neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on...

28
Manganese Exposure 1 Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children Jeronda Scott and Melissa Miller Clark University

Upload: melissa-miller

Post on 12-Apr-2017

117 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    1  

 

 

 

 

 

 

 

 

 

 

 

Neurodevelopmental  impacts  of  prenatal  drinking  water  exposure  to  manganese  

and  other  metals  on  children  

Jeronda  Scott  and  Melissa  Miller  

Clark  University  

 

 

 

 

 

 

 

 

Page 2: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    2  

 

Neurodevelopmental  impacts  of  prenatal  drinking  water  exposure  to  manganese  

and  other  metals  on  children  

 

Jeronda  Scott  and  Melissa  Miller  

Abstract  

The  aim  of  this  paper  was  to  review  the  scientific  research  published  to  date  on  the  

potential  effects  on  neurodevelopment  and  behavioral  disorders  in  children  

exposed  to  manganese  and  other  metals  via  drinking  water  and  optimum  

biomarkers  to  measure  exposure.  This  was  done  by  using  online  research  databases  

such  as  Google  Scholar  and  PubMed,  etc.  It  was  found  that  there  is  an  association  

between  exposure  to  manganese  and  neurodevelopmental  deficits  in  young  

children,  and  that  there  are  large  gaps  in  the  body  of  research  that  must  be  done  to  

better  understand  these  issues.  Improvements  to  exposure  limits  must  be  made.  We  

hope  that  further  research  on  optimal  biomarkers,  such  as  dentine,  will  help  to  

contribute  to  the  knowledge  of  negative  neurological  impacts  from  manganese  

exposure.  

1.  Introduction  

Manganese  (Mn)  is  an  essential  nutrient  found  in  all  living  organisms  and  is  

naturally  present  in  rocks,  soil,  water,  and  food  making  it  abundant  in  the  

environment.  It  is  important  to  understand  its  potential  impacts  not  only  because  of  

its  natural  abundance  but  also  because  it  is  a  recent  gasoline  additive  and  may  be  

even  more  widespread  in  the  environment  in  the  future  (Schettler,  Solomon,  &  

Page 3: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    3  

Valenti,  2000).  Mn  is  required  for  normal  amino  acid,  lipid,  protein,  and  

carbohydrate  metabolism  (Erikson,Thompson,  &  Aschner,  2007)).  However,  

overexposure  to  Mn  can  have  significant  neurotoxic  effects,  and  it  is  likely  that  there  

is  a  greater  effect  on  fetuses,  newborns,  and  young  children.  Due  to  lack  of  research,  

Mn  concentrations  in  drinking  water  are  not  currently  regulated  in  the  United  

States.  Health  based  guidelines  for  the  maximum  level  of  Mn  in  drinking  water  have  

been  established  by  the  EPA,  and  are  currently  set  at  300  µg/L  (U.S.  EPA  2004).  

While  there  is  a  healthy  amount  of  research  analyzing  the  effects  of  postnatal  and  

occupational  exposure  to  Mn,  there  is  a  lack  of  research  and  evidence  of  the  effects  

of  Mn  exposure  on  a  more  vulnerable  group,  babies  in  utero  and  young  children.  

The  Holliston  Health  Project  is  a  collaborative  initiative  to  examine  if  

children  in  the  town  of  Holliston,  Massachusetts  are  being  exposed  to  detrimental  

levels  of  chemicals,  and  if  this  exposure  is  leading  to  any  adverse  health  effects.  In  

this  literature  review  we  closely  examine  Mn  and  other  heavy  metals  and  their  

effects  on  children  from  in  utero  to  age  10.  The  purpose  of  this  literature  review  is  to  

support  the  Holliston  Health  Project  by  providing  an  in-­‐depth  look  at  the  state  of  

research  for  a  variety  of  chemicals  and  their  potential  impact  on  

neurodevelopmental-­‐cognitive-­‐behavioral  outcomes  from  exposure  during  

pregnancy,  and  biomarkers  that  can  be  used  to  measure  those  exposures.    

 

2.  Background  

2.1  Manganese  Metabolism  in  Children  

Page 4: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    4  

Mn  is  crucial  to  bone  and  tissue  development  as  well  as  the  immune  system.  

However,  there  are  many  correlations  between  excessive  postnatal  exposure  to  Mn  

and  interference  with  normal  brain  development  (Wasserman  et  al.  2006,  Bouchart  

et  al.  2010,  Khan  et  al.  2011).  Too  much  exposure  can  cause  Mn  to  accumulate  in  the  

brain,  particularly  the  central  nervous  system,  leading  to  neurological  damage.  Since  

Mn  is  an  essential  element,  it  stands  that  there  should  be  a  level  above  which  

negative  impacts  will  occur.    

Infants  and  young  children  face  higher  risks  from  exposure  to  metals  than  

adults  because  adults  have  fully  developed  homeostatic  mechanisms  which  limit  

absorption  of  ingested  metals.  Because  infants  and  young  children  have  not  

completely  developed  these  mechanisms,  their  bodies  are  unable  to  correctly  

process  these  metals,  and  retention  of  metals  is  higher  in  infants  than  in  adults.  

According  to  Lönnerdal  (1994)  bile  flow  is  low  in  infants,  which  may  result  in  a  

lower  excretion  of  Mn  via  bile,  causing  higher  retention  of  Mn  in  tissue.  Moreover,  

certain  tissue  sites  have  a  high  affinity  for  Mn,  and  although  these  sites  are  saturated  

in  adults,  they  strongly  retain  Mn  in  infants  (Ljung  &  Vahter,  2007).  

There  is  an  increasing  body  of  evidence  that  internal  and  external  exposures  

to  chemicals  and  metals  cause  a  variety  of  physiological  impacts  at  different  

developmental  stages.  As  a  consequence,  windows  of  vulnerability  open  when  

susceptibility  to  environmental  chemicals  is  heightened.  Therefore  it  is  crucial  to  

look  at  the  timing  of  exposures  in  addition  to  levels  of  exposure.  The  prenatal  period  

is  specifically  important  when  examining  critical  windows  of  exposure.  During  in  

utero  development  and  early  childhood,  the  tissues  and  organs  of  the  body  undergo  

Page 5: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    5  

stages  of  rapid  development,  during  which  toxic  exposure  or  nutrient  deficiency  can  

lead  to  long-­‐term  effects.  (Andra,  Austin,  Wright,  &  Arora,  2015).  

There  are  two  instances  of  rapid  brain  development  for  infants.  The  first  is  

during  pregnancy,  and  the  second  occurs  several  months  after  birth.  The  fetus  is  

especially  vulnerable  to  Mn  during  the  development  period  in  utero;  Mn  easily  

crosses  the  placenta  through  active  transport  mechanisms,  where  it  results  in  

increased  levels  in  fetal  circulation  (Andra  et  al.  2015).  Thus,  fetal  life  can  be  

regarded  as  a  period  of  great  vulnerability  to  Mn,  even  at  low  environmental  levels.  

Mn  specifically  targets  the  nervous  system,  and  for  a  developing  child,  this  can  mean  

interruption  of  crucial  development  of  the  nervous  system  (Yu,  Zhang,  Yan,  &  Shen,  

2014).  

Since  the  central  nervous  system  develops  sequentially  and  are  

interdependent,  any  interruption  in  the  fetal  development  may  lead  to  deficiencies  

in  later  stages  of  development  (Rodríguez-­‐Barranco,  et  al.  2013).  Beginning  as  soon  

as  the  second  week  of  gestation,  the  outer  layer  of  the  embryo  begins  to  fold  to  

develop  the  neural  tube,  the  early  beginnings  of  the  brain.  After,  the  central  nervous  

system  begins  to  develop,  creating  100  billion  nerve  cells  and  1  trillion  glial  cells,  

which  must  undergo  a  slew  of  changes  and  formations  during  the  process  of  

development  (Sanders  et  al.  2015).  Because  these  developments  are  successive,  a  

reliable  and  effective  biomarker  provides  the  possibility  of  determining  when  

exposure  occurred,  and  what  interruptions  took  place,  which  can  then  determine  

how  these  interruptions  affect  neurological  development.  The  timing  of  

environmental  exposures  is  incredibly  important;  the  time  at  which  the  child  is  

Page 6: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    6  

exposed  to  the  metal  is  equally  important  as  the  level  of  exposure.  (Andra  et  al.  

2015)  

 

2.2  Manganese  Guidelines  for  Drinking  Water  Quality  

The  current  United  States  health-­‐based  guideline  for  Mn  in  drinking  water  is  

partly  based  on  debatable  assumptions,  without  deeper  research.  The  previous  

guideline  value  of  500  µg/L  was  set  originally  in  1958  and  was  based  on  the  distinct  

impairment  of  water  potability  by  excessive  Mn  concentrations  (WHO  2004).  Due  to  

the  staining  properties  of  Mn,  the  guideline  value  was  lowered  to  100  µg/  in  the  

World  Health  Organization’s  (WHO)  first  edition  guidelines  for  drinking  water  

quality  (Ljung  et  al.  2007).  Various  countries  have  set  standards  for  Mn  of  0.05  

mg/liter,  to  prevent  problems  with  discoloration  (WHO  2011).  At  concentrations  

above  0.1mg/liter,Mn  gives  water  an  undesirable  taste  and  stains  plumbing  fixtures  

and  laundry,  and  at  concentrations  as  low  as  0.02  mg/litre,  Mn  can  form  coatings  on  

water  pipes  that  may  later  slough  off  as  a  black  precipitate  (U.S.  EPA.  2004).  Based  

on  health  motives,  the  guideline  value  was  raised  to  500  µg/L  in  the  1993  second  

edition  (WHO  2004).  

Currently,  the  health-­‐based  guideline  value  for  Mn  in  water  is  in  the  United  

States  400  µg/L.  It  is  based  on  an  estimated  no  observed  adverse  effect  level  

(NOAEL)  for  Mn  in  food.  The  NOAEL  of  11  mg  of  Mn  a  day,  is  partly  based  on  a  

review  by  Greger  (1998),  who  studied  adults  with  Western  diets.  The  current  

guideline  value  for  drinking  water  is  likely  low  enough  to  protect  adolescents  and  

adults  but  not  younger  children.  Mn  is  often  considered  one  of  the  least  toxic  metals  

Page 7: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    7  

via  the  oral  route  due  to  homeostasis  mechanisms  in  the  body  that  limit  

gastrointestinal  absorption.  However,  with  the  growing  evidence  of  neurotoxicity  

through  oral  routes,  especially  in  infants  and  young  children,  the  guideline  needs  to  

be  reevaluated.  Infant  formula  already  contains  high  levels  of  Mn  (300  µg/L  on  

average,  but  ranging  between  66  and  856  µg/L,  depending  on  the  brand).  If  formula  

is  prepared  with  water  containing  acceptable  levels  of  Mn  based  on  WHO  guidelines,  

it  is  highly  possible  that  infants  will  receive  an  unacceptable  dose  of  Mn.(Ljung  et  al.  

2007).  

3.  Methods    

  To  understand  the  state  of  the  research,  papers  were  found  from  a  wide  

variety  of  subjects  and  compared.  Research  was  compiled  from  PubMed  and  Google  

Scholar  using  combinations  of  search  terms  such  as  “manganese”,  “in  utero  

exposure”,  “prenatal  exposure”,  “drinking  water”,  “neurodevelopment”,  

“neurotoxin”,  “co-­‐exposure”  and  so  on.  Additional  papers  were  also  found  through  

citations  from  particularly  relevant  papers.  

  When  using  PubMed,  MeSH  terms  were  used  to  find  similar  papers  listed  

under  the  same  topic.  MeSH  terms  that  were  particularly  useful  included  

“pregnancy”  “manganese”  “drinking  water”  “neurodevelopment”  and  

“women’s/children’s  health”.    

  Papers  that  were  selected  contained  material  that  demonstrated  relevance  to  

our  research  question,  or  that  demonstrated  holes  in  the  current  state  of  research.    

4.  Results  

4.1  Biomarkers    

Page 8: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    8  

A  biomarker  is  any  substance  or  metabolite  that  may  be  measured  in  the  

body  to  estimate  external  exposure  levels  or  to  predict  the  potential  for  adverse  

health  effects  or  disease.  There  is  a  great  need  for  an  effective  biomarker  to  analyze  

health  impacts  from  prenatal  exposures,  but  they  are  often  difficult  to  find,  and  are  

not  always  accurate;  no  specific  accurate  biomarker  for  Mn  has  been  determined.  

Research  has  so  far  relied  on  urine,  umbilical  cord  blood  and  serum,  and  hair.  There  

is  new  research  analyzing  the  usefulness  of  tooth  dentine,  which  shows  promise.  

(Santamaria  2008,  Arora  et  al.  2015),  

4.1.1Hair  

Hair  is  a  common  biomarker  used  to  study  the  neurological  effects  of  Mn  

contamination  on  young  children.  Using  hair,  Rodríguez-­‐Barranco  et  al.  (2013),  

found  that,in  relation  to  Mn,  results  of  a  meta-­‐analysis  suggest  that  a  50%  increase  

in  hair  levels  would  be  associated  with  a  0.7  IQ  decrease  of  children  aged  6-­‐13.  

There  are  other  studies  that  have  found  an  association  with  adverse  health  effects  

on  children  using  hair.  However,  hair  reflects  past  exposure  and  exposure  over  the  

past  few  months,  and  with  age,  Mn  concentrations  decrease  in  hair.  Researchers  

(Sanders,  Henn,  &  Wright  2015)  suggested  that  hair  is  not  a  reliable  biomarker  due  

to  the  potential  for  external  Mn  exposures  that  may  affect  Mn  levels  in  hair,  limiting  

its  use  as  an  indicator  of  internal  dose,  and  that  it  also  may  be  affected  by  the  degree  

of  pigmentation.  

4.1.2  Urine  and  Blood  

A  large  portion  of  the  research  on  Mn  exposure  and  its  neurological  and  

behavioral  effects  have  measured  Mn  in  blood  or  urine.  There  are  several  tests  

Page 9: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    9  

available  that  can  measure  Mn  levels  in  whole  blood,  serum,  or  urine.  However,  Mn  

is  naturally  present  in  the  body,  thus  some  Mn  is  always  found  in  these  fluids  

(Santamaria  2008).  Both  blood  and  urine  have  relatively  short  half-­‐lives,  which  

makes  them  more  indicative  of  recent  exposure,  rather  than  serving  as  a  marker  or  

long-­‐term  or  chronic  exposure.  Due  to  high  variability  of  the  results,  they  cannot  be  

considered  as  suitable  biomarkers  of  exposure  (Apostoli  2000).  This  is  in  agreement  

with  Droz  (1993)  who,  on  the  basis  of  pharmacokinetic  modeling,  stated  that  for  

half-­‐lives  below  10  h,  there  is  no  statistical  advantage  in  using  biological  monitoring.  

According  to  Santamaria  (2008)  urinary  Mn  is  not  a  less  suitable  biomarker  

because  it  is  primarily  excreted  in  the  bile,  and  only  approximately  1%  is  excreted  in  

the  urine.  Blood  Mn  has  been  the  most  commonly  used  biomarker  of  exposure,  but  

the  short  half-­‐life  of  Mn  in  blood  may  miss  periods  of  peak  exposure  and  Mn  is  also  

not  reliable  in  blood  due  to  well-­‐regulated  by  homeostatic  mechanisms  in  adults  

(Gunier  2013).  Change  in  dietary  intake  may  also  influence  blood  Mn  levels  which  

may  invalidate  study  results  (Santamaria  2008).  

Despite  urine  and  blood  not  being  ideal  biomarkers,  they  have  still  been  

useful  in  contributing  to  the  increase  of  knowledge  of  Mn  exposure.  Many  studies  

have  found  associations  using  urine  and  blood  as  biomarkers.  Yu  et  al.  (2014)  

compared  levels  of  Mn  in  serum  from  umbilical  cord  blood  with  results  from  

neonatal  behavioral  neurological  assessment  (NBNA).  They  found  that  high  Mn  

levels  in  umbilical  cord  serum  were  correlated  with  poor  NBNA  performance.  Based  

on  their  results,  they  determined  that  any  Mn  concentration  in  blood  over  50  ug/L  is  

Page 10: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

10  

unsafe.  This  study  showed  that  prenatal  exposure  to  Mn  at  environmentally  relevant  

level  was  significantly  and  negatively  associated  with  fetal  neurodevelopment.    

4.1.3.  Dentine  

It  is  widely  regarded  (Arora  et  al.,  Andra  et  al.,  Gunier  et  al.,  Hare  et  al.)  that,  

despite  the  usefulness  of  urine,  umbilical  cord  blood,  and  hair,  there  is  a  need  to  find  

a  more  effective  biomarker  for  Mn  exposure,  particularly  one  that  can  be  used  

retrospectively.  In  determining  the  effects  of  Mn  exposure  in  utero,  it  is  important  to  

find  a  reliable,  retrospective  biomarker  in  order  to  demonstrate  the  levels  of  Mn  

exposure  during  development.  

                The  biomarkers  that  have  been  extensively  used  thus  far  (hair,  blood,  and  

urine)  tend  to  be  unreliable  and  variable,  and  their  accuracy  is  limited  (kasperson).  

They  fail  to  provide  exposure  timing,  levels  of  cumulative  exposure,  and  lack  the  

potential  to  provide  information  on  the  specific  source  (Andra  et  al.  2015).  Blood  

has  been  used  quite  frequently,  but  may  not  be  the  most  reliable  measurement  tool  

because  fully  matured  bodies  regulate  Mn  concentrations  effectively  and  the  half-­‐

life  of  Mn  is  brief.  Hair  has  also  been  useful,  but  can  easily  be  contaminated  by  

external  environmental  factors.  For  these  reasons,  commonly  used  biomarkers  are  

not  the  most  effective  measure  of  exposure.  (Gunier  et  al.  2013).  

Dentine  in  baby  teeth  may  be  an  ideal  way  to  measure  in  utero  exposure  to  metals.  

Unlike  other  the  biomarkers,  dentine  provides  exposure  data  that  is  comparable  to  

data  from  a  longitudinal  study,  but  can  be  obtained  retroactively.  Dentine,  a  tissue  in  

the  teeth,  begins  to  develop  as  early  as  the  second  trimester  (between  the  13th  and  

19th  weeks  of  gestation),  and  then  enamel  and  dentine  begin  to  form  outward,  

Page 11: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

11  

similarly  to  the  formation  of  growth  rings  on  trees  (Gunier  et  al.  2013).  Mn  is  

absorbed  by  the  tissue  as  the  teeth  form.  Due  to  disturbances  caused  by  protein  

matrix  deposition  during  birth,  the  teeth  form  a  neonatal  line,  and  that  line  can  be  

used  to  distinguish  between  prenatal  and  postnatal  exposures.  Afterwards,  the  teeth  

develop  daily  growth  lines,  which  create  an  image  of  daily  exposures  after  birth.  

Measurements  of  Mn  exposures  from  this  point  until  almost  a  year  after  birth  can  be  

taken,  which  can  be  used  to  characterize  both  prenatal  and  postnatal  exposures.  

Analytical  technology  can  pinpoint  when  the  exposure  occurred,  and  how  much  of  

the  exposure  was  incorporated  into  the  teeth  (Gunier  et  al.  2013,  Andra  et  al.  2015).  

Both  Gunier  et  al.  and  Arora  et  al.  analyzed  the  usefulness  of  dentine  as  a  biomarker.  

In  a  study  analyzing  the  distribution  of  Mn  in  primary  teeth,  Arora  et  al.  found  not  

only  that  Mn  is  distributed  in  a  distinct  and  consistent  pattern,  but  also  that  Mn  

leaves  a  distinct  high  concentration  area  in  the  prenatally  formed  dentine.  This  

finding  suggests  that  deciduous  teeth  have  great  potential  as  a  useful  biomarker  for  

prenatal  Mn  exposures  (Arora  et  al  2011).  Both  groups  used  laser-­‐ablation-­‐

inductively  coupled  plasma-­‐mass  spectrometry  (LA-­‐ICP-­‐MS)  to  analyze  Mn  

exposures  through  deciduous  teeth.  Gunier  et  al.  found  that  their  findings  using  LA-­‐

ICP-­‐MS  were  correlated  with  their  estimates  of  prenatal  environmental  exposures  to  

Mn.  LA-­‐ICP-­‐MS  allowed  them  to  retroactively  gain  a  characterization  of  exposure  as  

it  occurred      

In  the  study  conducted  by  Gunier  et  al.,  it  was  found  that  Mn  levels  in  teeth  

were  higher  during  the  second  trimester  than  the  third,  which  conflicts  with  

findings  from  previous  studies  using  cord  blood  as  a  biomarker  that  found  highest  

Page 12: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

12  

levels  near  the  end  of  pregnancy.  Dentine  reflects  direct  exposure  to  Mn,  and  while  

there  are  fluctuations  in  Mn  concentrations  in  blood  during  pregnancy,  there  is  no  

known  instability  in  tooth  mineralization.  This  pattern  found  by  Gunier  et  al.  

suggests  that  fetal  uptake  of  Mn  in  the  second  trimester  is  higher  than  in  later  stages  

of  pregnancy,  and  that  dentine  is  a  more  effective  measure  of  this  uptake.      

Arora  et  al.  found  similar  results;  they  found  that  the  cord  blood  levels  of  Mn  were  

significantly  positively  correlated  with  the  Mn  concentrations  in  dentine  adjacent  to  

the  neonatal  line,  suggesting  that  dentine  is  an  effective  biomarker.  At  other  points  

in  the  neonatal  line,  however,  there  is  not  an  association.  This  is  not  surprising;  

deposits  of  Mn  in  dentine  are  a  direct  reflection  of  the  exposure,  while  cord  blood  is  

only  a  direct  reflection  of  Mn  levels  in  the  fetus  at  the  time  of  birth.  Blood  Mn  can  

vary  during  pregnancy,  and  has  a  half-­‐life  of  approximately  four  days.  (Arora  et  al.  

2013).  

Gunier  et  al.  also  argues  that  previous  studies  measuring  Mn  exposures  with  

enamel  instead  of  dentine  (Ericson  et  al.  2007)  are  less  effective  at  determining  the  

timing  of  exposure  than  dentine  because  of  differences  in  formation;  dentine  is  

mineralized  immediately  to  its  almost  final  stage,  while  enamel  is  mineralized  

slowly  throughout  development  (Arora  et  al.  2013).  Arora  et  al.  agrees,  because  

most  metals  being  incorporated  into  the  tooth  are  absorbed  after  all  of  the  enamel  

matrix  is  formed  in  the  tooth,  and  therefore,  enamel  cannot  be  used  to  determine  

the  timing  of  exposure.  More  research  should  be  conducted  to  analyze  the  

differences  and  advantages  in  these  two  tissues  as  biomarkers  

 

Page 13: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

13  

 

4.2  Effects  from  Exposure  through  Drinking  Water  

           Approximately  20%  of  drinking  water,  both  public  and  individual,  is  sourced  

from  groundwater,  and  50%  of  United  States  citizens  receive  their  drinking  water  

from  a  groundwater  source.  It  has  recently  been  recognized  that  groundwater  is  

susceptible  to  contamination,  particularly  from  organic  chemicals  that  result  from  

agricultural  activities  (Safe  Drinking  Water).  Mn  is  also  commonly  found  in  

groundwater  because  of  the  weathering  and  leaching  of  rocks  or  minerals,  which  

release  Mn  into  aquifers.  Although  there  is  currently  no  public  policy  regulating  

drinking  water  concentrations  of  Mn,  the  EPA  has  released  a  health  advisory  for  its  

adverse  neurological  effects  associated  with  oral  ingestion  and  has  set  a  health-­‐

based  guideline  of  300  µg/L  (EPA  2004).  The  World  Health  Organization  has  set  its  

own  guideline  as  400  µg/L,  slightly  higher  than  the  EPA  (WHO  2008).  

Approximately  45%  of  wells  for  public  use  in  New  England  have  drinking  water  

concentrations  of  Mn  greater  than  30  µg/L,  and  nationally,  and  close  to  5%  of  

household  wells  in  the  United  States  have  concentrations  of  Mn  greater  than  300  

µg/L  (Groschen  et  al.  2009,  U.S.  Geological  Survey  2009).  

                The  neurodevelopmental  and  behavioral  effects  of  children’s  exposure  to  Mn  

in  drinking  water  are  varied,  but  well  established.  Water  Mn  has  been  significantly  

negatively  associated  with  academic  performance  in  several  studies;  Zhang  et  al.  

(1995)  found  children  with  elevated  hair  concentrations  of  Mn  had  poorer  school  

records  than  their  peers,  and  performed  more  poorly  on  mathematics  and  language  

tests,  while  Khan  et  al.  (2011)  found  that  concentrations  of  Mn  over  400  µg/L  were  

Page 14: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

14  

significantly  negatively  associated  with  poor  performance  on  math  exams,  but  not  

on  language  exams.  In  another  study,  it  was  found  that  children  exposed  to  water  

with  high  Mn  concentrations  had  a  6.2  full  scale  IQ  point  difference  than  other  

children  who  had  not  been  exposed  (Bouchard  et  al.  2010)3.  Wasserman  et  al.  

(2006)  studied  an  area  in  which  80%  of  the  wells  in  the  study  area  had  Mn  levels  

over  400  µg/L,  with  the  average  concentration  being  795  µg/L.  Children  exposed  to  

the  contaminated  drinking  water  in  this  area  had  significantly  lower  Full-­‐Scale,  

Performance,  and  Verbal  raw  scores  on  the  Wechsler  Intelligence  Scale  for  Children.  

A  separate  study  analyzing  the  effects  on  IQ  found  that,  with  a  median  water  

concentration  of  Mn  of  34  µg/L,  there  was  a  significant  negative  association  

between  IQ  and  exposure  to  Mn  (Bouchard  et  al.  2011).  

                He  et  al.  (1994)  tested  neurobehavioral  behaviors  of  92  children  aged  11-­‐13  

who  lived  in  an  area  with  high  levels  of  Mn  in  sewage  irrigation  and  a  control  area.  

The  area  with  sewage  irrigation  had  significantly  higher  levels  of  Mn  in  the  drinking  

water  during  the  study  period,  and  the  children  in  that  area  had  significantly  higher  

concentrations  of  Mn  in  their  hair.  Mn  levels  in  hair  correlated  negatively  with  

performance  on  a  number  of  neurobehavioral  tests.  The  concentrations  of  Mn  in  the  

drinking  water  in  the  control  group  were  30-­‐40  ug/L,  while  the  sewage  irrigation  

group  had  levels  between  240-­‐350  ug/L.  

                It  is  also  suggested  that  Mn  exposure  has  an  inverted  U-­‐shaped  association  

with  Mn  levels  and  blood  and  neurodevelopment,  suggesting  that  both  low  and  high  

levels  can  be  detrimental  to  development  (Claus  Henn  et  al.  2010).  

Page 15: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

15  

                There  is  a  small  but  notable  body  of  literature  studying  the  effects  of  prenatal  

exposure  to  Mn  in  drinking  water,  and  the  consequential  effects  on  the  

neurodevelopment  of  the  child  through  early  childhood.  Gunier  et  al.  (2015)  and  

Chung  et  al.  (2011)  enlisted  a  cohort  of  pregnant  women,  and  followed  their  

children  as  they  grew  older  to  study  neurodevelopmental  effects.  Both  Gunier  et  al.  

and  Chung  et  al.  found  that  there  were  significant  deficiencies  in  motor  development  

related  to  exposure  to  water  Mn,,  and  while  Gunier  et  al.  found  additional  

deficiencies  in  mental  development,  Chung  et  al.  did  not.  Also,  Gunier  et  al.  found  

that  there  was  a  significant  relationship  between  prenatal  Mn  levels  and  6-­‐month  

mental  and  motor  development  for  children  born  to  mothers  with  low  

concentrations  of  hemoglobin,  and  therefore  lower  iron  levels,  during  pregnancy.  

                Children  in  a  study  in  Bangladesh  were  found  to  be  significantly  more  likely  

to  display  aggressive  behaviors  at  age  10  after  prenatal  Mn  exposure  from  drinking  

water.  As  with  Gunier  et  al.’s  findings,  results  from  this  study  also  showed  that  there  

was  a  tendency  for  lower  IQ  in  girls  who  were  born  to  mothers  with  low  iron  levels.  

                The  finding  that  prenatal  Mn  exposure  can  lead  to  behavioral  effects  in  

childhood  is  supported  by  Ericson  et  al.  (2007)  who,  although  the  source  of  Mn  is  

unknown,  found  that  there  is  an  association  between  Mn  deposits  in  tooth  enamel  

and  behavioral  outcomes  in  childhood.  Levels  of  Mn  from  the  20th  week  of  pregnancy  

were  significantly  and  positively  associated  with  measures  of  behavioral  

disinhibition.        

 

4.3  Risks  from  Metals  

Page 16: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

16  

4.3.1  Lead  

Lead  can  be  present  in  drinking  water  delivered  through  lead  pipes  or  pipes  

joined  with  lead  solder  may  contain  lead.  Unlike  other  heavy  metals,  there  is  

extensive  research  that  address  leads  adverse  health  effects  in  humans  and  early  

life.  In  utero  exposure  to  lead  was  adversely  associated  with  cognitive  and  social  

development  (Kim  2009,  Claus  Henn  2011,  WHO  2014).  There  is  no  known  level  of  

lead  exposure  that  is  considered  safe  

Young  children  in  particular  are  vulnerable  to  the  toxic  effects  of  lead  and  

can  suffer  profound,  permanent  adverse  health  effects,  mainly  affecting  the  

development  of  the  brain  and  nervous  system.  Pregnant  women  exposed  to  high  

levels  of  lead  can  be  subject  to  miscarriage,  stillbirth,  premature  birth  and  low  birth  

weight,  as  well  as  minor  malformations.  Young  children  are  specifically  vulnerable  

because  they  absorb  4  -­‐  5  times  as  much  ingested  lead  as  adults  from  a  given  source  

(WHO,  2004).  Strong  evidence  suggests  that  lead  exposure  also  leads  to  subtle  

neurological  effects,  developmental  delays,  and  behavioral  abnormalities  in  

otherwise  normal-­‐appearing  children.  (Schettler  et  al.  2000).  In  addition,  Wright  &  

Baccarelli  (2009)  establish  that  co-­‐exposure  to  Mn  and  lead  may  decrease  

spontaneous  motor  activity  and  learning  ability  in  rats  as  compared  with  exposure  

to  only  one  of  these  metals,  which  may  cause  damage  to  brain  development  during  

pre-­‐  and  post-­‐natal  life.  

4.3.2.  Arsenic  

Arsenic  is  naturally  present  at  high  levels  in  groundwater  of  numerous  

countries.  There  has  been  a  number  of  research  done  on  Arsenic  showing  that,  

Page 17: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

17  

water  contaminated  with  high  levels  of  Arsenic  and  used  for  drinking,  food  

preparation  and  irrigation  of  food  crops  poses  a  great  threat  to  public  health.  

Arsenic  exposure  affects  almost  every  organ  system  in  the  body  including  the  brain.  

Still,  there  is  limited  studies  on  the  effect  of  exposure  in  early  life.  

In  lab  animals,  it  has  been  found  that  high  exposure  of  Arsenic  causes  

malformations.  In  addition,  some  studies  suggest  that  arsenic  exposure  may  lead  to  

spontaneous  abortion  and  stillbirth  and  may  affect  neurological  development,  

particularly  the  development  of  hearing  (Schettler  et  al.  2000).  Drinking  water  is  

one  of  the  main  pathways  of  arsenic  ingestion.  It  has  been  well  established  that  

arsenic  exposure  negatively  correlates  with  neurodevelopment.  Studies  have  found  

that  lowered  IQ  is  one  of  the  most  commonly  reported  significant  effect  (Tyler  &  

Allan,  2014).  Results  of  meta-­‐analysis  show  that  for  every  50%  increase  in  arsenic  

levels,  there  could  be  a  0.5  decrease  in  the  IQ  of  children  aged  5-­‐15  years  

(Rodríguez-­‐Barranco  et  al.  2013).  

4.3.3.Trichloroethylene  (TCE)  

                     There  is  a  wide  body  of  evidence  suggesting  connections  between  exposure  to  

TCE  contamination  of  drinking  water  during  pregnancy  and  the  development  of  

congenital  heart  defects  (Forand  et  al.  2011,  Watson  et  al.  2005).  In  a  study  in  

Endicott,  New  York,  which  experienced  a  massive  chemical  spill  in  1979,  that  

contaminated  the  drinking  water  supply  with  TCE,  44  children  that  lived  in  the  area  

of  analysis  were  born  with  at  least  one  birth  defect  between  1983  and  2000,  

including  cardiac  birth  defects.  The  increase  in  cardiac  defects  in  children  was  

significant.  (Forand  et  al.  2011).  

Page 18: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

18  

                Additionally,  there  is  a  building  body  of  evidence  that  prenatal  exposure  to  

TCE  impairs  neurodevelopment,  and  it  has  been  studied  well  in  rodents.  Noland-­‐

Gerbec  et  al.  described  altered  brain  chemistry  in  the  offspring  of  rats  exposed  to  

TCE  during  pregnancy,  and  another  study  found  that  prenatal  exposure  to  TCE  

caused  increased  exploratory  and  locomotive  behaviors  in  rats  (Taylor,  et  al.  1985).  

A  similar  study  found  that  maternal  ingestion  of  TCE  through  drinking  water  during  

pregnancy  resulted  in  altered  social  behaviors,  particularly  autism-­‐like  social  

behaviors  and  increased  aggression  in  male  mice  (Blossom  2008).  

                In  humans,  exposures  to  TCE  in  water  during  pregnancy  have  been  linked  to  

developmental  impacts  in  children.  In  1979,  4,100  gallons  of  1,1,1,-­‐TCE  spilled  at  a  

manufacturing  facility  in  Endicott,  New  York.  The  next  year,  groundwater  samples  

revealed  a  large  amount  of  contamination  of  both  TCE  and  tetrachloroethylene,  

along  with  a  number  of  other  volatile  organic  contaminants  in  addition  to  

contaminants  from  previous  spills  and  incidents.    Populations  were  exposed  to  the  

contamination  through  soil  vapor  intrusion  (SVI),  where  volatized  contaminants  

rose  through  air  pockets  in  soil  into  nearby  building  structures.  It  was  found  that  

women  living  in  areas  with  risk  of  exposure  to  TCE  from  SVI  experienced  low  birth  

weight  (LBW)  or  were  small  for  gestational  age  (SGA),  possibly  as  a  result  of  growth  

restriction  in  utero.  Similar  results  of  LBW  were  found  in  northern  New  Jersey  and  

Tuscon,  Arizona,  both  of  which  also  had  groundwater  contaminated  with  TCE  (Bove  

et  al.  1995,  Rodenbeck  et  al.  2000).  In  addition,  SGA  was  significantly  more  

prevalent  in  a  retrospective  study  of  Woburn,  Massachusetts,  when  mothers  had  

been  exposed  to  TCE  contaminated  drinking  water  (MDPH,  CDC,  and  MHRI  1996).  

Page 19: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

19  

                Analysis  of  the  public  drinking  water  contamination  in  New  Jersey  also  

correlated  prenatal  trichloroethylene  exposure  with  a  number  of  adverse  effects  

including  defects  in  the  central  nervous  system  and  neural  tube  development,  and  

oral  clefts  (Bove  et  al.  1995).  

                There  is  still  limited  information  on  the  effects  of  TCE  exposure  during  

pregnancy  on  neurological  development.    

4.3.4Cadmium    

Cadmium  is  a  scarce  element,  but  is  seventh  in  the  Agency  for  Toxic  

Substances  and  Disease  Registry’s  list  of  elements  that  create  the  most  significant  

risks  for  human  health  and  the  environment.  In  addition  to  its  neurological  

impairment,  cadmium  is  toxic  to  the  digestive  system,  kidneys,  lungs  and  liver.  Only  

four  studies  have  been  undertaken  to  study  the  neurodevelopmental  effects  of  

cadmium  exposure  in  utero  (Cao  et  al.  2009,  Tian  et  al.  2009,  Wright  et  al.  2006,  

Torrente  et  al.  2005).  Only  one  of  the  studies  (Tian  et  al.  2009)  found  significant  

results;  they  found  that  children  with  higher  blood  levels  of  cadmium  at  birth  scored  

lower  on  Full-­‐Score  and  Performance  IQ  tests  at  four  years  of  age.  Both  Bao  et  al.  

(2009)  and  Yousef  et  al.  (2011)  studied  the  behavioral  effects  of  prenatal  exposure,  

but  only  Bao  et  al.  found  that  children  with  higher  levels  of  cadmium  in  their  hair  

experienced  more  social  and  attention  problems.  Yousef  et  al.  found  that  there  was  

no  significant  relationship  between  cadmium  exposure  and  ADHD.  The  information  

on  cadmium  exposure  and  its  neurological  effects  is  conflicting  and  extremely  

limited,  leaving  a  wide  gap  in  the  knowledge  of  understanding  the  effects  of  metals  

on  neurological  development.    

Page 20: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

20  

 

4.3.5.  Co  exposure  

                     Co-­‐exposure  to  multiple  neurotoxins  may  increase  their  toxicity,  but  few  

studies  have  investigated  the  interactions  between  multiple  metals.  There  have  

been  a  handful  of  studies  analyzing  the  interactions  between  lead  and  Mn,  all  of  

which  conclude  that  the  combined  neurological  effects  are  greater  than  the  effects  a  

single  exposure  would  cause.  It  is  important  to  acknowledge  the  potential  for  

adverse  outcomes  from  co-­‐exposure  during  early  childhood  because  of  the  

particularly  vulnerable  developmental  periods.  Lead  and  Mn  co-­‐exposure  may  cause  

a  significant  risk  as  increased  levels  of  Mn  in  the  brain  may  cause  the  brain  to  

produce  lead-­‐binding  proteins,  increasing  the  exposure  to  lead.  Animal  studies  have  

shown  that  co-­‐exposure  to  Mn  and  lead  may  decrease  spontaneous  motor  activity  

and  learning  ability  more  compared  with  exposure  to  only  one  of  these  metals,  

which  may  impair  both  pre-­‐  and  post-­‐natal  neurodevelopment.  (Wright  2009)  

                Kim  et  al.  (2009)  found  an  association  between  co-­‐exposure  to  lead  and  Mn  

and  intelligence  in  school-­‐aged  children.  Findings  indicated  that  in  utero  co-­‐

exposure  to  environmental  Mn  and  lead  were  adversely  related  to  

neurodevelopment  in  2  year-­‐old  children,  and  reported  significant  negative  

associations  between  lead  and  Mn  levels  and  full-­‐scale  and  verbal  IQ.  These  results  

are  similar  to  those  found  by  Henn  et  al.  (2008),  who  observed  that  joint  exposure  

to  both  lead  and  Mn  were  correlated  with  mental  and  psychomotor  deficits.  These  

were  higher  than  the  estimated  deficits  for  individual  lead  or  Mn  exposure.    

5.  Discussion  

Page 21: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

21  

                The  body  of  literature  on  Mn  exposure  through  drinking  water  reveals  many  

things  about  what  we  do  and  do  not  know.  We  know  that  there  are  associated  

neurological  deficiencies  and  behavioral  changes  that  can  arise  from  possibly  even  

low  level  exposures.  While  these  findings  are  important,  and  can  be  applied  to  

public  policy  to  better  protect  pregnant  women  and  young  children,  they  also  shine  

a  light  on  the  gaping  holes  in  the  research  that  need  to  be  addressed  for  us  to  better  

understand  the  true  neurodevelopmental  impacts  associated  with  Mn  exposure.  

                The  results  from  these  studies  found  negative  impacts  associated  with  the  

exposure  of  children  to  Mn,  but  they  all  had  different  methods  of  doing  so.  Different  

neurological  tests  were  administered,  different  levels  of  exposures  were  measured,  

and  different  biomarkers  were  used.  Consequently,  these  studies  have  found  a  slew  

of  different  impacts,  ranging  in  type  and  severity.  

                The  lack  of  a  consistent  biomarker  is  another  factor  that  needs  to  be  

addressed  to  better  understand  the  complex  issue  of  Mn  exposure.  Many  studies  

that  have  been  conducted,  and  that  are  discussed  here,  use  hair  or  blood  to  measure  

exposures.  These  biomarkers  are  highly  variable  and,  ultimately,  may  not  be  an  

accurate  reflection  of  Mn  exposures.  Tooth  dentine  shows  a  great  amount  of  

promise  to  overcome  the  shortcomings  of  biomarkers,  but  the  evidence  of  its  use  

and  effectiveness  is  extremely  limited.  The  lack  of  a  consistent  and  accurate  

biomarker  is  a  possible  contributor  to  why  there  are  still  no  concrete  answers  to  the  

effects  of  prenatal  Mn  exposure.  

                There  is  an  incredibly  limited  amount  of  research  done  on  the  effects  of  

drinking  water  Mn  concentrations  on  prenatal  and  early  childhood  

Page 22: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

22  

neurodevelopment.  The  scientific  community  has,  in  multiple  papers,  acknowledged  

that  this  is  an  extremely  vulnerable  population  and  an  area  of  research  that  needs  to  

be  addressed.  Based  on  the  conclusions  that  children  are  incredibly  vulnerable  

during  rapid  stages  of  prenatal  development,  and  that  Mn  is  a  commonly  known  

toxicant  that  is  known  to  have  significant  negative  effects  in  school-­‐age  children,  it  

leads  one  to  believe  that  there  is  a  notable  risk  for  prenatal  Mn  exposure,  

particularly  through  drinking  water.  Despite  this,  there  is  not  a  significant  body  of  

research  to  support  this  line  of  thinking.  

                It  was  also  found  that  there  are  significant  negative  effects  associated  with  

prenatal  exposures  to  other  metals.  Lead  is  well  established  in  this  sense,  and  there  

is  a  lot  of  evidence  finding  that  there  are  significant  and  extremely  harmful  effects  

from  prenatal  exposures  to  lead.  Arsenic,  Cadmium,  and  Trichloroethylene  are  all  

also  acknowledged  as  being  extremely  toxic,  but  their  effects  on  prenatal  

development  are  less  established.  Cadmium  is  best  associated  with  attention  

disorders,  and  Arsenic  has  been  found  to  produce  lower  IQ,  and  TCE  is  linked  to  

congenital  heart  defects  and  low  birth  weight.  Coexposures  can  cause  an  even  more  

significant  effect  than  individual  exposures,  and  draws  attention  to  the  fact  that  

there  are  a  large  amount  of  metals  and  chemicals  that  likely  have  negative  impacts  

on  prenatal  or  early  childhood  development,  but  are  not  yet  understood.  

                Based  on  these  findings,  and  on  the  fact  that  neurodevelopmental  deficits  can  

occur  from  such  low  exposures  to  metals,  particularly  Mn,  it  is  clear  that  the  

measures  set  out  by  the  United  States  government  are  not  enough  to  adequately  

protect  the  public.  Although  there  is  a  health  advisory  for  Mn,  it  is  not  considered  to  

Page 23: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

23  

be  enough  of  a  risk  for  the  EPA  to  make  an  enforceable  limit  on  it.  The  WHO  has  a  

tighter  guideline  for  an  acceptable  level  of  exposure  to  Mn  from  drinking  water  than  

the  EPA  does,  and  the  exposures  in  a  number  of  the  studies  that  caused  significant  

negative  cognitive  defects  in  children  occurred  from  exposures  that  were  even  

lower  than  either  of  these  guidelines.  The  guidelines  for  Mn  have  not  been  updated  

since  2004,  and  need  to  be  re-­‐evaluated,  taking  into  account  this  new  research,  and  

initiating  further  research  to  more  fully  understand  the  health  risks  that  are  faced  

by  children  through  such  high  exposures  to  Mn.    

 

6.  Conclusions  

In  the  United  States,  approximately  6%  of  domestic  household  wells  have  Mn  

concentrations  exceeding  300  µg  Mn/L,  which  is  the  current  EPA  lifetime  health  

advisory  level  (Wasserman  et  al.  2006).  In  New  England,  45%  of  wells  for  public  use  

have  Mn  concentrations  greater  than  30  µg/L.  According  to  a  2009  report  by  the  U.S.  

Geological  Survey,  approximately  5%  of  domestic  household  wells  in  the  United  

States  have  Mn  concentrations  greater  than  300  µg/L.  (U.S.  Geological  Survey  2009).  

This  indicates  that  some  children  in  the  U.S.  are  at  risk  for  Mn-­‐induced  neurotoxicity  

due  to  drinking  water  exposure.  

Too  much  exposure  can  cause  Mn  to  accumulate  in  the  brain,  in  particular  

the  central  nervous  system,  leading  to  neurological  damage  and  long-­‐term  effects.  

Mn  retention  is  higher  in  infants  than  in  adults  meaning  Infants  and  young  children  

face  higher  risks  from  exposure  to  heavy  metals  than  adults  due  to  underdeveloped  

homeostasis  system  that  limit  the  absorption  of  Mn  ingested.  The  time  at  which  the  

Page 24: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

24  

child  is  exposed  to  the  metal  has  been  shown  to  be  equally  important  as  the  level  of  

exposure  (Andra  et  al.  2015).  Our  current  health-­‐based  guideline  value  for  Mn  of  

400  µg/L  in  drinking  water  is  based  partly  on  debatable  assumptions.  This  value  for  

drinking  water  may  be  low  enough  to  protect  adolescents  and  adults,  but  not  

younger  children.  

Biomarkers  are  used  to  measure  to  estimate  external  exposure  levels  in  the  

body,  to  date,  blood,  hair,  urine,  and  dentine  from  primary  teeth  have  been  used.  

They’ve  contributed  to  our  increasing  body  of  knowledge  about  Mn  neurotoxicity.  

However,  blood,  urine,  and  hair  have  been  found  to  be  unreliable  or  not  ideal  

biomarkers.  They  fail  to  provide  exposure  timing,  levels  of  cumulative  exposure,  and  

lack  the  potential  to  provide  information  on  the  specific  source  (Andra  et  al.  2015).  

New  research  is  emerging  using  dentine  as  an  ideal  biomarker  to  measure  Mn  

exposure,  and  it  is  showing  great  promise.  Dentine  reflects  direct  exposure  to  Mn  

and  there  is  no  known  instability  in  tooth  mineralization.  There  is  a  growing  body  of  

research  showing  an  association  between  Mn  exposure  and  its  neurological  effects  

on  children.  Further  research  needs  to  be  done  on  optimum  biomarker  such  as  

dentine,  measuring  exposure  limits  to  set  new  guidelines  to  protect  the  public  and  

children  from  the  long  terms  effects  of  Mn  exposure.      

 

 

 

 

 

 

Page 25: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

25  

References  

Andra,  S.  S.,  Austin,  C.,  Wright,  R.  O.,  &  Arora,  M.  (2015).  Reconstructing  pre-­‐natal  and  early  childhood  exposure  to  multi-­‐class  organic  chemicals  using  teeth:  Towards  a  retrospective  temporal  exposome.  Environment  international,  83,  137-­‐145.  

 Apostoli,  P.,  Lucchini,  R.,  &  Alessio,  L.  (2000).  Are  current  biomarkers  suitable  for  the  

assessment  of  manganese  exposure  in  individual  workers?.  American  journal  of  industrial  medicine,  37(3),  283-­‐290.  

 Arora,  M.,  Hare,  D.,  Austin,  C.,  Smith,  D.  R.,  &  Doble,  P.  (2011).  Spatial  distribution  of  

manganese  in  enamel  and  coronal  dentine  of  human  primary  teeth.  Science  of  the  Total  Environment,  409(7),  1315-­‐1319.  

 Bao,  Q.  S.,  Lu,  C.  Y.,  Song,  H.,  Wang,  M.,  Ling,  W.,  Chen,  W.  Q.,  ...  &  Rao,  S.  (2009).  Behavioural  

development  of  school-­‐aged  children  who  live  around  a  multi-­‐metal  sulphide  mine  in  Guangdong  province,  China:  a  cross-­‐sectional  study.  BMC  Public  Health,  9(1),  217.  

 Bouchard,  M.  F.,  Sauvé,  S.,  Barbeau,  B.,  Legrand,  M.,  Brodeur,  M.  È.,  Bouffard,  T.,  ...  &  Mergler,  

D.  (2010).  Intellectual  impairment  in  school-­‐age  children  exposed  to  manganese  from  drinking  water.  Environmental  health  perspectives,  119(1),  138-­‐143.  

 Blossom,  S.  J.,  Doss,  J.  C.,  Hennings,  L.  J.,  Jernigan,  S.,  Melnyk,  S.,  &  James,  S.  J.  (2008).  

Developmental  exposure  to  trichloroethylene  promotes  CD4+  T  cell  differentiation  and  hyperactivity  in  association  with  oxidative  stress  and  neurobehavioral  deficits  in  MRL+/+  mice.  Toxicology  and  applied  pharmacology,  231(3),  344-­‐353.  

 Bove,  F.  J.,  Fulcomer,  M.  C.,  Klotz,  J.  B.,  Esmart,  J.,  Dufficy,  E.  M.,  &  Savrin,  J.  E.  (1995).  Public  

drinking  water  contamination  and  birth  outcomes.American  Journal  of  Epidemiology,  141(9),  850-­‐862.    

Cao,  Y.,  Chen,  A.,  Radcliffe,  J.,  Dietrich,  K.  N.,  Jones,  R.  L.,  Caldwell,  K.,  &  Rogan,  W.  J.  (2009).  Postnatal  cadmium  exposure,  neurodevelopment,  and  blood  pressure  in  children  at  2,  5,  and  7  years  of  age.  Environ  Health  Perspect,  117(10),  1580-­‐1586.  

Chung,  S.  E.,  Park,  H.,  Chang,  N.  S.,  Oh,  S.  Y.,  Cheong,  H.  K.,  Ha,  E.  H.,  ...  &  Hong,  Y.  C.  (2011).  Effect  of  in  utero  exposure  to  manganese  on  the  neurodevelopment  of  the  infant.  Epidemiology,  22(1),  S70.  

Droz  P.  1993.  Pharmacokinetic  modeling  as  a  tool  for  biological  monitoring.  Int  Arch  Occup  Environ  Health  65:S53±S59.  

Ericson,  J.  E.,  Crinella,  F.  M.,  Clarke-­‐Stewart,  K.  A.,  Allhusen,  V.  D.,  Chan,  T.,  &  Robertson,  R.  T.  (2007).  Prenatal  manganese  levels  linked  to  childhood  behavioral  disinhibition.  Neurotoxicology  and  teratology,  29(2),  181-­‐187.  

Page 26: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

26  

Erikson, K. M., Thompson, K., Aschner, J., & Aschner, M. (2007). Manganese neurotoxicity: a focus on the neonate. Pharmacology & therapeutics, 113(2), 369-377.  

Forand,  S.  P.,  Lewis-­‐Michl,  E.  L.,  &  Gomez,  M.  I.  (2011).  Adverse  birth  outcomes  and  maternal  exposure  to  trichloroethylene  and  tetrachloroethylene  through  soil  vapor  intrusion  in  New  York  State.  Environmental  health  perspectives,  120(4),  616-­‐621.  

 Gunier,  R.  B.,  Bradman,  A.,  Jerrett,  M.,  Smith,  D.  R.,  Harley,  K.  G.,  Austin,  C.,  ...  &  Eskenazi,  B.  

(2013).  Determinants  of  manganese  in  prenatal  dentin  of  shed  teeth  from  CHAMACOS  children  living  in  an  agricultural  community.  Environmental  science  &  technology,  47(19),  11249-­‐11257  

 Greger,  J.  L.  (1998).  Nutrition  versus  toxicology  of  manganese  in  humans:  evaluation  of  

potential  biomarkers.  Neurotoxicology,  20(2-­‐3),  205-­‐212.    He,  P.,  Liu,  D.  H.,  &  Zhang,  G.  Q.  (1994).  [Effects  of  high-­‐level-­‐manganese  sewage  irrigation  

on  children's  neurobehavior].  Zhonghua  yu  fang  yi  xue  za  zhi  [Chinese  journal  of  preventive  medicine],  28(4),  216-­‐218.  

 Henn,  B.  C.,  Ettinger,  A.  S.,  Schwartz,  J.,  Téllez-­‐Rojo,  M.  M.,  Lamadrid-­‐Figueroa,  H.,  

Hernández-­‐Avila,  M.,  ...  &  Wright,  R.  O.  (2010).  Early  postnatal  blood  manganese  levels  and  children’s  neurodevelopment.  Epidemiology  (Cambridge,  Mass.),  21(4),  433.  

 Henn,  B.  C.,  Schnaas,  L.,  Lamadrid-­‐Figueroa,  H.,  Hernández-­‐Avila,  M.,  Hu,  H.,  Téllez-­‐Rojo,  M.  

M.,  ...  &  Wright,  R.  O.  (2011).  Associations  of  early  childhood  manganese  and  lead  coexposure  with  neurodevelopment.  

 Kim,  Y.,  Kim,  B.  N.,  Hong,  Y.  C.,  Shin,  M.  S.,  Yoo,  H.  J.,  Kim,  J.  W.,  ...  &  Cho,  S.  C.  (2009).  Co-­‐

exposure  to  environmental  lead  and  manganese  affects  the  intelligence  of  school-­‐aged  children.  Neurotoxicology,  30(4),  564-­‐571.  

 Ljung,  K.,  &  Vahter,  M.  (2007).  Time  to  re-­‐evaluate  the  guideline  value  for  manganese  in  

drinking  water?.  Environmental  health  perspectives,  1533-­‐1538.    Lönnerdal B. (1994). Manganese nutrition of infants. In: Klimis-Tavantzis DJ, editor.

Manganese in Health and Disease. Boca Raton, FL: CRC Press. pp. 176–191.    MDPH  (Massachusetts  Department  of  Public  Health),  CDC  (Centers  for  Disease  Control  and  

Prevention),  and  MHRI  (Massachusetts  Health  Research  Institute).  1996.  Final  Report  of  the  Woburn  Environmental  and  Birth  Study.  Cambridge,  MA:Massachusetts  Department  of  Public  Health.    

Noland-­‐Gerbec,  E.  A.,  Pfohl,  R.  J.,  Taylor,  D.  H.,  &  Bull,  R.  J.  (1985).  2-­‐Deoxyglucose  uptake  in  the  developing  rat  brain  upon  pre-­‐and  postnatal  exposure  to  trichloroethylene.  Neurotoxicology,  7(3),  157-­‐164.  

 

Page 27: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

27  

Rahman,  S.  M.  (2015).  Elevated  drinking  water  manganese  and  fetal  and  child  health  and  development.  

 Rodenbeck  SE,  Sanderson  LM,  Rene  A.  2000.  Maternal  expo-­‐  sure  to  trichloroethylene  in  

drinking  water  and  birth-­‐  weight  outcomes.  Arch  Environ  Health  55(3):188–194.    

Rodríguez-­‐Barranco,  M.,  Lacasaña,  M.,  Aguilar-­‐Garduño,  C.,  Alguacil,  J.,  Gil,  F.,  González-­‐Alzaga,  B.,  &  Rojas-­‐García,  A.  (2013).  Association  of  arsenic,  cadmium  and  manganese  exposure  with  neurodevelopment  and  behavioural  disorders  in  children:  a  systematic  review  and  meta-­‐analysis.Science  of  the  total  environment,  454,  562-­‐577.  

 Sanders,  A.  P.,  Henn,  B.  C.,  &  Wright,  R.  O.  (2015).  Perinatal  and  Childhood  Exposure  to  

Cadmium,  Manganese,  and  Metal  Mixtures  and  Effects  on  Cognition  and  Behavior:  A  Review  of  Recent  Literature.  Current  environmental  health  reports,  2(3),  284-­‐294.  

 Santamaria,  A.  B.  (2008).  Manganese  exposure,  essentiality  &  toxicity.  Indian  Journal  of  

Medical  Research,  128(4),  484.    Schettler,  T.,  Solomon,  G.,  &  Valenti,  M.  (2000).  Generations  at  risk:  reproductive  health  and  

the  environment.  MIT  Press.  Pg.  51-­‐52    Taylor,  D.  H.,  Lagory,  K.  E.,  Zaccaro,  D.  J.,  Pfohl,  R.  J.,  &  Laurie,  R.  D.  (1985).  Effect  of  

trichloroethylene  on  the  exploratory  and  locomotor  activity  of  rats  exposed  during  development.  Science  of  the  Total  Environment,  47,  415-­‐420.  

 Tian,  L.  L.,  Zhao,  Y.  C.,  Wang,  X.  C.,  Gu,  J.  L.,  Sun,  Z.  J.,  Zhang,  Y.  L.,  &  Wang,  J.  X.  (2009).  Effects  

of  gestational  cadmium  exposure  on  pregnancy  outcome  and  development  in  the  offspring  at  age  4.5  years.  Biological  trace  element  research,  132(1-­‐3),  51-­‐59.  

 Torrente,  M.,  Colomina,  M.  T.,  &  Domingo,  J.  L.  (2005).  Metal  concentrations  in  hair  and  

cognitive  assessment  in  an  adolescent  population.Biological  trace  element  research,  104(3),  215-­‐221.  

 Tyler,  C.  R.,  &  Allan,  A.  M.  (2014).  The  effects  of  arsenic  exposure  on  neurological  and  

cognitive  dysfunction  in  human  and  rodent  studies:  a  review.  Current  environmental  health  reports,  1(2),  132-­‐147.  

   U.S.  EPA.  2004.  Drinking  Water  Health  Advisory  for  Manganese.  U.S.  Environmental  

Protection  Agency,  Office  of  Water,  Washington,  DC.  January,  2004  (EPA-­‐822-­‐R-­‐04-­‐003).  

 Wasserman,  G.  A.,  Liu,  X.,  Parvez,  F.,  Ahsan,  H.,  Levy,  D.,  Factor-­‐Litvak,  P.,  ...  &  Cheng,  Z.  

(2006).  Water  manganese  exposure  and  children's  intellectual  function  in  Araihazar,  Bangladesh.  Environmental  health  perspectives,  124-­‐129.  

 

Page 28: Neurodevelopmental impacts of prenatal drinking water exposure to manganese and other metals on children

Manganese  Exposure    

28  

WHO.  2004.  Manganese  in  Drinking  Water  -­‐  Background  Document  for  Development  of  WHO  Guidelines  for  Drinking  Water  Quality.  In  World  Health  Organization:  Geneva.  

 WHO.  2011.  Manganese  in  Drinking  Water  -­‐  Background  Document  for  Development  of  

WHO  Guidelines  for  Drinking  Water  Quality,  In  World  Health  Organization:  Geneva.    World  Health  Organization  (WHO),  Lead  poisoning  and  health,  Fact  sheet  N°379,  (October  

2014),  available  at:  http://www.who.int/mediacentre/factsheets/fs379/en/    Wright,  R.  O.,  Amarasiriwardena,  C.,  Woolf,  A.  D.,  Jim,  R.,  &  Bellinger,  D.  C.  (2006).  

Neuropsychological  correlates  of  hair  arsenic,  manganese,  and  cadmium  levels  in  school-­‐age  children  residing  near  a  hazardous  waste  site.Neurotoxicology,  27(2),  210-­‐216.  

 Wright,  R.  O.,  &  Baccarelli,  A.  (2007).  Metals  and  neurotoxicology.  The  Journal  of  nutrition,  

137(12),  2809-­‐2813.    Yousef,  S.,  Adem,  A.,  Zoubeidi,  T.,  Kosanovic,  M.,  Mabrouk,  A.  A.,  &  Eapen,  V.  (2011).  

Attention  deficit  hyperactivity  disorder  and  environmental  toxic  metal  exposure  in  the  United  Arab  Emirates.  Journal  of  tropical  pediatrics,  57(6),  457-­‐460.  

 Yu,  X.  D.,  Zhang,  J.,  Yan,  C.  H.,  &  Shen,  X.  M.  (2014).  Prenatal  exposure  to  manganese  at  

environment  relevant  level  and  neonatal  neurobehavioral  development.  Environmental  research,  133,  232-­‐238.    

 Zhang,  G.,  Liu,  D.,  &  He,  P.  (1995).  [Effects  of  manganese  on  learning  abilities  in  school  

children].  Zhonghua  yu  fang  yi  xue  za  zhi  [Chinese  journal  of  preventive  medicine],  29(3),  156-­‐158.