neutrino-nucleus scattering at high energies tus k. saito

47
Neutrino-Nucleus scattering at high energies TUS K. Saito 東東東東東 5 東東東東東東東東東東東東東東東東東東東東 『』 1/17 DIS kinematics ― what can we see in DIS ? Neutrino scattering at high Q 2 Neutrino scattering at low Q 2 Summary

Upload: talli

Post on 22-Feb-2016

52 views

Category:

Documents


0 download

DESCRIPTION

Neutrino-Nucleus scattering at high energies TUS K. Saito. 東海 研究会 5 『 レプトン原子核反応型模型の構築に向けて 』 1/17. DIS kinematics ― what can we see in DIS ? N eutrino scattering at high Q 2 Neutrino scattering at low Q 2 Summary. 0. Lepton reactions. atmospheric. (GeV 2 ). GeV 2. QE. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

Neutrino-Nucleus scattering at high energies

TUS K. Saito

東海研究会 5『レプトン原子核反応型模型の構築に向けて』 1/17

DIS kinematics  ―  what can we see in DIS ? Neutrino scattering at high Q2 Neutrino scattering at low Q2

Summary

Page 2: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

東海研究会 5『レプトン原子核反応型模型の構築に向けて』 2/17

0. Lepton reactions

(GeV)

(GeV2)

2

1

DISRES

Regge region

GeV2

BFKL evolution

DGLAP evolution

QE

atmospheric

T2K

Page 3: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

1. Kinematics of Deep Inelastic Scattering (DIS)                           Initial and final lepton 4-momentum:

Virtual photon or boson 4-momentum squared:

Initial nucleon (nucleus) 4-momentum:

Final hadronic 4-momenyum squared:

y variable (--> energy loss at T rest fr.):

Bjorken variable:

0,, 222 mkkkk

0)( 222 Qkkq

22),,( TT MppEp

222 )( Wqpp f

EEkpqpy

1)/()(

12/0 2 TMQx

東海研究会 5『レプトン原子核反応型模型の構築に向けて』 3/17

High momentum flow

High Q2: high resolutionPartons in target

W, Z,

p

pf

Page 4: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

2. Charged current differential cross section:

lepton tensor current:

hadronic tensor (including anti-symmetric part):

東海研究会 5『レプトン原子核反応型模型の構築に向けて』 4/17

V - A

Non-conservation of axial current

Non-conservation of parity

𝜈

ℓ−

𝑊+¿¿

left-handed

Cabibbo angle

Page 5: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

東海研究会 5『レプトン原子核反応型模型の構築に向けて』 5/17

The structure functions: 3 , because

: VV + AA contributions, : VA contributions.

difference between weak and EM interactions

Virtual boson helicity cross sections:

Def: , where

, where ,

average over T-polarizations

the right-left asymmetry

Note;

T: transverse

L: longitudinal

γ=|𝑞|𝑞0

𝐹 1=𝑀𝑁𝑊 1∝𝑊+1+𝑊 −1∝𝐹 𝑇

𝐹 2=𝜈𝑊 2∝𝑊 +1+𝑊− 1+2𝑊 0 ,𝐹𝐿=2𝑥𝑊 0

𝐹 3=𝜈𝑊 3∝𝑊+1−𝑊 −1

𝑒 ∙𝑞=0

Page 6: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

3. Neutral-current differential cross section: 3

where

東海研究会 5『レプトン原子核反応型模型の構築に向けて』 6/17

NC

Page 7: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

4. What can we see in the target in the Bjorken limit

Bjorken limit The approximate Q^2-independence of the structure functions → the virtual photon sees point-like constituents in the target – quarks → using distributions of quarks and anti-quarks,

(Callan-Gross relation)

The small scaling violation is calculated by pQCD.

DIS probes a current-current correlation in the target ground state. In the Bjorken limit, the probed correlation is light-like:

~ 2.0(fm) for x ~ 0.1 ~ 1.0(fm) for x ~ 0.2 ~ 0.4(fm) for x ~ 0.5 ~ 0.2(fm) for x ~ 1.0

f

fff xqxqexF )],()([21)( 2

1

,2/)( 3yty xMyyy T/2,0,0

cxfmyt /)(2.0|||,| 3

)(2)( 12 xxFxF

東海研究会 5『レプトン原子核反応型模型の構築に向けて』 7/17

)(),( 2,1:,,2

2,1

2

xFQxF fixedxQ

Page 8: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

5. Simple consideration on the ν / ν reactions

東海研究会 5『レプトン原子核反応型模型の構築に向けて』 8/17

The cross section may naively be given in terms of the incoherent sum of ν/ν-bar scattering off a quark:

1. neutrino-quark scattering (CC)

Then, average over the quark probability distribution q(x’) in a target,

2. neutrino-anti-quark scattering (CC)

𝜈

ℓ−

𝑊+¿¿

𝑝1=𝑥𝑝

𝑝2=𝑥𝑝+𝑞

Page 9: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

3. Scattering-angle (or y-variable) dependence

4. Mixing-angle dependence

東海研究会 5『レプトン原子核反応型模型の構築に向けて』 9/17

d’ term s’ term

h=-1/2

h=+1/2h=-1/2

Page 10: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

5. Results (Leading order)

Average

東海研究会 5『レプトン原子核反応型模型の構築に向けて』 10/17

𝜈𝑁

𝜈𝑁

isospin singlet (u d)

Page 11: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

東海研究会 5『レプトン原子核反応型模型の構築に向けて』 11/17

6. Parameterization of Nuclear PDF by HKN

Page 12: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

東海研究会 5『レプトン原子核反応型模型の構築に向けて』 12/17

7. Neutrino reactions at low Q2

(GeV)

(GeV2)

2

1

DISRES

?

GeV2

1. Kulagin prescription

only for low momentum transfer• the transverse cross section finite as Q2 0 (photo-absorption); FT 0 shadowing, VMD model, etc.

• the longitudinal cross section contains the VV and AA parts. the vector-current part FL

VC 0, because of the CVC; . only the axial-current part remains, because of the PCAC;

Page 13: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

東海研究会 5『レプトン原子核反応型模型の構築に向けて』 13/17

Separate the axial current as

(= pion current + heavy hadron current -- axial vector meson, ρπ continuum, etc.)

But, the pion derivative does not contribute, because

Thus,

(interference main term between jπ and A’)

πN (or A) scattering

Page 14: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

東海研究会 5『レプトン原子核反応型模型の構築に向けて』 14/17

Adding the form factor to cut off the large-Q2 contribution, we finally obtain

The πN forward scattering amplitude (the total cross section) is given by the Regge parameterization:

𝜋

𝐴𝑥𝑖𝑎𝑙𝑚𝑒𝑠𝑜𝑛

𝑁

Page 15: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

東海研究会 5『レプトン原子核反応型模型の構築に向けて』 15/17

shad

owin

g

Page 16: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

東海研究会 5『レプトン原子核反応型模型の構築に向けて』 16/17

2. A la Bodek and Yang

Their parameterization (for N) is very messy:

i = valence – up, down sea – up, down, strange j = sea – up, down, starnge

(for all Q2)

2

2

Page 17: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

• At large Q2, we can see the quark-gluon structure of a target – pQCD + higher order corrections.

-- relatively easy to handle the structure functions (the quark-gluon distributions) even for a nucleus.• At low Q2, we need non-perturbative treatment: -- the Regge, the BFKL, BK and/or CGC approach, -- need a careful treatment on the axial current, -- nuclear (shadowing) effects.• How do we connect the two pictures ? • How do we connect to the resonance region ?

8. Summary

東海研究会 5『レプトン原子核反応型模型の構築に向けて』 17/17

Page 18: Neutrino-Nucleus scattering  at high energies TUS     K. Saito
Page 19: Neutrino-Nucleus scattering  at high energies TUS     K. Saito
Page 20: Neutrino-Nucleus scattering  at high energies TUS     K. Saito
Page 21: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

F2A/F2

D

Slope of the EMC ratio

Page 22: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

SLAC

Page 23: Neutrino-Nucleus scattering  at high energies TUS     K. Saito
Page 24: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

3-1. Effect of the conventional nuclear physics ― Binding and Fermi motion

How does the conventional nuclear physics affect F2(x) ?

The nucleon is scattered incoherently in case of

The light-cone momentum distribution of N in A:

Spectral function                          Quasi-elastic reaction A(e,e’p)A’ → Koltun sum rule: E/A = (T-e)/2 (2body force only)

3. Theoretical approaches

1.02 xfmdc

22

4

42

/),( )()2(

),( ppMM

qPqpypSpdypyD A

AjAnpj

3-1. Effect of the conventional nuclear physics ― Binding and Fermi motion3-2. Shadowing effect at small x3-3. Anti-shadowing ?

APpy /

ApApS |)0(ˆ|,)1()(

2

0 |)(|)(2 pTMp R

p

Page 25: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

Convolution form:

Assumptions in the convolution model: on-mass shell approximation  → → if the binding is weak, OK? impulse approximation ― final state interactions and interference terms are ignored.

If OK, we get

Model-dependent calculations:① Off-mass shell effect by Kulagin et al. ↓② Off-mass shell (↓) + final state interaction (MFA) by Saito et al. ↑

Ignored diagrams

Note: Deuteron is also different from the average of proton and neutron ― small EMC effect.

22 Mp

),(),()()( 2/

2

,/

2/ pzfpyDdpyzxdydzxf ja

jAjAa

,2/2 )/()()(

j

jAj

A

x

A yxFyDdyxF

Page 26: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

Nonrelativistic calculation (by Li, Liu, Brown)

(by Atti, Liuti)

Page 27: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

Relativistic calculation (by Smith, Miller)

Page 28: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

What is missing ?Final state interaction:

q 2 pQCD (OPE) k di-quark (light-cone exp.)

p MF

A-1

A

Page 29: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

K. Saito, A.W.T., N.P.A574, 659 (1994).

No fermi motion, no c.m. correction

Quark picture, but no FSI

Quark picture with FSI

Naïve Bag model calculation – include not only FSI but also SRC

Page 30: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

SLAC-E139Fe & Ag

Drell-Yan exp.

FNAL-E772W

Chiral Quark Soliton model calculation

R.S.Jason, G.A. Miller, P.R.L.91, 212301 (2003).

Page 31: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

NJL model calculation

I.C. Cloet, W. Bentz, A.W.T., Phys.Lett.B642, 210-217 (2006).

Page 32: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

3-2. Shadowing effect at small x

Shadowing region →

DIS occurs coherently:

>> 1 for x > 0.1 << 1 for x < 0.1 for small x, the photon is supposed to be converted into vector mesons VMD  → surface interaction

1.02 xfmdc

)()( 8.02 NANAA AAxF

ba AA /

8.03/2 AA

Page 33: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

Shadowing effect (by Piller et al.)

NMC+FNAL ( ) ,,

Page 34: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

3-3. Anti-shadowing ?

Anti-shadowing region →

An enhancement at small x region → pion field enhancement ???

Recent data of the giant Gamow-Teller states → the Landau-Migdal parameters

2.01.0 x

ggg NNN 05.018.0,59.0

Page 35: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

4. Summary

1. The quark distribution in a nucleus is different from that in the free nucleon: ― about 20% reduction at x ~ 0.7-0.8 ― at small x, the structure function is reduced due to shadowing ― for large x, the EMC ratio is very enhanced because of Fermi motion and short-range correlation

2. The energy-momentum distribution of a nucleon in a nucleus is vital to explain the EMC effect, but its effect is insufficient ? ― the internal structure of a nucleon is modified in a nucleus ?

3. The sea quark is enhanced in a nucleus around x ~ 0.15 ? ― cf. the Drell-Yan result

4. At large x (>1), what happens ? new JLab data !

Page 36: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

x

σx = Q^2/2Mν, Q^2 fixedν large, x smallvery low Q^2

A1

elastic

Page 37: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

x

σvery low Q^2

A1

elastic + excited states

Page 38: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

x

σlow Q^2

A1

QE peak displacement energy

Page 39: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

x

σmid Q^2

A1

QEΔ

N*

Page 40: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

x

σmid Q^2

A1

Δ, N* duality

QE peak of quark

1/3

Page 41: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

x

σhigh Q^2

A1

valence quark

1/3

Page 42: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

x

σvery high Q^2

A1

sea + glue BK region

1/3

Page 43: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

Comment on the QE peak in e-A scattering

T. Suzuki, P.L.B101 (1981), 298R. Rosenfelder, P.L.B79 (1978), 15

Page 44: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

QE peak in e-A scattering at low energyDifferential cross section:

The response functions (structure functions):

S = W(L) or W(T) for longitudinal mode

The characteristic function:

(k-th energy weighted moment)

Page 45: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

The characteristic function is described in terms of the cumulants;

The displacement energy at the peak of QE cross section can be given by the cumulants; (0).

           σ

ω

The 1st moment is then given by

Page 46: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

If we take Hamiltonian as

,then we get (as an example, for longitudinal mode)

,which implies that the Wigner and Bartlett forces do not contribute to the displacement energy (for longitudinal mode) !

Summary: • the displacement of QE peak is caused by some specific forces in nuclear force.• the binding effect appears when FSI is ignored, while, if it is include, the binding is cancelled by FSI – Wigner force does not contribute. • the energy shift is also caused by a non-local (energy dependent) one-body potential.

Page 47: Neutrino-Nucleus scattering  at high energies TUS     K. Saito

By Atti and West

y scaling