neurophysiological bio markers for drug development in schizophrenia. nat rev drug discov 2008

Upload: ignacio-varela

Post on 07-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/4/2019 Neurophysiological Bio Markers for Drug Development in Schizophrenia. Nat Rev Drug Discov 2008

    1/16

    Schizphrenia is a ar ental isrer characterizeb psitie an negatie spts, as well as persistentnercgnitie eficits. All crrentl appre eica-tins fr schizphrenia fnctin b blcking paineD

    2receptrs, an hae pre effectie priaril against

    psitie spts. B cntrast, negatie an cgnitiespts freqentl persist, an lea t persistent is-abilit an pr lng-ter tce. Brain prcessesnerling persistent cgnitie eficits in schizphre-nia can be prbe sing aris techniqes, inclingstrctral an fnctinal iaging, psitrn eissintgraph an single phtn eissin cptetgraph receptr assas, an nerphsilgicaleasres sch as electrencephalgraph (EEG) aneent-relate ptentials (ERPs).

    Nerphsilgical easres as a grp hae seeralcharacteristics that ake the well site fr se as

    biarkers in rg eelpent sties. First, ancan be recre in passie paraigs in which n atten-tin, task engageent r behairal reat is reqire.These easres are therefre ieal fr se in pplatinsthat a be ifficlt t engage in behairal sties.Secn, becase f their high tepral resltin, ner-phsilgical biarkers can niqel be se t trace theflw f infratin in the brain fr sensr thrgh tassciatin brain regins, an hence can be se t eter-ine the earliest stages at which infratin prcessingis ipaire. Last, becase the inex nerling ne-rnal actiit, nerphsilgical biarkers a beseen as bectie inices f cgnitie sfnctin a

    prinent featre f patients with schizphrenia. Here,we reiew the best aailable biarkers t ate, an thestrengths an liitatins f their se in the eelpentf rgs fr schizphrenia.

    Nuphylgcl gnl

    Nerphsilgical easres are generall recresing stanar EEG techniqes in which an arra f pt 256 electres are affixe t specific scalp lcatinsan the pattern f electrical actiit is nitre whilesbects participate in specific experiental paraigs.Scalp recre electrical actiit priaril representsspatial an tepral satin f snchrns crrentflw thrgh pstsnaptic enritic ebranes fcrtical praial nerns that, becase f their parallelalignent in the crtex an asetric rphlg,sere as pen fiel generatrs in the brain an gie rise

    t local ild potntials.The basic phsilgical ata nerling st bi-

    arkers that are presentl aailable are siilar t thatse in qalitatie r qantitatie EEG assessent. Acritical ifference is the se f signal aeraging. Brainrespnses t iniial sensr, cgnitie r treents are sall relatie t the backgrn EEG,whereas signal aeraging perits sch eents t stant. Nerphsilgical biarkers are tpicall tie-lcke t sensr eents (fr exaple, aitr r isalstili). Neertheless, ther tpes f eents can alsbe efine. Fr exaple, in respnse tasks, electricalrespnses can be back-aerage fr tr respnses

    *Nathan Kline Institute

    for Schizophrenia Research/

    New York University

    School of Medicine,140 Old Orangeburg Road,

    Orangeburg, New York

    10962, USA.Department of Psychiatry,

    VA Boston Healthcare

    System/Harvard Medical

    School, Psychiatry 116A,

    940 Belmont Street,

    Brockton, Massachusetts

    02301, USA.Maryland Psychiatric

    Research Center,

    Department of Psychiatry,

    University of Maryland

    School of Medicine, Baltimore,

    Maryland 21228, USA.||Department of Psychiatry/

    Heinrich Heine University,

    Bergische Landstr. 2, 40629

    Duesseldorf, Germany.Neuroscience Department,

    CNS Discovery, Pfizer Global

    Research and Development,

    Groton, Connecticut 06340,

    USA.

    Correspondence to M.H.

    email:

    [email protected]

    doi:10.1038/nrd2463

    Publishd onlin

    7 Dcmbr 2007

    Neurophysiological biomarkers fordrug development in schizophreniaDaniel C. Javitt*, Kevin M. Spencer, Gunvant K. Thaker, Georg Winterer|| and

    Mihly Hajs

    Abstract | Schizophrenia represents a pervasive eficit in brain function, leaing to

    hallucinations an elusions, social withrawal an a ecline in cognitive performance.

    As the unerlying genetic an neuronal abnormalities in schizophrenia are largely

    unknown, it is challenging to measure the severity of its symptoms objectively, or to esignan evaluate psychotherapeutic interventions. Recent avances in neurophysiological

    techniques provie new opportunities to measure abnormal brain functions in patients

    with schizophrenia an to compare these with rug-inuce alterations. Moreover,

    many of these neurophysiological processes are phylogenetically conserve an can be

    moelle in preclinical stuies, offering unique opportunities for use as translational

    biomarkers in schizophrenia rug iscovery.

    b i o m a r k e r s

    R EVI EWS

    68 | jANuARy 2008 | voLumE 7 www.nat.m/w/

    http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=181500mailto:[email protected]:[email protected]://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=181500
  • 8/4/2019 Neurophysiological Bio Markers for Drug Development in Schizophrenia. Nat Rev Drug Discov 2008

    2/16

    Local field potential

    Th summd postsynaptic

    potntials rcordd rom

    nurons nighbouring a

    microlctrod.

    Prepulse inhibition

    (PPI). Prpuls inhibition is amasur o snsory gating in

    which a wak prstimulus

    (prpuls) rducs th startl

    rspons licitd by a

    subsqunt intns auditory

    stimulus.

    P50

    An arly auditory potntial

    rlcting initial snsory

    activation. P50 gating rrs

    to th dcrasd P50

    amplitud to th scond

    stimulus in a paird click

    compard to th irst.

    an can be se t analse preceing actiit. In sthprsit ee eent (SPEm) tasks, nerphsilgicalactiit relate t ee eents can be back-aeragefr the nset f a saccae t etail nerling brainprcesses. Hweer, the absence f electrical actiitcannt be taken as eience f the lack f respnsef a gien regin as the arit f electrical actiitgenerate in the brain is inisible t srface recrings.Neertheless, er recent ears, nerphsilgicaleasres that prbe brain actiit in regins that are freleance t schizphrenia hae been eelpe.

    T vu fquncy dn nly

    once nerphsilgical ata hae been recre(BOX 1), tw cpleentar analtic appraches are sefr ata analsis. In the first apprach, brain actiatinsare iewe sipl as a series f aplite eflectinsthat ar in tie an space er the srface f the scalp.Analsis f respnse aplite er tie has traitin-all been referre t as a tie-ain analsis r, reaccratel, as tie-aplite ain analsis. The

    seqence f eflectins triggere b a gien eent isreferre t as an ERP.

    The secn apprach iews brain actiit as a sf speripse scillatins aintaine within anbetween brain regins giing rise t eent-relate eker ince scillatins1. This apprach, als knwn astie-freqenc analsis, captres re infratinn nerling brain actiit than the traitinal ERPapprach, bt is cptatinall re cplex an lessstanarize acrss sbects.

    suc lclztn

    Fr bth tie an freqenc ain analses, ai-tinal ata cncerning nerling echaniss can bebtaine sing srce analsis appraches that ealatethe electrical srces f scalp-erie actiit withinthe brain. Srce lcalizatin appraches ake specificassptins regaring the prpagatin f electricalactiit thrgh the brain an scalp, which a leat lcalizatin iprecisin. In practice, hweer, gspatial agreeent is tpicall btaine between fnc-tinal agnetic resnance iaging (fmRI) an ERP (frexaple, Ref. 2) r scillatin-base (fr exaple, Ref.3)easres f cnergent phenena.

    valiatin f a nerphsilgical easre in thespatial ain with iaging eths that are base nbl flw ffers critical aantages: the signal-t-nise

    rati ipres tenfl (when actiit is generate inthe crtex) an tie-freqenc infratin, which iscrrentl nt aenable t ther fnctinal iaging tls,beces aailable. B extensin, nerphsilgicalbiarkers a be re sensitie t rg-ince changescpare with ther fnctinal iaging alities.

    mgntncphlgphy

    Althgh st research with biarkers has beenperfre sing electricall base techniqes, agnet-encephalgraph (mEG) can be se instea t etect theagnetic fiels that accpan electrical crrent flwthrgh the brain. As agnetic fiels are less ssceptible t

    istrtin b le cnctin f crrents than electricalfiels, recnstrctin f mEG srces is pssible withhigher spatial accrac than thse f EEG. Frtherre,mEG ffers the aantage f aiing cberse elec-tre fixatin t the scalp. As with EEG-base easres,mEG recrings can be analse in either the tie r thefreqenc ain. As a reslt f the electragnetic fielistribtin, hweer, mEG is liite b its insensitiitt srces raial t the scalp srface (that is, pinteperpeniclar, rather than parallel, t the skll srface)an b its cst: state-f-the-art mEG eqipent is stillre expensie than EEG-eqipent an ths its se iscrrentl liite t a few research centres. In cntrastt the ter ERP, which is se t refer t tie-lckeelectrical actiit, the ter eent-relate fiel (ERF) iscnl applie t mEG ata.

    Nuphylgcl u

    Becase f the wiesprea aailabilit f nerphsi-lgical eqipent an expertise, nerphsilgicaleasres hae been wiel applie in schizphrenia

    research. Se well-aliate easres, sch as prpulsinhibition (PPI) r P50gating, reflect the gating t fparticlar sensr infratin4. Sch easres, hweer,reflect nl a prtin f the pschpathlg f schiz-phrenia, an are nt clsel linke t nercgnitie s-fnctin4,5. oer recent ears, newer nerphsilgicaleasres hae bece aailable that inex infratinprcessing abnralities an crrelate well with nega-tie spts an cgnitie eficits, as well as glbalfnctinal tce. Frtherre, these biarkersreflect the integrit f ifferential brain regins ancgnitie pathwas (fIG. 1), an s can be se t prbespecific nerling reginalize an nercheicalhptheses f schizphrenia.

    Well-stie easres incle aitr P300 anisatch negatiit (mmN), bth f which are c-nl elicite sing an aitr ball paraig(that is, when a seqence f repetitie stanar stiliis interrpte infreqentl an nexpectel b a phsi-call eiant ball stils), as well as easres fipaire isal prcessing an SPEms. In aitin,significant aances hae been ae in recent ears inanalsing these eficits nt nl in ters f respnseaplite within the tie ain, bt als in ters fthe spectral cntent f nerling neral scillatinswithin the freqenc ain. These ifferent biarkershae ifferential strengths an weaknesses with regar t

    sensitiit, specificit an tiing relatie t isease nset,an ths a be iewe as cpleentar apprachest nerphsilgical characterizatins f schizphreniaan f treatent respnses (TABLe 1).

    Auditory P300. The earliest an best stie cgnitieERP abnralit in schizphrenia is the aplite rec-tin f the aitr P300 cpnent6. P300 is elicitest cnl in the cntext f the aitr ballparaig in which sbects are instrcte t atten tthe seqence f tnes, an either cnt the eiants rpress a bttn in respnse t the eiants. uner schcnitins, P300 ccrs apprxiatel 300 s fllwing

    R EVI EWS

    NATuRE REvIEWS |drug discovery voLumE 7 | jANuARy 2008 |69

  • 8/4/2019 Neurophysiological Bio Markers for Drug Development in Schizophrenia. Nat Rev Drug Discov 2008

    3/16

    0 200 400 600Time (ms)

    0 200 400 600Time (ms)

    0 200 400 600

    Time (ms)

    0 200 400 600

    V

    10

    0

    10 P1

    N170

    0

    40

    0 200 400 600

    80

    Evoked power (V2)

    ms

    0

    40

    0 200 400 600

    80

    Induced power (V2)

    ms

    0

    40

    0 200 400 600

    80

    Phase locking

    ms

    P1/N170

    P1/N170

    c Average ERP

    Amplitude(V)

    20

    0

    20

    V

    20

    0

    20

    V

    20

    0

    20

    e

    f

    g

    Frequency(Hz)

    0

    40

    0 200 400 600

    80

    ms

    Hz

    0

    40

    0 200 400 600

    80

    ms

    Hz

    Hz

    Hz

    Hz

    0

    40

    0 200 400 600

    80

    msTime (ms)

    d Single-trial power (V2)

    a EEG recording

    b Single-trial recordings

    h

    Power/phaselocking values

    +

    Band

    Frequency (Hz)

    Type of activity

    Delta

    14

    Theta

    48

    Alpha

    812

    Coordination across regions

    Beta

    1230

    Gamma (low)

    3070

    Coordination within region

    Gamma (high)

    70300

    Axonal activity

    Back view Right view

    Time/frequencyanalysis

    Timedomainanalysis

    Stimulusonset

    eiant tne presentatin. P300 is tpicall iie inttw sbcpnents, an earl P3-like ptential (P3a)that is elicite b nel stili, een in the absence fa etectin task, an is lcate relatiel frntall, an alater, re parietal cpnent, P3b, that is elicite nlring target etectin.

    Sbects wh are chrnicall ill with schizphreniashw a rectin f P300 aplite f apprxiatelne stanar eiatin relatie t health sbects7,8, anincle P3a as well as P3b cpnents9,10. Frtherre,eficits in P3b track the seerit f negatie sp-ts bth lngitinall an crss-sectinall9,10.

    Box 1 | Nuphylgcl dt nly

    Electroencephalography (EEG) data are recorded from an electrode array sampling the electric field across the scalp (a).In the classical event-related potential (ERP) approach, single-trial recording epochs (b) are averaged together ().The average ERP consists of voltage deflections that have been characterized as particular components, which are

    typically defined by latency, polarity (P for positive, N for negative), scalp topography and variation with experimental

    manipulations. For example, the P1 and N170 are occipito-temporal positive and negative components occurring early in

    the stream of visual processing, approximately 100 ms and 170 ms following stimulation, and represent discrete stages of

    sensory/perceptual processing (). The amplitude of the P1 is reduced in schizophrenia42, and this deficit represents onebiomarker for schizophrenia. Since the advent of signal averaging more than 40 years ago tens of thousands of ERP

    studies have been published, providing a catalogue of components that are well-suited for probing the functioning of

    specific brain regions and cognitive processes. In contrast to the classical ERP approach, which discards most of the

    oscillatory information in the EEG through signal averaging, contemporary time-frequency approaches () representchanges in oscillatory activity as a function of time3, typically using Fourier or wavelet transforms1.

    Interest in time-frequency analysis has been motivated by the hypothesis that synchronous neural activity, mediated

    by oscillations in different frequency bands (h), enables information coded by individual neurons to be linked together(for example, Ref. 187). High-frequency oscillations (for example, gamma; 3070 Hz) may be predominantly relevant

    for coupling local assemblies of neurons55,188,189, whereas low-frequency oscillations (for example, theta; 4-8 Hz) may

    coordinate activity across widespread cortical regions. Very high frequency oscillations (70300 Hz) might reflect

    axonal action potentials189.

    Oscillatory responses are typically characterized by phase synchronization locking () and average power (V2) ()across trials. Evoked oscillations are strictly phase-locked to the stimulus (), whereas induced oscillations occur withvariable phase ()1.

    R EVI EWS

    70 | jANuARy 2008 | voLumE 7 www.nat.m/w/

  • 8/4/2019 Neurophysiological Bio Markers for Drug Development in Schizophrenia. Nat Rev Drug Discov 2008

    4/16

    SPEM

    Dorsalateralprefrontal

    cortex Auditorycortex

    Visualcortex

    Parietalcortex

    Auditory,visual P300

    AX-CPT

    Auditory,

    visual P300

    Visual N1, Ncl

    Visual P1

    MMN,auditory N1

    Prodromal symptoms

    Symptoms that aris bor

    th onst o ully diagnosd

    schizophrnia.

    A liitatin f P300 is its relatie nnspecificit withregar t illness; schizphrenia-like P300 rectins areals bsere in alchl-epenent sbects11, biplarisrer12 an Alzheiers isease13 ang ther iag-nses. P300 is tpicall precee b an N200 cpnentthat lcalizes t secnar aitr regins. Like P300,generatin f N200 is tpicall rece in schizphrenia14.Deficits in P300 generatin are nt affecte b eithertpical r atpical antipschtics, althgh the a bepartiall aelirate b clzapine15,16.

    Heritabilit f P300-aplite is high (7080%)17,sggesting that P300 a sere as a risk r trait arkerf the genetic risk fr schizphrenia18. In fact, seeralrecent sties hae reprte assciatins f P300abnralities with genetic ariatins that are thghtt cntribte t this genetic risk19,20. In cntrast t theparietal P300 aplite, which is rece in iniialsat risk fr schizphrenia, recent wrk sggests that earlprefrntal P300 aplite a een be increase 18.Despite the rectin f P300 in fail ebers withschizphrenia as a whle, negatie reslts with P300hae been reprte ang ffspring f schizphreniaprbans21.

    MMN and additional sensory components. Cparewith P300, mmN is elicite b nattene, as well asattene, eiants within an aitr ball task, anths appears t reflect a pre-attentie stage f aitrinfratin prcessing22(fIG. 2). Fr mmN generatin,ball stili a iffer fr stanars in an f anber f phsical iensins, incling sensralit, freqenc, ratin, intensit r lcatin. Insties in which bth mmN an P300 are easresiltanesl, the latencies f the tw cpnentsincrease in parallel, sggesting that tw cpnents areseqentiall relate.

    Like P300, eficits in mmN generatin hae beenextensiel replicate in schizphrenia, with eaneffect size f apprxiatel ne stanar eiatinacrss sties23. Cpare with P300, hweer, mmNeficits are relatiel selectie fr schizphrenia erther nerpschiatric isrers24. Deficits in mmNgeneratin persist fllwing treatent with bth tpicalan atpical antipschtics, incling clzapine15,16.Frtherre, in chrnicall ill patients the seerit fmmN eficits crrelates with seerit f negatie sp-ts25 an ipaire glbal tce26, sggesting that itinexes a cre eficit f the isrer.

    Cpare with P300, which appears t be receeen at illness nset, three inepenent sties haebsere relatiel nral mmN generatin in ini-

    ials at first presentatin f schizphrenia an well-establishe mmN eficits in patients that are 18 nthsr re int their illness14,2729, sggesting that eficitsa bece establishe ring the initial crse f theirillness. The heritabilit f mmN is als high, sggesting astrng genetic cntribtin17,30. Neertheless, f the tw

    fail sties that hae been cncte with mmN tate, ne st fn a rectin in mmN generatinin naffecte fail ebers f patients with schiz-phrenia31, whereas the secn st i nt32. In bthsties, mmN was ecrease in patients with establisheschizphrenia. In ne st that ealate mmN inpatients shwing prodromal symptomsf schizphre-nia, n significant rectin was bsere, althghean mmN aplite ang prral patientswas intereiate between that f patients an cntrls.Frtherre, intersbect ariance was high, cnsistentwith the cncept that mmN eficits ight be present innl a sbset f patients befre the nset f illness33.

    Priar generatrs fr mmN hae been lcalize tthe priar aitr crtex sing ltiple techniqesincling EEG an mEG iple lcalizatin, fmRI anirect intracranial recrings fr the aitr crtexf bth hans an nkes34. Deficits in aitrcrtical actiatin hae been enstrate in an fmRIaaptatin f the mmN paraig35, spprting the ieathat ipaire mmN generatin in schizphrenia reflectssfnctin at the leel f the priar aitr crtex.

    Althgh mmN is the best-stie sensr easrein schizphrenia, ther easres that inex earl ai-tr an isal prcessing a als be affecte. Frexaple, eficits are als reprte in the generatin faitr N1003638, an aitr ptential that reflects

    respnse t repetitie stanar stili, an t isal P1,a easre that reflects respnses within the rsal isalstrea3941(fIG. 3). Stea-state isal eke ptential(ssvEP) respnses t agncelllarl biase stili arebsere as well42,43. In all cases, ERP cpnents canbe easre een in the absence f a behairal task,renering these cpnents well site fr bth clinicalan translatinal biarker sties.

    Visual P300. Althgh P300-like actiit has been beststie in the aitr sste, eficits hae als beenbsere in the isal sste. In the isal sste, eficitsin siple isal iscriinatin (fr exaple, ball44

    Figure 1 | Th lt th mltpl ban n mplat n

    hzphna, an ll nat p bma n th

    t hzphna. AX-CPT, AX-type visual continuous performance task; MMN,

    mismatch negativity; Ncl, closure negativity; SPEM, smooth pursuit eye movements.

    R EVI EWS

    NATuRE REvIEWS |drug discovery voLumE 7 | jANuARy 2008 |71

  • 8/4/2019 Neurophysiological Bio Markers for Drug Development in Schizophrenia. Nat Rev Drug Discov 2008

    5/16

    r eneratin45 tasks) are nt tpicall bsere inpatients with stabilize schizphrenia, an if a eficit isfn it is tpicall saller than that fn fr aitrP300 (Ref. 8). B cntrast, re rbst eficits in isalP300 hae been fn in tasks with greater cgnitieeans46,47.

    Nerphsilgical eficits hae been enstrateparticlarl in cntins perfrance tasks (CPTs),sch as the AX-CPT in which sbects st press abttn wheneer the see the letter A fllwe b theletter X, bt withhl respnse t ther letter seqences.Patients with schizphrenia hae behairal eficits in

    the abilit t withhl respnse fllwing inali ces(that is, letters ther than A), sggesting a preferentialeficit in the abilit t tilize cntext48. Sch eficitsare accpanie b rece aplite f the P300respnses t the inali ces46.

    Behairal eficits are bsere in bth chrnic anfirst-epise treatent-naie patients, an are relatielselectie t schizphrenia erss nn-schizphrenicpschsis49,50. Generatrs f the isal P3 respnse inthe AX-CPT hae als been lcalize t prefrntal ancinglate crtex sing fmRI50,51 an ERP52 appraches, aswell as intracranial recrings in nkes53.

    Table 1 | Chcttc f lctd n chzphn

    Ma et nnatamlmmb

    et npm

    et att-p

    et nsPd

    etn th

    rpntlzapn

    Hmanhalln/lna t

    Anmalml

    Gating measures

    Prepulseinhibition Abnormal192

    ND Abnormal193

    Normal192

    Abnormal inAD194;BPD195

    Yes130,196

    DA197,198

    ;NMDA129,131,199 Roent128

    ;primate129,196

    P50 gating Abnormal200 Abnormal201 Abnormal202 Abnormal203 Abnornalin AD204;BPD205;cocaineabuse92,206

    Yes93 DA92,206,207;nACh7 (RefS 151,206,208);5-HT

    3(Ref. 183);

    NMDA130

    Roent81,198,209

    Information-processing measures

    Auitory P300(P3)

    Abnormal18,210 Abnormal/normal211

    Abnormal212,213 Abnormal214 Abnormal inAD215;BPD64;ADHD216

    Abnormal/normal15,217,218

    DA19,96,98,219;ACh110; NMDA220

    Mouse87 ;rat86

    Mismatchnegativity

    Normal31,221;abnormal32

    Abnormal/normal33,211,222

    Normal14,27,29 ND Normal inAD223;BPD24

    No15,224 NMDA133135;5-HT

    2A

    (Ref. 137)Primate133,225;roent23

    Auitory N1 Abnormal215,226 ND Abnormal37,38 Normal227 Abnornalin cocaineabuse228;normal inBPD229

    ND ND Roent83,85;primate46

    Visual P1 Abnormal41 ND ND ND ND ND NMDA43 Primate230

    Neural-synchrony measures

    Gamma:auitorysteay-stateresponse

    Abnormal63 ND Abnormal62 Normal227 Abnormal inautism231;BPD62, 64;cannabisabuse182

    ND ND Roent232

    Gamma:Evoke/inuceoscillations

    ND ND Abnormal233

    ND ND ND mACh220

    ;DA234,235;NMDA236

    ND

    Prefrontalslow-wavesynchrony(noise)

    Abnormal18,65 ND Abnormal60 Abnormal/normal60

    Normal inAD60

    ND DA19,101 Roent237

    Other neurophysiological measures

    Smoothpursuit eyemovements

    Abnormal74,210,238 Abnormal239 Abnormal240,241 ND ND Worsens242 nACh164,243,249;NMDA138,139

    ND

    5-HT, 5-hyroxytryptamine (serotonin); Ach, acetylcholine; AD, Alzheimers isease; ADHD, attention-eficit/hyperactive isorer; BPD, bipolar isorer; DA,opamine; mACh, muscarinic acetylcholine; nACh, nicotinic acetylcholine; ND, not etermine; NMDA, N-methyl-d-aspartate; SPD, schizotypal personality isorer.

    R EVI EWS

    72 | jANuARy 2008 | voLumE 7 www.nat.m/w/

  • 8/4/2019 Neurophysiological Bio Markers for Drug Development in Schizophrenia. Nat Rev Drug Discov 2008

    6/16

    DurationMMN

    0 200 400

    Time (ms)

    0100 200100 400 500300

    Time (ms)

    PitchMMN

    0 200 400

    Time (ms)0 200 400

    Time (ms)

    +1 V

    +1 V

    Controlsc

    V

    V

    Fzb

    Recent-onset Chronic

    4

    2

    0

    2

    4

    4

    2

    0

    2

    4

    0100 200100 400 500300

    Time (ms)

    V

    V

    LM

    4

    20

    2

    4

    4

    2

    0

    2

    4

    0100 200100 400 500300

    Time (ms)

    V

    V

    RM

    4

    20

    2

    4

    4

    2

    0

    2

    4

    ERP to standards

    ERP to durationdeviant

    ERP to frequencydeviantDuration MMN

    Frequency MMN

    Time (s)Typicalpitch

    (Hz)

    a

    1,000

    1,200

    Deviant

    StandardISI

    Pitch

    fDuration

    +

    Electrode

    Parietalcortex

    Occipitallobe

    Frontallobe

    Temporallobe

    Cerebellum

    Figure 2 | shmat aam mmath natt (MMN) nat n hzphna. a | MMN is elicite in an

    auitory oball paraigm in which a sequence of repetitive stanar stimuli (blue boxes) are interrupte by stimuli that

    iffer in a physical stimulus imension such as pitch or uration (green boxes). The eviant probability equals the numberof eviants ivie by the total number of stimuli. MMN reflects N-methyl-d-aspartate (NMDA)-epenent processing of

    stimulus eviance within the auitory sensory cortex. b | Schematic iagram of MMN generators within the auitory

    cortex (locate in the superior temporal lobe, shown in re). Because of the orientation of MMN generators, the MMN

    reverses in polarity between the frontal miline electroe (Fz) an the left (LM) an right (RM) mastois. Because pitch

    eviance can be etecte at stimulus onset, but uration eviance can only be etecte at the time of stanar stimulus

    offset, uration MMN (pale blue line) is elaye relative to pitch (frequency) MMN (pink line). The ashe arrow inicates

    the orientation of the electrical fiel originating from the auitory cortex. Activity from auitory cortex characteristically

    inverts between the central miline electroe (Fz) an the mastois (RM, LM), relative to a nose reference (not shown).

    | Characteristic waveforms at Fz from patients with recent onset or chronic schizophrenia versus controls. Peak MMN

    responses (arrows) are significantly reuce in patients with schizophrenia relative to controls, for both pitch (top line)

    an uration (bottom line). Dashe lines illustrate the latency shift in response to pitch versus uration to eviant stimuli25.

    f, pitch ifference between stanar an eviant; ERP, event-relate potential; ISI, interstimulus interval. fIGS 2a an2c

    are moifie with permission from Ref. 23 (2005) an Ref. 14 (2006) Elsevier Science, respectively.

    R EVI EWS

    NATuRE REvIEWS |drug discovery voLumE 7 | jANuARy 2008 |73

  • 8/4/2019 Neurophysiological Bio Markers for Drug Development in Schizophrenia. Nat Rev Drug Discov 2008

    7/16

  • 8/4/2019 Neurophysiological Bio Markers for Drug Development in Schizophrenia. Nat Rev Drug Discov 2008

    8/16

    P1

    N1

    V

    10

    0

    10 P1

    N1

    Hz

    0

    40

    0 200 400 600

    80

    V

    10

    0

    10

    Average ERP

    Evoked power

    ms

    0 200 400 600ms

    Hz

    0

    40

    0 200 400 600

    80

    ms

    0 200 400 600ms

    Hz

    0

    40

    0 200 400 600

    80

    Induced power

    ms

    Hz

    0

    40

    0 200 400 600

    80

    ms

    Hz

    0

    40

    0 200 400 600

    80

    Phase locking (synchrony)

    Average ERP

    Evoked power

    Induced power

    Phase locking (synchrony)

    ms

    Hz

    0

    40

    0 200 400 600

    80

    ms

    P1/N1P1/N1

    a Control b Patient

    fast, an within 300500 s the ee atches the targetelcit. Paraxicall, this rees the retinal elciterrr (target iage elcit ins ee elcit) thatstilate the prsit respnse in the first place. unerthese circstances sbects elicit a preictie prsitrespnse base n the internal representatins f thetarget iage elcit71. These representatins are eriefr the efference cp f the tr can, as wellas the er trace f the earlier tin percept. Ths,SPEms are aintaine b the cbinatin f preictierespnse base n the internal representatin f the targettin an astents base n the isal feeback f

    elcit an/r psitin errrs72.

    SPEm is exaine in the labratr b asking sb-ects t fllw a sall ing target, an the ee psi-tin is recre sing electr-clgraph, agneticsearch cil, crneal reflectin tracker r high saplingrate ie caeras. Althgh initiatin an een laterrespnses are sei-atatic, the sbects cperatinis a ch larger isse than fr ERP easres. SPEmabnralities in schizphrenia were first bsereat the beginning f the 1900s73. Althgh the SPEmabnralit is bsere in relaties with n ert ps-chsis, it tens t c-aggregate with sbtle traits ancgnitie eficits in these iniials that are efine bschizphrenia spectr persnalit isrers. A recent

    sibling-pair st estiate a heritabilit f arn 91%fr the preictie prsit abnralit in failies with ahistr f schizphrenia74.

    There are ar generatr regins f SPEm: nerelate t the initiatin an the ther is assciatewith preictie prsit respnse. The tin f thetarget iage is prcesse b the ei-tepral (mT)regin, whereas the sth prsit initiatin respnseis eiate b neral circitr that inles the mTregin, the cerebell an the brain-ste cltrpathwas75,76(fIG. 6). The sbseqent preictie sthprsit respnse is base n the internal representatinf the preis target iage tin eiate b thepsterir parietal nerns, an the ei-sperir te-pral crtex that ences the efference cp f the trcan77,78. Frntal ee fiels integrate the extraretinaltin infratin int a preictie prsit respnse79.The eficit in schizphrenia is thght t be e t efi-cits in this extraretinal circitr80, with patients shwingecrease actiatin in ltiple brain regins inclingthe ei-sperir tepral crtex, the frntal ee

    fiels an the secnar ee fiels (fIG. 6). In aitin,patients with schizphrenia wh hae enring negatiespts (an their relaties) shw eficits in sthprsit initiatin, which a be eiate b the mTcrtex an the cerebell eris.

    Pclncl tnltn

    In aitin t sering as rbst inices f brain sfnc-tin in schizphrenia, nerphsilgical biarkershae a istinct aantage f being translatable intanial els fr rg iscer. Fr an f theeasres, either hlgs r analgs prcesses canbe stie in rent r priate els. Frtherre,nerphsilgical easres can be btaine in awake,nrestraine anials, as well as restraine, anaesthetizer ex vivo preparatins.

    Fr exaple, aitr easres resebling thsein hans hae been enstrate in bth rent anpriate els. In rents, aitr-gating phenenacan be stie sing EEG/fiel ptential recrings frthe crtex an hippcaps CA3 regin, r single-nitrecrings fr the agala, thalaic reticlar nclesan brain-ste reticlar fratin in respnse t acsticstilatin paraigs that are eqialent t thse seclinicall81. Althgh abslte latencies f crtical ansbcrtical aitr eke ptentials in rents (thatis, 1380 s) are tpicall ch shrter than thse in

    hans (that is, 50300 s), the prcesses appear t beclsel siilar in respnse t paraetric aniplatinan respnse t pharaclgical agents81.

    mmN-like23,82 an N1-like83,84 actiit can be recrein awake rents, spprting its rle in earl stage rgeelpent. Frtherre, in rents, generatin fmmN-like an N1-like actiit is inhibite b NmDA(N-ethl-d-aspartate) antagnists sch as ketaine,which is siilar t finings in hans85. Ptatie rentels f the P300 hae als been eelpe86,87. oerall,sbstantial ata enstrate that abnral infratinprcessing f schizphrenia cl be reprce in pre-clinical anial els sing pharaclgical, genetic r

    Figure 4 | Tm/qn man ltnphalaph ma m a

    ntl bjt an a patnt wth hn hzphna. The average event-

    relate potential (ERP) (n= 88 trials) reveals that both P1 an N1 components are

    markely reuce in the patient with schizophrenia compare with the control subject.

    Reuce activity across the frequency spectrum is apparent in the maps of evoke

    power, inuce power an phase-locking synchrony (colour scales same as in BOX 1).

    R EVI EWS

    NATuRE REvIEWS |drug discovery voLumE 7 | jANuARy 2008 |75

  • 8/4/2019 Neurophysiological Bio Markers for Drug Development in Schizophrenia. Nat Rev Drug Discov 2008

    9/16

    Delta0.55.5 Hz

    Theta6.08.0 Hz

    Alpha8.512.0 Hz

    Controlsn = 89

    Siblingsn = 115

    Schizophrenicsn = 66

    a b Left hemisphere

    enirnental aniplatins. Ieall, these isrptingfactrs shl reflect genetic alteratins in schizphre-nia r replicate the sfnctinal nernal actiit rnertransissin that is bsere in patients withthe isease.

    Aitr an isal prcesses siilar t thse bserein hans a als be reprce in priate els.Ths, bth mmN34,46 an aitr P300 (RefS 88,89)can be recre in nkes. Priates als shw isalsensr90 an AX-CPT53 respnses that are highl siilart thse in hans when siilar stilatin an recr-ing prceres are se. Althgh less aenable tgenetic aniplatin than rents, priate els fferthe aantage f extreel clse hlg betweenlabratr an clinical easres.

    Undlyng pthphylgcl chn

    In aitin t inexing the fnctin f specific brainregins, biarkers fr schizphrenia a be ifferen-tiall sensitie t the inleent f specific nerlingnercheical sstes. Schizphrenia has traitin-

    all been linke t abnral painergic fnctin,althgh re recent theries ephasize aitinalistrbances in gltaatergic, GABA (-ainbtricaci)-ergic, sertnergic an chlinergic echaniss.The cntribtin f these easres t biarker eficitshas been ealate base n challenge sties, anialels an infratie genetic linkages.

    Dopamine. Dpainergic els f schizphrenia arespprte b the abilit f painergic agents, sch asaphetaine, t stilate schizphrenia-like pschsis,as well as the abilit f paine D

    2antagnists t ael-

    irate sch spts. Hweer, acte aphetaine

    ainistratin es nt case either negatie sptsr cgnitie eficits like thse bsere in schizphre-nia, leaing the rle f paine in nercgnitiesfnctin nresle.

    Dpainergic hperfnctin is st releant t lerbiarkers, sch as PPIr P50 gating eficits, whicha be reprce in hans b aphetaine r therpaine agnists91,92. Aphetaine an ccaine alsisrpt aitr gating in the rat hippcaps, retic-lar thalas an crtex in a D

    2-epenent anner81.

    Hweer, eficits in P50 gating91,93 an PPI5 can bereerse in schizphrenia b atpical (especiall clzapine)bt nt tpical antipschtics, sggesting inleent faitinal nertransitter sstes.

    Genetic sties hae prie frther insight intthe cnnectin between paine nertransissinan infratin prcessing94,95. Preliinar eienceassciates the late teprparietal P300 cpnentwith specific genetic ariatins in the paine D

    3

    an D2

    receptr genes9699, whereas ariatins in thegene that ces fr the paine catablizing enze

    catechl-O-ethltransferase (ComT) hae been ass-ciate with ariatins in prefrntal actiit (nise)19,100,101an SPEm102. Hweer, ther sties hae nt fn sig-nificant assciatins between paine-relate genesan P300-aplite103105. In line with these finings, ithas been arge that rece snaptic paine leelsa reslt in a iinishe signal-t-nise rati f pre-frntal nerns ring attentin-reqiring an wrkinger tasks60,101,106.

    GABA. GABA istrbances hae been linke t schiz-phrenia n the basis f pst-rte finings f a rectinin the nber f paralbin-expressing internerns inthe hippcaps an frntal brain regins107,108, as well asspecific abnralities in the latin f praial cellspiking b paralbin-expressing, fast-spiking interne-rns. GABAergic nertransissin has been sggestet be a ar eterinant f the freqenc, pwer ansnchrn f gaa scillatins109.

    Becase GABAergic prcesses hae a prinentrle in reglating excitatr nertransissin in thecrtex, it is nt srprising that GABAergic links can befn t st biarkers. GABAergic rgs hae beenshwn t alter P300 paraeters, with aplites beingrece an P300 latencies elae after the applica-tin f GABAergic rgs110. Siilarl, the generatin fmmN is thght t epen n intracrtical inhibitin,

    reflecting GABAergic inhibitin f lcal GABAergicinternerns in the aitr crtex34. Siilarl, lcalGABAergic internerns in the mT crtical reginlate tin perceptin111,112, which cntribtes tthe cntrl f SPEm.

    Ang neral scillatr easres, beta freqencies,een in backgrn EEG, a be relate t GABAergicfeeback. Benziazepines, sch as triazla, pr-ce a well-replicate increase in beta aplite thatinexes effects f these cpns n pschtrperfrance113. B cntrast, GABA inerse agnistsecrease beta aplite114. Assciatins between betaaplite an GABA

    Areceptr plrphiss hae

    Figure 5 | ctal pn aablt na n patnt wth

    hzphna.a | Frequency omain analyses showing increase prefrontal noise,

    that is, increase variability of slow-wave oscillations, in patients with schizophrenia

    an their clinically unaffecte siblings60. Increase variability of slow-waveoscillations results from impaire phase-locking of these oscillations in schizophrenia65.

    b | An analogous increase in variability of bloo-oxygen-level epenent response is

    observe in patients with schizophrenia3: group contrast analysis compare with

    controls. Prefrontal noise is moulate by synaptic opamine signalling (catechol-O-

    methyltransferase (COMT)-genotype) as measure by electrophysiology an

    functional magnetic resonance imaging3,60,101. This image is reprouce with permission

    from Ref. 60 (2004) an Ref. 191 (2006) American Psychiatric Association.

    R EVI EWS

    76 | jANuARy 2008 | voLumE 7 www.nat.m/w/

    http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1312&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=1312&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
  • 8/4/2019 Neurophysiological Bio Markers for Drug Development in Schizophrenia. Nat Rev Drug Discov 2008

    10/16

    bFEFPutative retinal motion

    processing areasSEF ACC MST

    VermisPrimaryvisual

    cortex Middletemporal lobe

    D

    egreespersecond

    50

    0.1 0.2 0.3 0.4 0.5 0.6

    0

    50

    100

    150a

    Time (seconds)

    Normaleyevelocity

    Schizophreniaeye velocity

    Targetvelocity

    Saccade

    Z ZAdju

    stedsizeofresponses

    1.5

    FEF SEF ACC MST

    2.5

    2.0

    1.5

    1.0

    0.5

    0

    0.5

    1.0

    c

    Controls (n = 12) Patients with schizophrenia (n = 12)

    als been escribe in health lnteers115an failialalchlics116, althgh the significance f these finingst schizphrenia reains t be eterine.

    Glutamate. NmDA receptrs are ne f seeral recep-tr tpes fr the excitatr nertransitter gltaate.NmDA receptr antagnists sch as ketaine r phen-ccliine (PCP) ince spts an nerpschlgi-cal eficits that clsel reseble thse f schizphrenia,iplicating NmDA receptrs in the pathgenesis fschizphrenia117,118. Sch els hae been spprterecentl b enstratin f rece arkers fgltaatergic nernal integrit119, as well as rececncentratins f ain acis sch as glcine120,121 rd-serine122 in the plasa an/r cerebrspinal flif patients with schizphrenia. Seeral schizphrenia

    ssceptibilit genes, sch as nereglin, ERBB4, sbin-in r d-ain aci xiase (DAOA; als knwn as G72)affect gltaate nertransissin an NmDA receptr

    fnctin123. Siilarl, seeral enirnental alteratins,sch as rece gltathine leels124, increase knrenicaci125 r increase hcsteine leels121 als cnergen NmDA receptrs, sggesting a central rle f NmDAsfnctin in the isrer. Treatent with NmDAantagnists sch as ketaine r PCP leas t schiz-phrenia-like painergic sreglatin in han126an rent127 els, sggesting that istrbances inpainergic fnctin in schizphrenia ight be secn-ar t nerling gltaatergic sfnctin, cnsistentwith reciprcal interactin between sstes94.

    NmDA antagnists, sch as ketaine, isrpt PPI inrents128 an priates129. Hweer, in hans, ketaine

    Figure 6 | cmpnnt th mth pt mmnt: th nln nal t. The smooth

    pursuit eye movement system functions to maintain the image of a moving object on the fovea by minimizing error

    between the target velocity an the eye velocity. Broaly, the system is ivie into two components: the response

    base on the internal representation of the target motion (that is, the extraretinal motion information), an the

    corrections base on the visual feeback of iscrepancies between the eye an target velocities, the so-calle retinal

    error. The pursuit maintenance in a control subject (re graph) an a patient with schizophrenia (blue graph) is shown

    (a). The healthy iniviual is able to accurately match the target velocity, as this response is mostly riven by the

    extraretinal motion signals uring the pursuit maintenance, whereas the patient with schizophrenia shows lower eye

    velocity, because of inaequate extraretinal motion signals that create a retinal error. In response to the visual feeback

    of the retinal error, the subject makes corrective responses in the form of a saccae or an increase in eye velocity

    (marke by Z in panel a). However, this increase in velocity is transient as the retinal error signal becomes weak as the

    eye velocity matches the target velocity. This interaction between the responses to retinal an extraretinal motion

    signals is moelle by the regression equation72

    : maintenance of eye velocity = be retinal error + ber extraretinalerror (where b

    ean b

    erare coefficients associate with retinal error an extraretinal error, respectively). Data suggest

    that compare with control subjects, iniviuals with schizophrenia epen more on retinal error an less on

    extraretinal motion signals to maintain pursuit72. When schizophrenia an control subjects were matche on how well

    they maintaine pursuit, schizophrenia subjects showe more activation of the meio-temporal cortex (MT) (b), a

    region known to process motion, than the healthy control subjects. However, these patients showe less activation of

    the meio-superior temporal cortex (MST), the posterior-parietal cortex (PPC) an the frontal eye-fiel regions (FEF),

    areas that are known to process extraretinal motion signals (); see Ref. 74 for more etails. ACC, anterior cingulate

    cortex; SEF, supplementary eye fiels. fIG. 6c is moifie with permission from Ref. 80 (2005) Elsevier Science.

    R EVI EWS

    NATuRE REvIEWS |drug discovery voLumE 7 | jANuARy 2008 |77

    http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2066&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=267012&ordinalpos=3&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=267012&ordinalpos=3&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2066&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
  • 8/4/2019 Neurophysiological Bio Markers for Drug Development in Schizophrenia. Nat Rev Drug Discov 2008

    11/16

    es nt ince P50 gating eficits130 an a enhance,rather than inhibit, PPI131. Frtherre, in hans,PPI eficits are assciate with increase, rather thanecrease, plasa leels f the ain-aci glcine, whichseres as an NmDA c-agnist in vivo132. Ths, relatin-ships between phenenlg an NmDA sfnctinappear t iffer acrss species. In anials, NmDA antag-nist-ince PPI eficits are reerse b clzapine, btnt b st tpical r atpical antipschtics128,129.

    of the cnsiere nerphsilgical easres, mmNhas been st extensiel inestigate with regar tgltaatergic echaniss, particlarl inling NmDAreceptrs. Deficits in mmN generatin a be ince inbth nkes133 an hans134,135 fllwing ainistra-tin f NmDA antagnists. Frtherre, in health l-nteers, mmN aplite preicts the egree f pschsisince b ketaine acrss sbects136. In cntrast teffects f ketaine, mmN was nt affecte b psilcbin,a pschtietic agent that fnctins ia stilatin f5-hrxtrptaine 2A (5-HT

    2A) receptrs136. Deficits in

    mmN generatin persist espite treatent with aailable

    antipschtic agents, incling 5-HT2A-selectie c-pns sch as clzapine, lanzapine an risperine,sggesting that painergic an sertnergic sstesare nt clsel relate t mmN generatin.

    Abnral gltaate transissin has been sg-geste in ther ipaire nerphsilgical easres inschizphrenia. Fr exaple, schizphrenia-like eficitsin AX-CPT prcessing are ince b ketaine, sp-prting a rle f NmDA sfnctin134. Hweer, scheficits are reprce b psilcbin as well, sggestingthat the are less specific fr NmDA sfnctin thanmmN137. Alteratin in isal P1-eke ptentials,which inicate abnral earl stage isal prcessingin schizphrenia, has als been linke t gltaatehpfnctin an/r rece NmDA receptr actiit43.Frtherre, ketaine ainistratin iics seeralfeatres f SPEm eficits in health sbects, sch as theinitiatin respnse138,139.

    NmDA receptrs a als hae a rle in latinf scillatr actiit. Infsin f NmDA agnists int thehippcaps r sept irectl inces theta actiit,whereas NmDA antagnists sppress spntanes thetaactiit an actiit that is ince b behairalaniplatin, sch as tail pinch, while haing nn-significant effects n gaa actiit140,141. Siilarl,NmDA antagnists rece beta, bt nt gaa, actiitin the hippcapal slice142. In hans, ketaine atten-

    ates the increases in crtical elta an beta actiit thatare bsere ring piate withrawal143. Ths, NmDAsfnctin in schizphrenia wl be anticipate tcase eficits in neral snchrn in schizphrenia,particlarl in slwer freqenc ranges.

    Acetylcholine (ACh). Finall, istrbances in chlinergicfnctin hae been assciate with schizphreniabase n linkages t the 7 nictinic receptr, as wellas increase sking rates ang patients with schiz-phrenia144. Nictinic echaniss a be particlarlreleant t the phenenn f P50 gating, in that nic-tine ipres, althgh transientl, P50 aitr-gating

    eficit in patients an their relaties145. In preclinicalanial els, pharaclgicall, geneticall an eni-rnentall ince gating eficits are nralize bnictinic receptr agnists an latrs146150, thscnfiring a rle f nictinic echaniss in aitrgating. Since it was shwn that a partial nictinic 7agnists ipres the gating eficit in patients withschizphrenia151, it appears that this nerphsilgicaleasre can be se as translatinal biarker, at leastfr nictinic targets.

    Inleent f chlinergic echaniss in aitr-eke P300 has als been bsere. ACh an chlinergicrgs appear t strngl increase P300 aplite. Theppsite bseratin (a ecrease f P300 aplite) wasae fr antichlinergic sbstances. Bth effects are likelt be eiate b scarinic an perhaps als nictin-ergic receptrs152161. In line with these bseratins inhans, septal chlinergic lesins ablish aitr P300in cats162. As abnral chlinergic transissin appears tbe inle in aspects f schizphrenia pathphsilgan, in particlar, cgnitie eficits incling er an

    attentinal eficits163, P300 a be cnsiere a seflbiarker t track pharaclgical interentins withchlinergic rgs. The ieiate respnse t a nelpresentatin f target tin, which is epenent n earltin prcessing, is als ipre b the ainistratinf nictine in patients with schizphrenia164, sggestingthat this arker cl be se as well.

    Aitinall, chlinergic echaniss hae beeniplicate in nernal netwrk scillatins. visalleke gaa-ban scillatin patterns an nernalsnchrnizatin are greatl rece after intracrticalainistratin f the scarinic ACh receptr antagnistscplaine165. Frtherre, 7 nictinic ACh recep-trs appear t late theta an gaa-ban scilla-tins in bth in vitro an in vivo experients in anials,in part thrgh latin f GABA actiit146,166.Ths, een if eficits in chlinergic actiit are nt cas-atie in schizphrenia, nictinic receptrs, particlarl7, a sere as a target fr interentin.

    In sar,seeral nertransitter sstes haebeen linke t schizphrenia, either thrgh the analsisf the actin f rgs f abse sch as PCP r apheta-ine, f thrgh the analsis f genetic plrphiss.Seeral f the prpse biarkers shw particlar sen-sitiit t eficits in specific nercheical pathwas,an ths ight cntribte t targete rg eelpent.The strngest assciatins are fn between P50 gating

    an nictinic echaniss, paine an prefrntalnise easreents, an NmDA receptrs an sensristrbances in bth the aitr an isal alities.In general, later cpnents, sch as P300, hae a recplex pharaclg than earlier ptentials an arere likel t reflect an interpla between ltiplenertransitter sstes.

    Futu dctn

    At present, seeral escribe biarkers, sch as ai-tr mmN r P300, isal P1 r SPEm istrbances,appear sfficientl establishe s that the a sere asapprpriate translatinal easres fr rg iscer

    R EVI EWS

    78 | jANuARy 2008 | voLumE 7 www.nat.m/w/

  • 8/4/2019 Neurophysiological Bio Markers for Drug Development in Schizophrenia. Nat Rev Drug Discov 2008

    12/16

    1. Tallon-Baudry, C. & Bertrand, O. Oscillatory gammaactivity in humans and its role in objectrepresentation. Trends Cogn. Sci.3, 151162 (1999).Reviews evidence for gamma-band synchrony in

    humans and its possible roles, as well as methodsfor non-invasive measurement of neural synchrony.

    2. Sehatpour, P., Molholm, S., Javitt, D. C. & Foxe, J. J.Spatiotemporal dynamics of human object recognitionprocessing: an integrated high-density electricalmapping and functional imaging study of closureprocesses. Neuroimage29, 605618 (2006).

    3. Winterer, G. et al. Complex relationship betweenBOLD signal and synchronization/desynchronization ofhuman brain MEG oscillations. Hum. Brain Mapp.28,805816 (2007).

    4. Potter, D., Summerfelt, A., Gold, J. & Buchanan, R. W.Review of clinical correlates of P50 sensory gatingabnormalities in patients with schizophrenia.Schizophr. Bull.32, 692700 (2006).

    5. Swerdlow, N. R. et al. Startle gating deficits in a largecohort of patients with schizophrenia: relationship tomedications, symptoms, neurocognition, and level offunction.Arch. Gen. Psychiatry63, 13251335 (2006).

    6. Roth, W. T. & Cannon, E. H. Some features of theauditory evoked response in schizophrenics.Arch.Gen. Psychiatry27, 466471 (1972).

    7. Ford, J. M. Schizophrenia: the broken P300 and

    beyond. Psychophysiology 36, 667682 (1999).8. Jeon, Y. W. & Polich, J. Meta-analysis of P300 and

    schizophrenia: patients, paradigms, and practicalimplications. Psychophysiology40, 684701 (2003).

    9. Frodl-Bauch, T., Gallinat, J., Meisenzahl, E. M., Moller,H. J. & Hegerl, U. P300 subcomponents reflectdifferent aspects of psychopathology in schizophrenia.Biol. Psychiatry45, 116126 (1999).

    10. Mathalon, D. H., Ford, J. M. & Pfefferbaum, A. Traitand state aspects of P300 amplitude reduction inschizophrenia: a retrospective longitudinal study. Biol.Psychiatry47, 434449 (2000).

    11. Polich, J. & Bloom, F. E. P300 and alcohol consumptionin normals and individuals at risk for alcoholism.

    A preliminary report. Prog. Neuropsychopharmacol.Biol. Psychiatry10, 201210 (1986).

    12. Hall, M. H. et al. Genetic overlap between bipolarillness and event-related potentials. Psychol. Med.37,667678 (2007).

    13. Turetsky, B. I. et al. Neurophysiologicalendophenotypes of schizophrenia: the viability ofselected candidate measures. Schizophr. Bull.33,6994 (2007).

    14. Umbricht, D. S., Bates, J. A., Lieberman, J. A.,Kane, J. M. & Javitt, D. C. Electrophysiologicalindices of automatic and controlled auditoryinformation processing in first-episode, recent-onsetand chronic schizophrenia. Biol. Psychiatry59,762772 (2006).

    15. Umbricht, D. et al. Effects of clozapine on auditoryevent-related potentials in schizophrenia. Biol.Psychiatry44, 716725 (1998).

    16. Umbricht, D. et al. Effects of risperidone on auditoryevent-related potentials in schizophrenia. Int. J.Neuropsychopharmcol. 2, 299304 (1999).

    17. Hall, M. H. et al. Genetic overlap between P300,P50, and duration mismatch negativity.Am. J. Med.Genet. B Neuropsychiatr. Genet.141, 336343(2006).

    18. Winterer, G. et al. P300 and genetic risk forschizophrenia.Arch. Gen. Psychiatry60, 11581167(2003).

    prects. In aitin, the se f nerphsilgicaleasres has been greatl extene er recent earsb the ealatin f neral snchrn easres alngwith siple respnse aplite. Acrss regins, actiitappears t be nis, reflecting the inabilit t snchr-nize brain scillatins apprpriatel acrss a wie fre-qenc range incling, bt apparentl nt liite t,the gaa freqenc ban.

    Althgh nl a few biarkers hae prgresse tthe pint in which the can be reliabl applie in rgeelpent sties, nerphsilgical easres arenerging cntins eelpent, sggesting that thetpe an ariet f easres will increase in the cingears. mreer, targets fr rg treatent f schiz-phrenia are braening cntinall (fr reiews seeRefS 167,168). These targets incle specific sbtpes fnaine receptrs, sch as the 5-HT

    2c(RefS 169,170),

    5-HT3(Ref. 171), 5-HT

    6(Ref. 172) an histaine (H

    3)173

    receptrs, aris ligans an latrs f gltaatereceptrs, sch as the etabtrpic (GlR2/3) glta-ate receptrs174, an ther ierse targets f intracell-

    lar prcesses an/r secn essenger sstes, schas the phsphiesterases175. Se f these nel targetshae a strng assciatin with genes cnsiere t becaniate ssceptibilit factrs fr schizphrenia, schas phsphiesterase 4B (PDE4B) interacting with theisrpte in schizphrenia 1 (DISC1) gene176. othertargets hae eerge fr epieilgical sties,sch as the cannabini receptrs (fr exaple, CB

    1) r

    encannabinis177.mreer, it is knwn that an experiental

    cpns acting n these targets prfnl affectnernal netwrk scillatins178185 r ther electr-phsilgical easres f infratin prcessing (schas aitr gating). Exaples incle ligans f 5-HT

    3

    ,CB

    1an H

    3receptrs, as well as inhibitrs f PDE4 an

    PDE10 enzes173,179,183185. once these rg caniatesenter clinical eelpent, nerphsilgical biark-ers iscsse here will prie a better nerstaningf the nerling nerphsilgical abnralities inschizphrenia, an their relatin t the aris psitie,negatie an cgnitie spts f the isease. Thesenel cpns esigne t treat a range f spts

    f schizphrenia are crrentl being ealate in arispreclinical els f nerphsilgical biarkers.These finings, cbine with aitinal clinicalnerphsilgical biarker sties, will prie anpprtnit t aliate nt nl nel targets, bt als

    aliate the therapetic preictie ale f these ner-phsilgical anial els.

    Iprtantl, ifferent nerphsilgical easresprbe ifferent aspects f brain fnctin. Ths, biar-kers are prbabl best se in cncert with each ther,rather than in islatin. Fr exaple, althgh eas-res sch as P50 gating, mmN an P300 all shw highheritabilit an reprcibilit n their wn, the shwrelatiel lw crss-crrelatin17, sggesting relatiellittle genetic an echanistic erlap. Iniial eas-res a als iffer in ters f sensitiit an specificitfr schizphrenia, as well as nerling nercheicalechaniss. The se f cbine, rather than ini-

    ial easres, has recentl been enstrate friagnstic prpses186. A siilar sitatin is likel thl fr rg eelpent. Finall, ltial iaging,

    in which nerphsilgical biarkers are cbinewith strctre-base neriaging appraches (frexaple, fmRI), a prie re infratin thaneither alit alne.

    Althgh brain actiit is ipaire in schizphreniaacrss a range f anatical regins an phsilgicalprcesses, nt all eicatins will affect all nerl-ing nercheical eficits eqall. Ths, the chicef biarkers in rg eelpent epens nt nln the pathphsilg f the nerling isrer, btals n the expecte echanis f actin f the rg tbe inestigate. The aailabilit f analgs easresin anial research represents an tstaning strengthf nerphsilgical biarkers, therefre perit-ting their se as translatinal easres ring earlrg eelpent, an as prf-f-cncept r prf-f-echanis easres in bth health sbects aniniials with schizphrenia.

    oer the cing ears, aitinal refineents in bthbehairal paraigs an analtical appraches willnbtel lea t frther eelpent f biarkerappraches fr schizphrenia.

    R EVI EWS

    NATuRE REvIEWS |drug discovery voLumE 7 | jANuARy 2008 |79

    http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5142&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=27185&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=27185&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSumhttp://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5142&ordinalpos=1&itool=EntrezSystem2.PEntrez.Gene.Gene_ResultsPanel.Gene_RVDocSum
  • 8/4/2019 Neurophysiological Bio Markers for Drug Development in Schizophrenia. Nat Rev Drug Discov 2008

    13/16

    19. Gallinat, J. et al. Association of the G1947A COMT(Val(108/158)Met) gene polymorphism with prefrontalP300 during information processing. Biol. Psychiatry54, 4048 (2003).

    20. Blackwood, D. H. & Muir, W. J. Clinical phenotypesassociated with DISC1, a candidate gene forschizophrenia. Neurotox. Res.6, 3541 (2004).

    21. Friedman, D., Cornblatt , B., Vaughan, H. Jr. &Erlenmeyer-Kimling, L. Auditory event-relatedpotentials in children at risk for schizophrenia: thecomplete initial sample. Psychiatry. Res.26, 203221

    (1988).22. Naatanen, R. Mismatch negativity: clinical researchand possible applications. Int. J. Psychophysiol.48,179188 (2003).

    23. Umbricht, D. & Krljes, S. Mismatch negativity inschizophrenia: a meta-analysis. Schizophr. Res.76,123 (2005).

    24. Umbricht, D. et al. How specific are deficits inmismatch negativity generation to schizophrenia?Biol. Psychiatry53, 11201131 (2003).

    25. Javitt, D. C., Doneshka, P., Grochowski, S. & Ritter, W.Impaired mismatch negativity generation reflectswidespread dysfunction of working memory inschizophrenia.Arch. Gen. Psychiatry52, 550558(1995).

    26. Light, G. A. & Braff, D. L. Mismatch negativity deficitsare associated with poor functioning in schizophreniapatients.Arch. Gen. Psychiatry62, 127136 (2005).

    27. Salisbury, D. F., Shenton, M. E., Griggs, C. B., Bonner-Jackson, A. & McCarley, R. W. Mismatch negativity inchronic schizophrenia and first-episode schizophrenia.

    Arch. Gen. Psychiatry59, 686694 (2002).28. Javitt, D. C., Shelley, A. M., Silipo, G. & Lieberman,

    J. A. Deficits in auditory and visual context-dependentprocessing in schizophrenia: defining the pattern.

    Arch. Gen. Psychiatry57, 11311137 (2000).Documents disturbances in both auditory and

    visual processing in schizophrenia as biomarkers

    for cognitive dysfunction.

    29. Salisbury, D. F., Kuroki, N., Kasai, K., Shenton, M. E.& McCarley, R. W. Progressive and interrelatedfunctional and structural evidence of post-onset brainreduction in schizophrenia.Arch. Gen. Psychiatry64,521529 (2007).

    30. Hall, M. H. et al. Heritability and reliability of P300,P50 and duration mismatch negativity. Behav. Genet.36, 845857 (2006).

    31. Michie, P. T., Innes-Brown, H., Todd, J. & Jablensky,A. V. Duration mismatch negativity in biologicalrelatives of patients with schizophrenia spectrumdisorders. Biol. Psychiatry52, 749758 (2002).

    32. Bramon, E. et al. Mismatch negativity in schizophrenia:a family study. Schizophr. Res.67, 110 (2004).

    33. Brockhaus-Dumke, A. et al. Impaired mismatchnegativity generation in prodromal subjects andpatients with schizophrenia. Schizophr. Res.73,297310 (2005).

    34. Javitt, D. C. Intracortical mechanisms of mismatchnegativity dysfunction in schizophrenia.Audiol.Neurootol.5, 207215 (2000).

    35. Wible, C. G. et al. A functional magnetic resonanceimaging study of auditory mismatch in schizophrenia.

    Am. J. Psychiatry158, 938943 (2001).36. Shelley, A. M., Silipo, G. & Javitt, D. C. Diminished

    responsiveness of ERPs in schizophrenic subjects tochanges in auditory stimulation parameters:implications for theories of cortical dysfunction.Schizophr. Res.37, 6579 (1999).

    37. Gallinat, J. et al. Frontal and temporal dysfunction ofauditory stimulus processing in schizophrenia.Neuroimage17, 110127 (2002).

    38. Mulert, C. et al. Reduced event-related current densityin the anterior cingulate cortex in schizophrenia.Neuroimage13, 589600 (2001).

    39. Foxe, J. J., Doniger, G. M. & Javitt, D. C. Early visualprocessing deficits in schizophrenia: impaired P1generation revealed by high-density electricalmapping. Neuroreport12, 38153820 (2001).

    40. Schechter, I. et al. Impairments in generation of early-stage transient visual evoked potentials to magno-and parvocellular-selective stimuli in schizophrenia.Clin. Neurophysiol.116, 22042215 (2005).

    41. Yeap, S. et al. Early visual sensory deficits asendophenotypes for schizophrenia: high-densityelectrical mapping in clinically unaffected first-degreerelatives.Arch. Gen. Psychiatry63, 11801188(2006).

    42. Butler, P. D. et al. Dysfunction of early stage visualprocessing in schizophrenia.Am. J. Psychiatry158,11261133 (2001).

    43. Butler, P. D. et al. Early-stage visual processing andcortical amplification deficits in schizophrenia.Arch.Gen. Psychiatry62, 495504 (2005).Demonstrates the three-way relationship between

    magnocellular deficits in schizophrenia, impaired

    NMDA activity and structural changes in optic

    radiations as demonstrated by diffusion tensor

    imaging.

    44. Duncan, C. C. Event-related brain potentials: a windowon information processing in schizophrenia. Schizophr.Bull.14, 199203 (1988).

    45. Bruder, G. et al. The time course of visuospatialprocessing deficits in schizophrenia: an event-relatedbrain potential study.J. Abnorm. Psychol.107,399411 (1998).

    46. Javitt, D. C., Jayachandra, M., Lindsley, R. W., Specht,C. M. & Schroeder, C. E. Schizophrenia-like deficits inauditory P1 and N1 refractoriness induced by thepsychomimetic agent phencyclidine (PCP). Clin.Neurophysiol. 111, 833836 (2000).

    47. Kayser, J. et al. ERP/CSD indices of impaired verbalworking memory subprocesses in schizophrenia.Psychophysiology43, 237252 (2006).

    48. Servan-Schreiber, D., Cohen, J. D. & Steingard, S.Schizophrenic deficits in the processing of context.

    A test of a theoretical model.Arch. Gen. Psychiatry53, 11051112 (1996).

    49. Barch, D. M., Carter, C. S., MacDonald, A. W. 3rd,Braver, T. S. & Cohen, J. D. Context-processing deficitsin schizophrenia: diagnostic specificity, 4-week course,and relationships to clinical symptoms.J. Abnorm.Psychol.112, 132143 (2003).

    50. MacDonald, A. W. 3rd et al. Specificity of prefrontaldysfunction and context processing deficits toschizophrenia in never-medicated patients with first-episode psychosis.Am. J. Psychiatry162, 475484(2005).

    51. Barch, D. M. et al. Selective deficits in prefrontalcortex function in medication-naive patients withschizophrenia.Arch. Gen. Psychiatry58, 280288(2001).

    52. Dias, E. C., Foxe, J. J. & Javitt, D. C. Changing plans:a high density electrical mapping study of corticalcontrol. Cereb Cortex13, 701715 (2003).

    53. Dias, E. C. et al. Changing plans: neural correlates ofexecutive control in monkey and human frontal cortex.Exp. Brain Res 174, 279291 (2006).

    54. Javitt, D. C., Rabinowicz, E., Silipo, G. & Dias, E. C.Encoding vs. retention: differential effects of cuemanipulation on working memory performance inschizophrenia. Schizophr. Res.91, 159168 (2007).

    55. Lakatos, P. et al. An oscillatory hierarchy controlling

    neuronal excitability and stimulus processing in theauditory cortex.J. Neurophysiol. 94, 19041911(2005).

    56. Haig, A. R. et al. Gamma activity in schizophrenia:evidence of impaired network binding? Clin.Neurophysiol. 111, 14611468 (2000).

    57. Spencer, K. M. et al. Abnormal neural synchrony inschizophrenia.J. Neurosci.23, 74077411(2003).

    58. Spencer, K. M. et al. Neural synchrony indexesdisordered perception and cognition in schizophrenia.Proc. Natl Acad. Sci. USA101, 1728817293(2004).References 57 and 58 present evidence for

    disturbances in stimulus-evoked and perception-

    related gamma oscillations in schizophrenia, and

    suggest relationships to particular symptoms.59. Uhlhaas, P. J. et al. Dysfunctional long-range

    coordination of neural activity during Gestaltperception in schizophrenia.J. Neurosci. 26,

    81688175 (2006).60. Winterer, G. et al. Prefrontal broadband noise,

    working memory, and genetic risk for schizophrenia.Am. J. Psychiatry161, 490500 (2004).Is the first report on abnormal electrophysiological

    noise as being a genetically determined risk factor

    for schizophrenia and cognitive deficits.61. Kwon, J. S. et al. Gamma frequency-range

    abnormalities to auditory stimulation in schizophrenia.Arch. Gen. Psychiatry56, 10011005 (1999).The first direct evidence for impaired gamma-band

    oscillations in schizophrenia.

    62. Spencer, K. M., Salisbury, D. F., Shenton, M. E. &McCarley, R. W. Gamma-band steady-state responsesare impaired in first episode psychosis. Soc. Neurosci.

    Abstr.36, 122.2 (2006).63. Hong, L. E. et al. Evoked gamma band synchronization

    and the liability for schizophrenia. Schizophr. Res.70,293302 (2004).

    64. ODonnell, B. F. et al. Neural synchronization deficitsto auditory stimulation in bipolar disorder.Neuroreport15, 13691372 (2004).

    65. Winterer, G. et al. Schizophrenia: reducedsignal-to-noise ratio and impaired phase-lockingduring information processing. Clin. Neurophysiol.111, 837849 (2000).Is the first report on abnormal electrophysiological

    phase-synchrony (noise) being increased in

    schizophrenia and that it predicts cortical

    activation abnormalities in schizophrenia with high

    diagnostic specificity.66. Krishnan, G. P. et al. Steady state visual evokedpotential abnormalities in schizophrenia. Clin.Neurophysiol. 116, 614624 (2005).

    67. Jin, Y., Castellanos, A., Solis, E. R. & Potkin, S. G. EEGresonant responses in schizophrenia: a photic drivingstudy with improved harmonic resolution. Schizophr.Res.44, 213220 (2000).

    68. Clementz, B. A., Keil, A. & Kissler, J. Aberrant braindynamics in schizophrenia: delayed buildup andprolonged decay of the visual steady-state response.Brain Res. Cogn. Brain Res.18, 121129 (2004).

    69. Kim, D., Zemon, V., Saperstein, A., But ler, P. D. &Javitt, D. C. Dysfunction of early-stage visualprocessing in schizophrenia: harmonic analysis.Schizophr. Res.76, 5565 (2005).

    70. Avila, M. T., Hong, L. E., Moates, A., Turano, K. A. &Thaker, G. K. Role of anticipation in schizophrenia-related pursuit initiation deficits. J. Neurophysiol.95,593601 (2006).

    71. Barnes, G. R., Barnes, D. M. & Chakraborti, S. R.Ocular pursuit responses to repeated, single-cyclesinusoids reveal behavior compatible with predictivepursuit. J. Neurophysiol.84, 23402355 (2000).

    72. Thaker, G. K. et al. A model of smooth pursuit eyemovement deficit associated with the schizophreniaphenotype. Psychophysiology40, 277284 (2003).

    73. Diefendor, A. R. & Dodge, R. An experimental study ofthe ocular reactions of the insane from photographicrecords. Brain31, 451489 (1908).

    74. Hong, L. E. et al. Familial aggregation of eye-trackingendophenotypes in families of schizophrenic patients.

    Arch. Gen. Psychiatry63, 259264 (2006).Provides heritability estimates of the SPEM

    abnormality in families of schizophrenia probands.

    75. Tusa, R. J. & Ungerleider, L. G. Fiber pathways ofcortical areas mediating smooth pursuit eye movementsin monkeys.Ann. Neurol.23, 174183 (1988).

    76. Takagi, M., Zee, D. S. & Tamargo, R. J. Effects oflesions of the oculomotor cerebellar vermis on eyemovements in primate: smooth pursuit.

    J. Neurophysiol.83, 20472062 (2000).77. Newsome, W. T., Wurtz, R. H. & Komatsu, H. Relation

    of cortical areas MT and MST to pursuit eyemovements. II. Differentiation of retinal fromextraretinal inputs.J. Neurophysiol.60, 604620(1988).This with its accompanying paper dissects the

    SPEM function to highlight the critical role of the

    predictive mechanism in maintaining the image of a

    moving target on the fovea.78. Assad, J. A. & Maunsell, J. H. Neuronal correlates of

    inferred motion in primate posterior parietal cortex.Nature373, 518521 (1995).

    79. Tanaka, M. & Fukushima, K. Neuronal responsesrelated to smooth pursuit eye movements in theperiarcuate cortical area of monkeys. J. Neurophysiol.80, 2847 (1998).

    80. Hong, L. E. et al. Specific motion processing pathwaydeficit during eye tracking in schizophrenia: aperformance-matched functional magnetic resonance

    imaging study. Biol. Psychiatry57, 726732 (2005).Describes neuronal circuitry that mediates the

    predictive smooth pursuit and provides evidence of

    reduced activity in this circuit in schizophrenia.81. Hajos, M. Targeting information-processing deficit in

    schizophrenia: a novel approach to psychotherapeuticdrug discovery. Trends Pharmacol. Sci.27, 391398(2006).Reviews the neurophysiological abnormalities in

    patients with schizophrenia and their potential use

    for preclinical research, with a particular emphasis

    on auditory gating.

    82. Eriksson, J. & Villa, A. E. Event-related potentials inan auditory oddball situation in the rat. Biosystems79, 207212 (2005).

    83. Maxwell, C. R. et al. Effects of chronic olanzapine andhaloperidol differ on the mouse N1 auditory evokedpotential. Neuropsychopharmacology29, 739746(2004).

    R EVI EWS

    80 | jANuARy 2008 | voLumE 7 www.nat.m/w/

  • 8/4/2019 Neurophysiological Bio Markers for Drug Development in Schizophrenia. Nat Rev Drug Discov 2008

    14/16

    84. Umbricht, D. et al. Midlatency auditory event-relatedpotentials in mice: comparison to midlatencyauditory ERPs in humans. Brain Res.1019,189200 (2004).

    85. Maxwell, C. R. et al. Ketamine produces lastingdisruptions in encoding of sensory stimuli.

    J. Pharmacol. Exp. Ther.316, 315324 (2006).86. Slawecki, C. J., Thomas, J. D., Riley, E. P. & Ehlers,

    C. L. Neonatal nicotine exposure alters hippocampalEEG and event-related potentials (ERPs) in rats.Pharmacol. Biochem. Behav.65, 711718 (2000).

    87. Ehlers, C. L. & Somes, C. Long latency event-relatedpotentials in mice: effects of stimulus characteristicsand strain. Brain Res.957, 117128 (2002).

    88. Pineda, J. A., Foote, S. L., Neville, H. J. & Holmes,T. C. Endogenous event-related potentials in monkey:the role of task relevance, stimulus probability, andbehavioral response. Electroencephalogr. Clin.Neurophysiol. 70, 155171 (1988).

    89. Pineda, J. A., Foote, S. L. & Neville, H. J. Effects oflocus coeruleus lesions on auditory, long-latency,event-related potentials in monkey.J. Neurosci. 9,8193 (1989).

    90. Chen, C. M. et al. Functional anatomy andinteraction of fast and slow visual pathways inmacaque monkeys. Cereb. Cortex17, 15611569(2007).

    91. Light, G. A., Geyer, M. A., Clementz, B. A.,Cadenhead, K. S. & Braff, D. L. Normal P50suppression in schizophrenia patients treated withatypical antipsychotic medications.Am. J. Psychiatry157, 767771 (2000).

    92. Boutros, N. N., Gooding, D., Sundaresan, K.,Burroughs, S. & Johanson, C. E. Cocaine-dependenceand cocaine-induced paranoia and mid-latencyauditory evoked responses and sensory gating.Psychiatry Res.145, 147154 (2006).Demonstrates reduced auditory-evoked potentials

    and impaired auditory gating (P50, N100, P200) in

    chronic cocaine abusers.

    93. Adler, L. E. et al. Varied effects of atypical neurolepticson P50 auditory gating in schizophrenia patients.Am.

    J. Psychiatry 161, 18221828 (2004).94. Winterer, G. & Weinberger, D. R. Genes, dopamine

    and cortical signal-to-noise ratio in schizophrenia.Trends Neurosci .27, 683690 (2004).Is a comprehensive overview on the noise concept

    in schizophrenia and how different molecular

    mechanisms (dopamine, GABA, glutamate)

    contribute to cortical microcircuit stability by

    changing neural synchrony (noise).95. Harrison, P. J. & Weinberger, D. R. Schizophrenia

    genes, gene expression, and neuropathology: on thematter of their convergence. Mol. Psychiatry10,4068 (2005).

    96. Hill, S. Y. et al. Genetic association between reducedP300 amplitude and the DRD2 dopamine receptor

    A1 allele in children at high risk for alcoholism. Biol.Psychiatry43, 4051 (1998).

    97. Anokhin, A. P., Todorov, A. A., Madden, P. A., Grant,J. D. & Heath, A. C. Brain event-related potentials,dopamine D

    2receptor gene polymorphism, and

    smoking. Genet. Epidemiol.17 (Suppl 1), 3742(1999).

    98. Mulert, C. et al. A Ser9Gly polymorphism in thedopamine D

    3receptor gene (DRD3) and event-related

    P300 potentials. Neuropsychopharmacology31,13351344 (2006).

    99. Berman, S. M. et al. P300 development duringadolescence: effects ofDRD2 genotype. Clin.Neurophysiol. 117, 649659 (2006).

    100. Ehlis, A. C., Reif, A., Herrmann, M. J., Lesch, K. P. &

    Fallgatter, A. J. Impact ofcatechol-O-methyltransferase on prefrontal brainfunctioning in schizophrenia spectrum disorders.Neuropsychopharmacology32, 162170 (2007).

    101. Winterer, G. et al. COMT genotype predicts BOLDsignal and noise characteristics in prefrontal circuits.Neuroimage32, 17221732 (2006).Demonstrates that dopamine reduces cortical

    noise as measured with fMRI.

    102. Thaker, G. K., Wonodi, I., Avila, M. T., Hong, L. E. &Stine, O. C. Catechol O-methyltransferasepolymorphism and eye tracking in schizophrenia: apreliminary report.Am. J. Psychiatry161,23202322 (2004).

    103. Lin, C. H., Yu, Y. W., Chen, T. J., Tsa, S. J. & Hong, C. J.Association analysis for dopamine D

    2receptor Taq1

    polymorphism with P300 event-related potential fornormal young females. Psychiatr. Genet.11, 165168(2001).

    104. Tsai, S. J., Yu, Y. W., Chen, T. J., Chen, M. C. & Hong,C. J. Association analysis for dopamine D

    3receptor,

    dopamine D4

    receptor and dopamine transportergenetic polymorphisms and P300 event-relatedpotentials for normal young females. Psychiatr. Genet.13, 5153 (2003).

    105. Bramon, E. et al. Is there an association between theCOMTgene and P300 endophenotypes? Eur.Psychiatry21, 7073 (2006).

    106. Winterer, G. et al. Prefrontal electrophysiologic noiseand catechol-O-methyltransferase genotype in

    schizophrenia. Biol. Psychiatry60, 578584 (2006).Demonstrates that dopamine reduces electrophysi-ological noise.

    107. Benes, F. M. & Berretta, S. GABAergic interneurons:implications for understanding schizophrenia andbipolar disorder. Neuropsychopharmacology25, 127(2001).

    108. Lewis, D. A., Hashimoto, T. & Volk, D. W. Corticalinhibitory neurons and schizophrenia. Nature Rev.Neurosci.6, 312324 (2005).Reviews the evidence for abnormalities in inhibitory

    interneurons in schizophrenia.

    109. Whittington, M. A. & Traub, R. D. Interneurondiversity series: inhibitory interneurons and networkoscillations in vitro. Trends Neurosci.26, 676682(2003).

    110. Frodl-Bauch, T., Bottlender, R. & Hegerl, U.Neurochemical substrates and neuroanatomicalgenerators of the event-related P300.Neuropsychobiology40, 8694 (1999).

    111. Crook, J. M., Kisvarday, Z. F. & Eysel, U. T. GABA-induced inactivation of functionally characterized sitesin cat striate cortex: effects on orientation tuning anddirection selectivity. Vis. Neurosci.14, 141158(1997).

    112. Tadin, D., Lappin, J. S. & Blake, R. Fine temporalproperties of center-surround interactions in motionrevealed by reverse correlation.J. Neurosci.26,26142622 (2006).

    113. Greenblatt, D. J., Gan, L., Harmatz, J. S. & Shader,R. I. Pharmocokinetics and pharmacodynamics ofsingle-dose triazolam: electroencephalographycompared with the Digit-Symbol Substitution Test.Br. J. Clin. Pharmacol.60, 244248 (2005).

    114. Roschke, J. et al. Electrophysiological evidence for aninverse benzodiazepine receptor agonist in panicdisorder.J. Psychiatr. Res.33, 15 (1999).

    115. Porjesz, B. et al. Linkage disequilibrium between thebeta frequency of the human EEG and a GABA

    A

    receptor gene locus. Proc. Natl Acad. Sci. USA99,37293733 (2002).

    116. Edenberg, H. J. et al. Variations in GABRA2, encodingthe alpha 2 subunit of the GABA(A) receptor, areassociated with alcohol dependence and with brainoscillations.Am. J. Hum. Genet.74, 705714 (2004).

    117. Javitt, D. C. & Zukin, S. R. Recent advances in thephencyclidine model of schizophrenia.Am. J.Psychiatry148, 13011308 (1991).Reviews the role of NMDA dysfunction in the

    pathophysiology of schizophrenia.

    118. Coyle, J. T. & Tsai, G. NMDA receptor function,neuroplasticity, and the pathophysiology ofschizophrenia. Int. Rev. Neurobiol.59, 491515(2004).

    119. Tsai, G. et al. Abnormal excitatory neurotransmittermetabolism in schizophrenic brains.Arch. Gen.Psychiatry52, 829836 (1995).

    120. Sumiyoshi, T., Jin, D., Jayathilake, K., Lee, M. &Meltzer, H. Y. Prediction of the ability of clozapine totreat negative symptoms from plasma glycine andserine levels in schizophrenia. Int. J.

    Neuropsychopharmacol.8, 451455 (2005).121. Neeman, G. et al. Relation of plasma glycine, serine,

    and homocysteine levels to schizophrenia symptomsand medication type.Am. J. Psychiatry 162,17381740 (2005).

    122. Hashimoto, K. et al. Reduced d-serine to total serineratio in the cerebrospinal fluid of drug naiveschizophrenic patients. Prog. Neuropsychopharmacol.Biol. Psychiatry29, 767769 (2005).

    123. Harrison, P. J. & West, V. A. Six degrees of separation:on the prior probability that schizophreniasusceptibility genes converge on synapses, glutamateand NMDA receptors. Mol. Psychiatry11, 981983(2006).

    124. Steullet, P., Neijt, H. C., Cuenod, M. & Do, K. Q.Synaptic plasticity impairment and hypofunction ofNMDA receptors induced by glutathione deficit:relevance to schizophrenia. Neuroscience137,807819 (2006).

    125. Nilsson, L. K. et al. Elevated levels of kynurenic acid inthe cerebrospinal fluid of male patients withschizophrenia. Schizophr. Res.80, 315322 (2005).

    126. Kegeles, L. S. et al. Modulation of amphetamine-induced striatal dopamine release by ketamine inhumans: implications for schizophrenia. Biol.Psychiatry48, 627640 (2000).

    127. Javitt, D. C. et al. Reversal of phencyclidine-induceddopaminergic dysregulation by N-methyl-d-aspartatereceptor/glycine-site agonists.Neuropsychopharmacology29, 300307 (2004).

    128. Geyer, M. A., Krebs-Thomson, K., Braff, D. L. &Swerdlow, N. R. Pharmacological studies of prepulseinhibition models of sensorimotor gating deficits inschizophrenia: a decade in review.Psychopharmacology156, 117154 (2001).

    129. Linn., G. S. & Javitt, D. C. Phencyclidine (PCP)-induceddeficits of prepulse inhibition in monkeys. Neuroreport12, 117120 (2001).

    130. Oranje, B., Gispen-de Wied, C. C., Verbaten, M. N. &Kahn, R. S. Modulating sensory gating in healthyvolunteers: the effects of ketamine and haloperidol.Biol. Psychiatry52, 887895 (2002).

    131.Abel, K. M., Allin, M. P., Hemsley, D. R. & Geyer,M. A. Low dose ketamine increases prepulse inhibitionin healthy men. Neuropharmacology44, 729737(2003).

    132. Heresco-Levy, U. et al. High glycine levels areassociated with prepulse inhibition deficits in chronicschizophrenia patients. Schizophr. Res.91, 1421(2007).

    133. Javitt, D. C., Steinschneider, M., Schroeder, C. E. &Arezzo, J. C. Role of cortical N-methyl-d-aspartatereceptors in auditory sensory memory and mismatchnegativity generation: implications for schizophrenia.Proc. Natl Acad. Sci. USA93, 1196211967 (1996).

    134. Umbricht, D. et al. Ketamine-induced deficits inauditory and visual context-dependent processing inhealthy volunteers: implications for models ofcognitive deficits in schizophrenia.Arch. Gen.Psychiatry57, 11391147 (2000).References 133 and 134 demonstrate the ability

    of NMDA antagonists to reproduce

    neurophysiological markers of schizophrenia in

    animal and human models, respectively.

    135. Kreitschmann-Andermahr, I. et al. Effect of ketamineon the neuromagnetic mismatch field in healthyhumans. Brain Res. Cogn. Brain Res.12, 109116(2001).

    136. Umbricht, D., Koller, R., Vollenweider, F. X. & Schmid, L.Mismatch negativity predicts psychotic experiencesinduced by NMDA receptor antagonist in healthy

    volunteers. Biol. Psychiatry51, 400406 (2002).137. Umbricht, D. et al. Effects of the 5-HT

    2Aagonist

    psilocybin on mismatch negativity generation andAX-continuous performance task: implications forthe neuropharmacology of cognitive deficits inschizophrenia. Neuropsychopharmacology 28,170181 (2003).

    138.Avila, M. T., Weiler, M. A., Lahti, A. C., Tamminga,C. A. & Thaker, G. K. Effects of ketamine on leadingsaccades during smooth-pursuit eye movements mayimplicate cerebellar dysfunction in schizophrenia.Am.

    J. Psychiatry 159, 14901496 (2002).139. Weiler, M. A., Thaker, G. K., Lahti , A. C. & Tamminga,

    C. A. Ketamine effects on eye movements.Neuropsychopharmacology23, 645653 (2000).

    140. Bland, B. H., Declerck, S., Jackson, J., Glasgow, S. &Oddie, S. Septohippocampal properties ofN-methyl-d-aspartate-induced theta-band oscillationand synchrony. Synapse61, 185197 (2007).

    141. Leung, L. S. & Shen, B. Glutamatergic synaptic

    transmission participates in generating thehippocampal EEG. Hippocampus14, 510525(2004).

    142. Faulkner, H. J., Traub, R. D. & Whittington, M. A.Anaesthetic/amnesic agents disrupt beta frequencyoscillations associated with potentiation of excitatorysynaptic potentials in the rat hippocampal slice.Br. J.Pharmacol.128, 18131825 (1999).

    143. Freye, E., Latasch, L. & Levy, J. V. S.(+)-Ketamineattenuates increase in electroencephalograph activityand amplitude height of sensory-evoked potentialsduring rapid opioid detoxification.Anesth. Analg.102, 14391444 (2006).

    144. Freedman, R. et al. The genetics of sensory gatingdeficits in schizophrenia. Curr. Psychiatry Rep.5,155161 (2003).

    145.Adler, L. E. et al. Schizophrenia, sensory gating, andnicotinic receptors. Schizophr. Bull.24, 189202(1998).

    R EVI EWS

    NATuRE REvIEWS |drug discovery voLumE 7 | jANuARy 2008 |81

  • 8/4/2019 Neurophysiological Bio Markers for Drug Development in Schizophrenia. Nat Rev Drug Discov 2008

    15/16

    146. Hajos, M. et al. The selective 7 nicotinicacetylcholine receptor agonist PNU-282987[N-[(3R)-1-Azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride] enhances GABAergicsynaptic activity in brain slices and restores auditorygating deficits in anesthetized rats.J. Pharmacol. Exp.Ther.312, 12131222 (2005).Describes the effects of a selective 7 nicotinic

    receptor agonist on auditory gating and

    hippocampal oscillations in rats.147. ONeill, H. C., Rieger, K., Kem, W. R. & Stevens, K. E.

    DMXB, an 7 nicotinic agonist, normalizes auditorygating in isolation-reared rats. Psychopharmacology169, 332339 (2003).

    148. Stevens, K. E., Kem, W. R. & Freedman, R. Selective 7 nicotinic receptor stimulation normalizes chroniccocaine-induced loss of hippocampal sensory inhibitionin C3H mice. Biol. Psychiatry46, 14431450 (1999).

    149. Stevens, K. E., Kem, W. R., Mahnir, V. M. &Freedman, R. Selective 7-nicotinic agonistsnormalize inhibition of auditory response in DBA mice.Psychopharmacology136, 320327 (1998).

    150. Hurst, R. S. et al. A novel positive allosteric modulatorof the 7 neuronal nicotinic acetylcholine receptor:in vitro and in vivo characterization.J. Neurosci.25,43964405 (2005).

    151. Olincy, A. et al. Proof-of-concept trial of an 7nicotinic agonist in schizophrenia.Arch. Gen.Psychiatry63, 630638 (2006).Shows that a partial agonist on 7 nicotinic

    receptors improve P50 and neurocognitive function

    in patients with schizophrenia.

    152. Hollander, E. et al. RS 86 in the treatment ofAlzheimers disease: cognitive and biological effects.Biol. Psychiatry22, 10671078 (1987).

    153. Callaway, E., Halliday, R., Naylor, H. & Schechter, G.Effects of oral scopolamine on human stimulusevaluation. Psychopharmacology85, 133138(1985).

    154. Meador, K. J. Cholinergic, serotonergic, andGABAergic effects on the ERP. Electroencephalogr.Clin. Neurophysiol. Suppl.44, 151155 (1995).

    155. Dierks, T., Frolich, L., Ihl, R. & Maurer, K. Event-related potentials and psychopharmacology.Cholinergic modulation of P300. Pharmacopsychiatry27, 7274 (1994).

    156.Anokhin, A. P. et al. The P300 brain potential isreduced in smokers.Psychopharmacology149,409413 (2000).

    157. Thomas, A., Iacono, D., Bonanni, L.,DAndreamatteo, G. & Onofrj, M. Donepezil,rivastigmine, and vitamin E in Alzheimer disease:

    a combined P300 event-related potentials/neuropsychologic evaluation over 6 months.Clin. Neuropharmacol.24, 3142 (2001).

    158. Knott, V., Mohr, E., Mahoney, C., Engeland, C. &Ilivitsky, V. Effects of acute nicotine administration oncognitive event-related potentials in tacrine-treatedand non-treated patients with Alzheimers disease.Neuropsychobiology45, 156160 (2002).

    159. Knott, V. J. et al. Acute nicotine fails to alter event-related potential or behavioral performance indices ofauditory distraction in cigarette smokers. Nicotine Tob.Res.8, 263273 (2006).

    160. Neuhaus, A. et al. Persistent dysfunctional frontal lobeactivation in former smokers. Psychopharmacology186, 191200 (2006).

    161. Werber, E. A., Gandelman-Marton, R., Klein, C. &Rabey, J. M. The clinical use of P300 event relatedpotentials for the evaluation of cholinesteraseinhibitors treatment in demented patients.J. NeuralTransm.110, 659669 (2003).

    162. Harrison, J. B., Buchwald, J. S., Kaga, K., Woolf, N. J.& Butcher, L. L. Cat P300 disappears after septallesions. Electroencephalogr. Clin. Neurophysiol.69,5564 (1988).

    163. Tamminga, C. A. The neurobiology of cognition inschizophrenia.J. Clin. Psychiatry67 (Suppl 9), 913(2006).

    164. Sherr, J. D. et al. The effects of nicotine on specific eyetracking measures in schizophrenia. Biol. Psychiatry52, 721728 (2002).

    165. Rodriguez, R., Kallenbach, U., Singer, W. & Munk,M. H. Short- and long-term effects of cholinergicmodulation on gamma oscillations and responsesynchronization in the visual cortex.J. Neurosci.24,1036910378 (2004).

    166. Siok, C. J., Rogers, J. A., Kocsis, B. & Hajos, M.Activation of7 acetylcholine receptors augmentsstimulation-induced hippocampal theta oscillation.Eur. J. Neurosci.23, 570574 (2006).

    167. Buchanan, R. W., Freedman, R., Javitt, D. C.,Abi-Dargham, A. & Lieberman, J. A. Recent advancesin the development of novel pharmacological agentsfor the treatment of cognitive impairments inschizophrenia. Schizophr. Bull.33, 11201130(2007).

    168. Gray, J. A. & Roth, B. L. The pipeline and future ofdrug development in schizophrenia. Mol. Psychiatry12, 904922 (2007).

    169. Dunlop, J. et al. Pharmacological profile of the5-HT(2C) receptor agonist WAY-163909; therapeutic

    potential in multiple indications.CNS Drug Rev.12,167177 (2006).170. Siuciak, J. A. et al. CP-809,101, a selective 5-HT

    2C

    agonist, shows activity in animal models ofantipsychotic activity. Neuropharmacology52,279290 (2007).

    171. Zhang, Z. J. et al. Beneficial effects of ondansetron asan adjunct to haloperidol for chronic, treatment-resistant schizophrenia: a double-blind, randomized,placebo-controlled study. Schizophr. Res.88, 102110(2006).

    172. Mitchell, E. S. & Neumaier, J. F. 5-HT6

    receptors: anovel target for cognitive enhancement. Pharmacol.Ther.108, 320333 (2005).

    173. Fox, G. B. et al. Pharmacological properties ofABT-239[4-(2-{2-[(2R)-2-Methylpyrrolidinyl]ethyl}- benzofuran-5-yl)benzonitrile]: II. Neurophysiologicalcharacterization and broad preclinical efficacy incognition and schizophrenia of a potent and selectivehistamine H

    3receptor antagonist.J. Pharmacol. Exp.

    Ther.313, 176190 (2005).174. Patil, S. T. et al. Activation of mGlu2/3 receptors as a

    new approach to treat schizophrenia: a randomizedPhase 2 clinical trial. Nature Med.13, 11021107(2007).

    175. Menniti, F. S., Faraci, W. S. & Schmidt, C. J.Phosphodiesterases in the CNS: targets for drugdevelopment. Nature Rev. Drug Discov.5, 660670(2006).

    176. Porteous, D. J., Thomson, P., Brandon, N. J. & Millar,J. K. The genetics and biology of DISC1 anemerging role in psychosis and cognition. Biol.Psychiatry60, 123131 (2006).

    177. DSouza, D. C. Cannabinoids and psychosis. Int. Rev.Neurobiol. 78, 289326 (2007).

    178. Gill, C. H., Soffin, E. M., Hagan, J. J. & Davies, C. H.5-HT

    7receptors modulate synchronized network

    activity in rat hippocampus.Neuropharmacology42,8292 (2002).