angles are measured:

CP violating phase New experiments

Page 23: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

1313 from reactors? from reactors?

P(P(eeee) = 1 ) = 1

– – coscos441313 sin sin22 2 21212 sin sin22((mm22solsol L/4E) – L/4E) –

sinsin22 2 21313 sin2 ( sin2 (mm22atmatm L/4E) L/4E)

no CP termsno CP terms

no matter effectsno matter effects

P

L/E(km/MeV)

solar

atmospheric

Page 24: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Letter of Intent: Double-Letter of Intent: Double-ChoozChooz

• d~1.05 km

• P~8.4 GW

• 300mwe far detector

• no excavation for far detector

Far Detector (~300mwe shielding)

Near Detector for reactor monitoring

Page 25: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Double-CHOOZDouble-CHOOZ(far) Detector(far) Detector

Puit existant

Gamma catcher: scintillator with no Gd

7 m

7 m

BUFFER Mineral Oil

7 m

Shielding steel and external vessel

Target- Gd loaded scintillator: ~ 85 /d (far) and ~ 4 103/d (near)

photomultipliers

Inner veto

Page 26: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Sensitivity of Double ChoozSensitivity of Double Chooz

Exclusion limit 90% cl for

dm2 = 2.8 10-3 eV2

and a final systematic uncertainty of 0.6%

Page 27: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

732 km

LNGS

Neutrino beam from CERN to Gran Neutrino beam from CERN to Gran SassoSasso

Page 28: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Precision Tracker (PT)Universität Hamburg:

Precision Tracker (PT)Universität Hamburg:

DetectorDetector

8.3kg

Aktives Target:200.000 Blei-Emulsions-Ziegel= ca. 1.800 Tonnen

Universität Münster

Page 29: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

full mixing, 5 years run @ 4.5 x1019 pot / year

signalsignal

((mm22 = = 1.1.99 x 10 x 10-3-3 eV eV22))

signalsignal

((mm22 = = 2.2.44 x 10 x 10-3-3 eV eV22))

signalsignal

((mm22 = = 3.0x 103.0x 10-3-3 eV eV22))

BKGDBKGD

OPERAOPERA1.8 kton fid.1.8 kton fid.

6.66.6(10)(10) 10.510.5(15.8)(15.8) 16.416.4(24.6)(24.6) 0.70.7(1.1)(1.1)

+ brick finding+ brick finding

+ 3 prong decay+ 3 prong decay8.08.0(12.1)(12.1) 12.812.8(19.2)(19.2) 19.919.9(29.9)(29.9) 1.01.0(1.5)(1.5)

Background Background reduction reduction 8.08.0(12.1)(12.1) 12.812.8(19.2)(19.2) 19.919.9(29.9)(29.9) 0.80.8(1.2)(1.2)

(…) with CNGS beam upgrade (X 1.5)

→→ sensitivitysensitivity

Page 30: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

BOREXINO sees neutrinos from BOREXINO sees neutrinos from CERN (August 2006) !CERN (August 2006) !

Page 31: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Cosmic muons (background)

Time of flight (CERN to LNGS) ~ 2.4 ms

Data analysis of 30 h measurement and 55 t water as target

Page 32: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

First neutrino events in BOREXINO

Page 33: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

ΘΘ1313 with accelerator physics with accelerator physics

with

(anti-v)

Neutrino appearance:Neutrino appearance:

θ13 , δCP, Mass hierarchy but degeneracy & correlation effects!

Present limit from CHOOZ: sin2(213) < 0.2

Present limit from CHOOZ: sin2(213) < 0.2

Page 34: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Neutrino Superbeam ProjectsNeutrino Superbeam ProjectsJapan: Japan: – T2K – phase I: T2K – phase I:

0.75MW (JPARC)0.75MW (JPARC) + SuperK (22.5kt) (ab 2009) + SuperK (22.5kt) (ab 2009) sinsin22221313>0.006 (90%) (5 Jahre)>0.006 (90%) (5 Jahre)

– T2K – phase II: T2K – phase II: 4 MW + HyperK (500-1000 kt) (≥ 2015)4 MW + HyperK (500-1000 kt) (≥ 2015)

USA:USA:NOvA: Fermilab NuMI beam (0.4 MW) +NOvA: Fermilab NuMI beam (0.4 MW) +off-axis detector (surface!, 50kt) (ab 2009)off-axis detector (surface!, 50kt) (ab 2009)

Page 35: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Sensitivity of future experiments Sensitivity of future experiments onon θθ1313

90% CL90% CL

from Huber, Lindner, Rolinec, Schwetz, Winter hep-ph/0403068

← reactor

← super beam

Page 36: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Absolute Neutrino Mass Absolute Neutrino Mass MeasurementsMeasurements

Kinematic tests (tritium decay)Kinematic tests (tritium decay)

Search for the neutrinoless double-Search for the neutrinoless double-beta decaybeta decay

Page 37: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

CL%95eV2.2eV1.22.22.1 22

mm

Mainz Data (1998,1999,2001)

Direct Mass Experiments: Tritium Direct Mass Experiments: Tritium ββ-Decay-Decay

e -33 eHe H e -33 eHe H

222i

iei mUm

E0 = 18.6 keV

Page 38: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

KATRIN

~70 m beamline, 40 s.c. solenoids

The KArlsruhe TRItium Neutrino Experiment

The KArlsruhe TRItium Neutrino Experiment

Commissioning in 2008

mv < 0.2eV (90%CL)

Page 39: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Neutrinoless Double-Beta-Neutrinoless Double-Beta-DecayDecay

0: (A,Z) (A,Z+2) + 2e-

d

d

u

u

e-

e-

W-

W- e

e

L=2

Majorana nature, Mass scale, Majorana CP phases

mee = |i Uei ² mi |Effective neutrino mass:

21 233

222

211

ie

ieeee eUmeUmUmm

CL) (90% eV 35.0ee

mHeidelberg-Moskau Collaboration, Eur.Phys.J. A12 (2001) 147

IGEX Collaboration, hep-ex/0202026, Phys. Rev. C59 (1999) 2108

Page 40: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

H.V. Klapdor-Kleingrothaus, A. Dietz, O. Chkvorets, I.V. Krivosheina, NIM A, 2004

Peak at 2039 keV in the Heidelberg-Moscow experiment !

Effect or background ??

Evidence for neutrinoless Double-beta Decay ?

Wanted: New experiments !

• GERDA ( 76Ge)

• Cuoricino (130Te in cryogenic detectors)

• NEMO (different isotopes in large drift-chambers)

• COBRA (116Cd)

• SNO+ (150Nd)

…and many more projects

Page 41: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Phase I: 20kg enriched (86%) 76Ge, vgl. HDMPhase II: 35-40kgPhase III: ~500kg

GERGERmanium manium DDetector etector AArrayrrayMethod:

HP Ge-diodes (enriched in 76Ge) in cryogenic fluid shield(optional active) .

Qββ = 2039 keV

HP Ge-diodes (enriched in 76Ge) in cryogenic fluid shield(optional active) .

Qββ = 2039 keV

Page 42: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

GERDA Sensitivity & Neutrino GERDA Sensitivity & Neutrino MassMass

| m

ee|

in e

V

Lightest neutrino (m1) in eV

F.F

eruglio, A. S

trumia, F

. Vissani, N

PB

659

H.V. Klapdor-Kleingrothaus, A. Dietz, O. Chkvorets, I.V. Krivosheina, NIM A, 2004Phase I:

Phase II:

Phase III:

Page 43: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Neutrinos as ProbesNeutrinos as Probes

……from the Earth and from from the Earth and from Astrophysical ObjectsAstrophysical Objects

Page 44: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Geo-NeutrinosGeo-Neutrinos

Direct neutrino observation:• what is the contribution of radioactivity to the Earth‘s heat flow (~ 40 TW) ?

• direct test of the Bulk Silicate Earth model

• what is the energy source of the Earth magnetic field ?

• test of unorthodox models (i.e. breeder reactor in the core)

Page 45: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

First detection in KamLAND

Nature, 28. July 2005

Geo-neutrino energy spectrum

reactors

reactors

background

Excess due to Geo-neutrinos

Page 46: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Future Neutrino ObservatoriesFuture Neutrino ObservatoriesUnsegmented 50 kt liquid scintillator

LENAHyperKamiokande (1 Mt Water Cherenkov)

…Liquid Argon ~100 kt TPC

Page 47: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

LAGUNALAGUNA

Large Aparatus for Grand Unification and Large Aparatus for Grand Unification and Neutrino AstronomyNeutrino Astronomy

European initiative (France, Germany, European initiative (France, Germany, Italy, Switzerland, UK, Poland, Finland)Italy, Switzerland, UK, Poland, Finland)

Aim: Design studies for all 3 kinds of Aim: Design studies for all 3 kinds of detevtors (water Ch, scintillator, liquid detevtors (water Ch, scintillator, liquid argon) until ~ 2010 argon) until ~ 2010

Page 48: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Physics goals of future Neutrino Physics goals of future Neutrino ObservatoriesObservatories

Gravitational collapseGravitational collapseStar formation rate in the early universeStar formation rate in the early universeThermonuclear fusion reactionsThermonuclear fusion reactionsBaryon number violation (Proton decay)Baryon number violation (Proton decay)Leptonic CP – violationLeptonic CP – violationGeophysicsGeophysicsIndirect search for Dark MatterIndirect search for Dark MatterActive Galactic Nuclei – UHE NeutrinosActive Galactic Nuclei – UHE Neutrinos

Page 49: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

One example for LENA: Detection of the One example for LENA: Detection of the Diffuse Supernova Neutrino Background Diffuse Supernova Neutrino Background

(DSNB) ?(DSNB) ?

• up to now only limits

• flux and spectral shape depend on

Star formation rate

Gravitational collapse model

Page 50: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Star formation rate

Star formation: Large uncertainties

Optical and infrared observations

LENA: 70 until 120 events in 10 years

1 < z < 2: around 25%

Pulse shape analysis: distinction between models of supernova mechanism

Page 51: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Extremely Large ObservatoriesExtremely Large Observatories

Km3 Cherenkov detector in the mediterranian sea

Km3 Cherenkov detector at the South Pole (Ice Cube)

Page 52: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

Amanda

Frejus

Eν E-3.8

A change in the slope would indicate a non-atmospheric component

Atmospheric neutrino Waxmann-Bahcall limit: Model-independent upper bound

= 2 = 00-03 combined

Diffusive sources

Limits from Amanda

Ice-Cube ~ 3 10-9

Page 53: Neutrino Physics L. Oberauer, TU München Graduiertenkolleg Bad Honnef, August 2006

ConclusionsConclusions

• New results recently

• Neutrino masses and mixing established

• Physics beyond the standard model

• New window to astrophysical observations