neurology advanced mr imaging in epilepsy v lai

69
Advanced MR Imaging in Epilepsy Dr. Vincent Lai MBChB, FRCR(UK), FHKCR, FHKAM(Radiology) Consultant Radiologist, Hong Kong BapBst Hospital Honorary Clinical Assistant Professor, University of Hong Kong

Upload: jfim

Post on 11-May-2015

338 views

Category:

Health & Medicine


4 download

TRANSCRIPT

Page 1: Neurology advanced mr imaging in epilepsy v lai

Advanced  MR  Imaging  in  Epilepsy

Dr.  Vincent  Lai  MBChB,  FRCR(UK),  FHKCR,  FHKAM(Radiology)  Consultant  Radiologist,  Hong  Kong  BapBst  Hospital  Honorary  Clinical  Assistant  Professor,  University  of  Hong  Kong

Page 2: Neurology advanced mr imaging in epilepsy v lai

Overview

General  imaging  findings  &  concept    Various  funcBonal  imaging  techniques    Our  preliminary  work  

Page 3: Neurology advanced mr imaging in epilepsy v lai

Introduc:on

•  Very  heterogeneous  imaging  spectrum    

•  IdenBficaBon  of  epileptogenic  lesion  is  crucial  in  achieving  seizure  free  outcome  aPer  surgery  

Page 4: Neurology advanced mr imaging in epilepsy v lai

E:ologies  of  Epilepsy MalformaBon  of  corBcal  development Focal  corBcal  dysplasia  

Heterotopia  Polymicrogyria

Mesial  temporal  sclerosis

Tumor DysembryoplasBc  neuroepithelial  tumor  Ganglioglioma  Astrocytoma  Oligodendroglioma  Cavernoma

Vascular  cerebral  insult Chronic  corBcal/subcorBcal  infarct  Arteriovenous  malformaBon  Amyloid  angiopathy

Nonvascular  cerebral  insult Post-­‐traumaBc  PostoperaBve  PostencephaliBs  Postanoxia

Others Abnormal  venous  drainage  Arachnoid  cyst/  neuroepithelial  cyst  Focal  calcificaBon/  corBcal  atrophy

Page 5: Neurology advanced mr imaging in epilepsy v lai

Goal  of  Epilepsy  Imaging

Detec:on  of  epileptogenic  lesion    

Localiza:on  of  epileptogenic  lesion    

TriangularizaBon  amongst  Seizure  emiology,  EEG  &  Imaging

Page 6: Neurology advanced mr imaging in epilepsy v lai

Current  MR  Imaging  Considera:on High  resoluBon  structural  imaging  

3D  MPRAGE/SPGR  T1W,  Oblique  Coronal/3D  T2W  &  FLAIR  T2W  

SuscepBbility  weighted  imaging  FuncBonal  imaging  

Radionuclide,  T2  relaxometry,  MRS,  Diffusion,  ASL,  MR  volumetry  

Page 7: Neurology advanced mr imaging in epilepsy v lai

Are  we  doing  well?  

ProblemaBc  issue  in  MR-­‐negaBve  paBents  

Does  this  really  exist?

Page 8: Neurology advanced mr imaging in epilepsy v lai

Where  are  we  upto  ?

•  2/3  of  MR  negaBve  paBents  have  idenBfiable  lesion  (oOen  subtle  MCD)  on  3.0  T  – Temporal  50%  – Frontal  40%  – Majority  is  FCD  

Knake  S  et  al.  2005  Neurology  

•  65%  of  drug  resistant  epilepsy  has  idenBfiable  lesion      – Frequently  MTS

Vezina  LG  2011  Epilepsia  

Page 9: Neurology advanced mr imaging in epilepsy v lai

M/  22  yrs  old

LeO  hippocampal  FCD

Page 10: Neurology advanced mr imaging in epilepsy v lai

Taylor’s  FCD  with  balloon  cells,  radial  band

Colombo  N  et  al.  2003  AJNR

Page 11: Neurology advanced mr imaging in epilepsy v lai

F/4.5  yrs  old

Right  insular  FCD

Page 12: Neurology advanced mr imaging in epilepsy v lai

Malforma:on  of  Cor:cal  Development

Page 13: Neurology advanced mr imaging in epilepsy v lai

Agyria Polymicrogyria

Grant PE et al. 1997 AJNR

Page 14: Neurology advanced mr imaging in epilepsy v lai

TPO  Syndrome/  Posterior  Quadran:c  Cor:cal  Dysplasia

Page 15: Neurology advanced mr imaging in epilepsy v lai

Low  Grade  Astrocytoma

Page 16: Neurology advanced mr imaging in epilepsy v lai

MTS

Page 17: Neurology advanced mr imaging in epilepsy v lai

Parahippocampus

Forms  mesial  &  inferior  gyrus  of  temporal  lobe  

 Includes:  Entorhinal  &  perirhinal  corBces  Parahippocampal  cortex    Contributes  to:  Seizure  iniBaBon  epileptogenesis  

Page 18: Neurology advanced mr imaging in epilepsy v lai

Parahippocampal  epilepsy

A  subset  of  MTLE  A  cause  of  MR-­‐negaBve  MTLE  

 T2W  hyperintense  signal  in  parahippocmapal  WM  

Blurring  of  GW  juncBon  Normal  corBcal  thickness

Pillay  N  er  al.  2009  Epilepsia

Page 19: Neurology advanced mr imaging in epilepsy v lai

Challenging  Issue

Microdysgenesis  of  neocortex  or  subtle  MCD  

Majority  of  MR-­‐nega:ve  PET-­‐posi:ve  cases

GeneBc Early  

environmental  factors

Disrup:on  of  normal  cor:cal  development

Mild MCD (I & II) in 12-40%: Carne RP et al. 2004 Brain; Huba R et al. 2012 Epliepsy & Behavior

Page 20: Neurology advanced mr imaging in epilepsy v lai

So,  how  can  we  do  it?

Page 21: Neurology advanced mr imaging in epilepsy v lai

Radionuclide  Imaging

PET  vs  SPECT  

Noninvasive  Presurgical  mapping  

Uses:    •  MR-­‐negaBve  •  Several  lesions  •  Discordant  findings  between  EEG  &  structural  imaging

Page 22: Neurology advanced mr imaging in epilepsy v lai

Advanced  MR  Imaging  Techniques

T2  Relaoxmetry  MR  Volumetry  

MR  Spectroscopy  Diffusion  Tensor  Imaging  Arterial  Spin  labeling

Page 23: Neurology advanced mr imaging in epilepsy v lai

T2  Relaxometry

T2  relaxaBon  Bme  ↑  in  the  epilepBc  focus  Woermann  et  al.  1998;  Namer  et  al.  1998;  Van  Paesschen  et  al.  1995;  Jackson  et  al.  1993)  

 

SuggesBon  of  superior  detecBon  rate  as  compared  with  volumetry  

Bernasconi  A  et  al.  2000  Neuroimage    

But  not  confirmed  in  later  and  recent  study  with  more  advanced  MR  volumetry:  –  Improved  detec_on  rate  in  19%  of  pa_ents  only  

Coan  AC  et  al.  2013;  AJNR

Page 24: Neurology advanced mr imaging in epilepsy v lai

T2  Relaxometry

False  +ve  in  upto  50%  of  visually  detected  T2  signal  changes  in  hippocampus  

Sumar I et al. 2011; Epilepsy research

Voxel  based  quan:ta:ve  analysis  is  more  reliable  

Page 25: Neurology advanced mr imaging in epilepsy v lai

MR  Volumetry i.        Segmenta_ons  by  VBM  ii.  Orienta_on-­‐corrected,  spaBally  normalized,  Bssue  classified  iii. Par__on  the  whole-­‐brain  to  GM,  WM  and  iv.     FIRST:  fieng  a  mesh  to  the  surface  of  the  amygdala  &                        hippocampus  

Page 26: Neurology advanced mr imaging in epilepsy v lai

Manual  vs  automated  segmenta:on

In  a  study  of  46  paBent  Manual  method  vs  various  automated  methods  

LocalInfo  >  HAMMER  >  FreeSurfer  

 

Akhondi-Asl A et al. 2011 Neuroimage

LateralizaBon  accuracy:  Manual  (78%)  

Automated  (74%)  

Page 27: Neurology advanced mr imaging in epilepsy v lai

Quan:ta:ve  MR  volumetry  in  hippocampal  atrophy

Automated  MR  volumetry  Hippocampal  asymmetry  (pa_ents  &  normal)  

High  discriminaBng  power  Sensi_vity  89.5%;  Specificity  94.1%  

LateralizaBon  accuracy:  88%  (visual  inspec_on:  76-­‐85%)

Farid N et al. 2012 Radiology

Page 28: Neurology advanced mr imaging in epilepsy v lai

?  Performance  in  3T

In  a  study  of  203  paBents  with    hippocampal  sclerosis…    

Coan AC et al. 2013 AJNR

Help  ↑  detec:on  rate  in  28%  of  pa:ents  with  hippocampal  

sclerosis

Page 29: Neurology advanced mr imaging in epilepsy v lai

Pi\alls

 reflects  a  combinaBon  of    

 cor:cal  thickness    

&    surface  area  measurements

Page 30: Neurology advanced mr imaging in epilepsy v lai

Morphological  analysis Average  convexity  (Fischl  et  al.  1999)  Sharpness/  Curvedness/  Folding  index  (Pienaar  et  al.  2008)  GyrificaBon  index  (Schaer  et  al.  2008)  Sulcal  paiern  (Kim  et  al.  2008)  

Shape  parameter  -­‐  Jacobian  matrix  (Ronan  et  al.  2011)  Surface  area/geometric  distorBon  (Alhusaini  et  al.  2012)  

Reflects changes in underlying connectivity and white matter tracts

Page 31: Neurology advanced mr imaging in epilepsy v lai

So,  they  advocate…

Surface-­‐based  MRI  morphometry    post-­‐processing    surface  reconstruc_on    morphometric  measures    lesion  tracing  

 

Sn  92%,  Sp  96%

Thesen T et al. 2011 Open Access

Page 32: Neurology advanced mr imaging in epilepsy v lai

MR  Spectroscopy

Page 33: Neurology advanced mr imaging in epilepsy v lai

MRS  –  General  Principles Molecules/  Metabolites

Func:on/  Clinical  relevance

NAA Marker  of  neuronal  density  &  viability  

Cr Marker  for  energy–dependent  system

Cho Marker  of  increased  inflammatory/glioBc  process  &  pathological  changes  in  membrane  turnover

Lactate Elevated  aPer  seizure  &  in  hypoxia/ischemic  injury  Mitochondral  disorder

Glutamate Major  excitatory  neurotransmiier,  toxic  if  elevated  leading  to  neuronal  death

ml Marker  of  gliosis

Page 34: Neurology advanced mr imaging in epilepsy v lai

Typical  Spectra Short  TE    (35  ms)

Long  TE    (144  ms)

Very  Long  TE    (288  ms)

Page 35: Neurology advanced mr imaging in epilepsy v lai

Single  vs  Mul:-­‐voxel  Spectroscopy

Higher  SNR  Short  acquisiBon  Bme  (~3  mins)    Metabolic  disease  1.  1  voxel  at  BG  2.  3  voxels  at  CS,  LN,  OP  cortex    Temporal  lobe  epilepsy  2  voxels  at  bilateral  hippocampi  

Single-­‐voxel   Mul:-­‐voxel  

Larger  volume  of  informaBon  Long  acquisiBon  Bme  (~8  mins)  Allow  3D  acquisiBon    

Page 36: Neurology advanced mr imaging in epilepsy v lai

Technical  Considera:ons •  Higher  magneBc  field  strength  (higher  SNR)  

•  MulBchannel  (32-­‐channel)  receiver  coils  (higher  SNR)  Keil  B  et  al.  2012  Magn  Reson  Med  

 

•  Shimming  (maximise  B0  homogeneity)  Kanayanma  S  et  al.  1996  Magn  Reson  Med;  Hetherington  HP  et  al.  2006  Magn  Reson  Med  

 

•  Fast  spiral  acquisiBon  (allow  fast  spa_al  encoding)  Andronesi  OC  et  al.  2012  Radiology  

   

•  AdiabaBc  pulses  (compensate  for  radiofrequency  inhomgeneity)  Garwood  M  et  al.  1989  Magn  Reson  Med;  Andronesi  OC  et  al.  2010  J  Magn  Reson    

Page 37: Neurology advanced mr imaging in epilepsy v lai

Role  of  MRS

Screening  of  metabolic  derangement    Adjuvant  in  evaluaBon  of  medically  refractory  TLE      CharacterizaBon  of  lesions/  masses    ?Localizing  techniques  in  extratemporal  epilepsy

Page 38: Neurology advanced mr imaging in epilepsy v lai

MRS Screening  of  metabolic  derangement  

↓  Cho  in  normal  appearing        cerebellar  WM  (80%)      peritrigonal  WM  (67%)      corBcal  GM  (60%)  

↓  NAA/Cr  in  normal  appearing      cerebellum  (93%)      cortex  (87%)  

↑  Amino  acids  &  Lactate  

Bianchi C et al. 2003 AJNR

Mitochondrial  disorders  

Page 39: Neurology advanced mr imaging in epilepsy v lai

MRS Screening  of  metabolic  derangement  

Cr  deficiency  Prevalence:  0.25%  Inherited  enzymaBc  defects:      AGAT      GAMT      SLC6A8    

 

↓  Cr  in  normal  brain  

Arias A et al. 2007 Clin Biochem

EnzymaBc  disorders  

Page 40: Neurology advanced mr imaging in epilepsy v lai

MRS Adjuvant  in  evaluaBon  of  medically  refractory  TLE    

↓  NAA  

↓  NAA/Cr  raBo    86%  agreement    with  EEG  (c.f.  83%  for  volumetry  with  EEG)    

12%  in  MR-­‐negaBve  TLE  

Cendes F et al. 1997 Ann Neurol; Kuzniecky R et al. 1998 Neurology

TLE  

Page 41: Neurology advanced mr imaging in epilepsy v lai

MRS CharacterizaBon  of  lesions/  masses  

FCD    ↓  NAA/Cr  raBo  ↑  GABA,  akanine,  tyrosine,  lactate,  inositol  

No  elevaBon  in  Cho/NAA    Pathology:  type  IIB  FCD  

Caruso PA et al. 2013 Neuroimag Clin N Am

FCD vs  Neoplasm  

Page 42: Neurology advanced mr imaging in epilepsy v lai

MRS CharacterizaBon  of  lesions/  masses  

Astrocytoma    ↓  NAA,    ↑    Cho  

↑      Cho/NAA  ,  ↓    NAA/Cr raBos    Pathology:  Angiocentric  astrocytoma  

Caruso PA et al. 2013 Neuroimag Clin N Am

FCD  vs  Neoplasm  

Page 43: Neurology advanced mr imaging in epilepsy v lai

MRS LocalizaBon  in  nonlesional  epilepsy  

Using  MVS  &  subdural  electrodes    Areas  of  ↑  Cho/NAA    &  ↓  NAA/Cr  

raBos  overlapped  with  ictal  zones  

 

Krsek P et al. 2007 Eur Radiol

FCD  

Page 44: Neurology advanced mr imaging in epilepsy v lai

Diffusion  Tensor  Imaging

Page 45: Neurology advanced mr imaging in epilepsy v lai

DTI  –  General  Principle

Measurement  of:    

Magnitude  &  Direc:on    Of  

water  diffusion  

Indirect  evalua:on  of  integrity  of  axonal  microenvironment  

anisotropic

Page 46: Neurology advanced mr imaging in epilepsy v lai

Quan:fica:on

Frac:onal  Anisotropy  (FA)

Ranges  from  0  –  1    

0:  isotropic  diffusion  1:  anisotropic  diffusion

MD

λ1,  λ2,  λ3

Normal  fiber  tracts:    

Anisotropic  (high  FA)    

Degenerated  fiber  tracts:    

↓  FA  Wallerian  degenera_on  

Demyelina_on/  dysmyelina_on  Maldevelopment

Page 47: Neurology advanced mr imaging in epilepsy v lai

FCD Significant  reducBon  of  FA  in  underlying  subcorBcal  WM  

 HypomyelinaBon    ?  SeneiBvity    

Gross DW et al. 2005 Can J Neurol Sci

Technical consideration: Tesla; no of gradient…

Page 48: Neurology advanced mr imaging in epilepsy v lai

MTLE

Widespread  WM  changes    

 ↓  FA  values  

PosiBve  correlaBon  with  hippocampal  volume

Scanlon C et al. 2013 J Neurol; Oquz KK et al. 2013; AJNR

Page 49: Neurology advanced mr imaging in epilepsy v lai

Arterial  Spin  Labeling

Noninvasive  EvaluaBon  of  CBF  

Interictal  –  hypoperfused;  Ictal  -­‐  hyperperfused Wolf et al. 2001 AJNR; Madan N et al. 2009 Epilepsia

Page 50: Neurology advanced mr imaging in epilepsy v lai

15  children  18F-­‐FDG  PET  and  DTI  MRI    Hypometabolism  correlates  with  DTI  indices  

MR+ve  &  MR-­‐ve  pa_ents

Correla:on  with  Radionuclide  Imaging

Lippe S et al. 2012 Epileptic disord

Page 51: Neurology advanced mr imaging in epilepsy v lai

Our  Preliminary  Work…

Page 52: Neurology advanced mr imaging in epilepsy v lai

T1  rho  MR  Imaging

Provides  informaBon  on  slow  molecular  moBon  –  Transverse  magneBzaBon  of  T1  is  “locked”  by  spin-­‐lock  frequency  –  Made  to  decay  slower  –  Followed  by  convenBonal  imaging  –  GeneraBon  of  T1rho  map  

In  neuroimaging,  has  been  uBlized  in:  –  Brain  tumors  –  AD  and  Parkinson’s  disease  

Page 53: Neurology advanced mr imaging in epilepsy v lai

Hypothesis  &  Aim

Hypothesis:      

T1  rho  imaging  is  able  to  reflect  early  neuronal  loss  in  the  epileptogenic  zone  

   

Aim:  Determine  the  feasibility  of  noninvasive  T1  rho  MR  

imaging  in  idenBficaBon  &  lateralizaBon  of  epileptogenic    zone

Page 54: Neurology advanced mr imaging in epilepsy v lai

Inclusion  criteria MR-­‐posi:ve  MTL  epilepsy

i)  PaBents  with  established  MTL  epilepsy  by  EEG,  seizure  semiology  and  MR  proven  MTS  

ii)  Unilateral  disease  iii) No  history  of  epilepsy  surgery  iv) No  other  epileptogenic  focus

Normal  subjects

i)  No  known  epilepsy  or  any  structural  lesion  idenBfied  on  MR  brain  imaging  

ii)  No  history  of  cerebral  disease  iii) No  history  of  brain  surgery

Included:  15  normal  subjects;  7  pa_ents  2  pa_ents  excluded  (significant  mo_on  ar_facts  &  bilateral  MTS)  

Page 55: Neurology advanced mr imaging in epilepsy v lai

Scanning  parameters 3.0  Tesla  MR  scanner,  uBlizing  a  8-­‐channel  head  coil.  

T2  relaxometry:  •  Sequence:  TSE;  TR/TE  (ms):  1868/20;  FOV(mm):  240*240;  Matrix:  268*268;  Slice  

thickness:  3  mm;  Gap:  0;  Scan  Bme:  6  min  42  sec.  

T1rho:  •  Sequence:  B-­‐TFE;  FOV(mm):  240*240;  Matrix:  160  160;  During  of  spin-­‐lock  pulse  

(ms):  1,  10,  20,  30,  40;  Spin-­‐lock  frequency:  500  Hz;  TI  (ms):  860;  Slice  thickness:  3  

mm;  Bandwidth:  130  Hz/pixel;  Echo  train  length:  4;  Scan  Bme:  9  min  10  sec.  

3D  T1-­‐weighted  MPRAGE:  •  Sequence:  MPRAGE;  TR/TE:  7.0/3.1  msec;  Flip  angle:  8;  FOV  (mm):  250*250;  Matrix:  

256*256;  Slice  thickness:  1  mm;  Gap:  0.  

Page 56: Neurology advanced mr imaging in epilepsy v lai

ROIs  defini:on  –  on  T2W  

Manual  drawing  of  ROI  to  contour:  

 Amygdala    Hippocampal  head    Hippocampal  body    Hippocampal  tail  

 Verified  against  automated  ROIs            -­‐comparable  results            -­‐  no  significant  differences    Manual  ROI  is  accurate    

Page 57: Neurology advanced mr imaging in epilepsy v lai

ROIs  Coregistra:on

To  obtain  the  mean  values  &  SD  of:    -­‐T1  rho  value    -­‐T2  relaxaBon  Bme  

T2W T2  Relaxometry T1rho

Asymmetric  RaBo  

Page 58: Neurology advanced mr imaging in epilepsy v lai

Sta:s:cal  Analysis

•  Gaussian  distribuBon  and  homogeneity  tests  •  Paired  t-­‐test  between  leP  and  right  side  for  each  group  

•  StandardizaBon  of  T2  relaxometry  and  T1rho  values  according  to  the  corresponding  values  of  the  normal  control  group  through  Z-­‐score  transformaBon:    

z  =  (X  -­‐  μ)  /  σ  

•  Abnormal  if:    >2  SD  away  from  the  mean  of  the  normal  group:  z  >  2  or  z  <  -­‐2  

 

 p<0.05  will  be  considered  as  sta_s_cal  significant.  

Page 59: Neurology advanced mr imaging in epilepsy v lai

Results  –  Normal  Subjects     

Right  (mean±SD)

Lek  (mean±SD)

Asymmetric  Ra:o

SD

T2  relaxometry

Amygdala 95.1.  ±  3.12 96.20  ±  3.14 0.9863 0.0122

Hippo  Head 96.51  ±  3.31 97.12  ±  3.49 0.9841 0.0210

Hippo  Body 90.79  ±  4.72 91.27  ±  3.92 0.9876 0.0085

Hippo  Tail 86.69  ±  6.33 87.83  ±  5.59   0.9849 0.0124

T1  rho

Amygdala 144.89  ±  35.22 144.74  ±  36.39 0.9888 0.0073

Hippo  Head 140.26  ±  35.56 139.69  ±  36.27 0.9896 0.0076

Hippo  Body 133.58  ±  34.55 134.12  ±  33.75 0.9888 0.0085

Hippo  Tail 133.97  ±  34.8   134.49  ±  34.61   0.9880 0.0060

Note:  Asymmetry  =  Min(L,  R)  /  Max(L,  R)                        SD  =  standard  deviaBon

The  respec_ve  asymmetric  ra_o  were  then  used  as  reference  for  comparison  in  pa_ents’  group  mean  +/-­‐  2SD      

Page 60: Neurology advanced mr imaging in epilepsy v lai

Parametric  Maps  of  Normal  Subject  

Page 61: Neurology advanced mr imaging in epilepsy v lai

F/22  yrs  old;  Lek  MTS  

Page 62: Neurology advanced mr imaging in epilepsy v lai

M/  45  yrs  old;  Lek  MTS

Page 63: Neurology advanced mr imaging in epilepsy v lai
Page 64: Neurology advanced mr imaging in epilepsy v lai

Accuracy  of  T2  relaxometry  &  T1  rho  results    Comparison  against  Volumetry

Amyg   Hipp  Head   Hipp  Body   Hipp  Tail  T2R   T1rho   Volume   T2R   T1rho Volume   T2R   T1rho   Volume   T2R   T1rho   Volume  

IYY   y   y   y y y NKY   y   y y y y y y y WYY   y   y y   y y y   Y y y   y   y  

CYY   y   y y y   y y y y CHY   y   y y   y y y   y y y y FKY   y   y   y y   y y y   y y y   y   y  CYSA   y   y   y y y   y y y   Y   y  

T2  relaxometry:      Sn  =  60.9%  (14/23);  Sp  =  100.0%  (4/4)    T1rho:    Sn  =  100.0%  (24/24);  Sp  =  50.0%  (2/42)  

Page 65: Neurology advanced mr imaging in epilepsy v lai

Distribu:on  of  Asymmetric  Ra:os

Page 66: Neurology advanced mr imaging in epilepsy v lai

F/7  yrs  old;  GTC  seizure;  MR-­‐ve

Potential role in detecting WM changes

Page 67: Neurology advanced mr imaging in epilepsy v lai

Limita:ons/  Improving  work Recruit  more  subjects  (paBents  and  normal)      to  further  validate  diagnos_c  value  of  T1rho  

Lack  of  histopathological  correlaBon  Perform  DTI  analysis      to  test  the  feasibility  in  detec_ng  WM  changes  

 

Plane  of  imaging  -­‐  coronal  3D  whole  brain  imaging  techniques  Use  of  longer  spin  lock  Bmes  

     

Page 68: Neurology advanced mr imaging in epilepsy v lai

T1  rho  MR  Imaging  

•  Feasible  in  idenBficaBon  of  epileptogenic  zone  

•  A  sensi:ve  marker      more  sensi_ve  than  T2  relaxometry      more  sensi_ve  than  volumetry  

•  Can  potenBally  detect  early  molecular  changes  

Page 69: Neurology advanced mr imaging in epilepsy v lai

Conclusion •  Wide  variety  of  eBologies  

MCD,  MTS  

•  Concept  of  MR-­‐negaBve  epilepsy  Does  it  really  exist?  

•  Availability  of  various  advanced  MR  imaging  techniques  +  limitaBon  

Feasibility  in  clinical  prac_se?  

•  Promising  result  of  T1rho  imaging

Thank you