near-field optical imaging of carbon nanotubes

33
Nice, 25.09.2006 Achim Hartschuh, Nano-Optics München 1 Near-field Optical Imaging of Carbon Nanotubes Achim Hartschuh, Huihong Qian Tobias Gokus, Department Chemie und Biochemie and CeNS, Universität München Neil Anderson, Lukas Novotny The Institute of Optics, University of Rochester, Rochester, NY

Upload: nirav

Post on 02-Feb-2016

42 views

Category:

Documents


0 download

DESCRIPTION

Near-field Optical Imaging of Carbon Nanotubes. Achim Hartschuh, Huihong Qian Tobias Gokus, Department Chemie und Biochemie and CeNS, Universität München Neil Anderson, Lukas Novotny The Institute of Optics, University of Rochester, Rochester, NY. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics München 1

Near-field Optical Imaging of

Carbon Nanotubes

Achim Hartschuh, Huihong QianTobias Gokus,

Department Chemie und Biochemie and CeNS,

Universität München

Neil Anderson, Lukas NovotnyThe Institute of Optics, University of Rochester,

Rochester, NY

Page 2: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 2

Why High Spatial Resolution Near-field Optics?

Why Optics?• electronic and vibronic energies• DOS• excited state dynamics....

Page 3: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 3

Why Near-field Optics?

Page 4: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 4

Why Near-field Optics?

Page 5: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 5

Why Near-field Optics?

spatial resolution is limited by diffraction

Page 6: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 6

Diffraction Limit

Abbé, Arch. Mikrosk. Anat. 9, 413 (1873)

Uncertainty relation:

2ΔkΔx x

αsinλ

2παsinkΔkx

αsin

λΔk

2πΔxx

Page 7: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 7

Tip-Enhanced Spectroscopy

Wessel, JOSA B 2, 1538 (1985)

Page 8: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 8

Tip-Enhanced Spectroscopy

Theory: Enhanced electric field confined to tip apex

Mechanism: Lightning rod and antenna effect, plasmon resonances

laser illuminated metal tip

Novotny et al. PRL 79, 645 (1997)

Page 9: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 9

Tip-Enhanced Spectroscopy

SEM micrograph

diameter = 22 nm

enhanced electric field confined within 20 nm ?

……………….Optical imaging with 20 nm resolution?!

……………….Signal enhancement !?

Page 10: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 10

Experimental Setup

Confocal microscope

Optical Images and Spectra

a sharp metal tip is held at constant height (~2nm) above the sampleusing a tuning-fork feedback mechanism

Topography of the sample

2 nm

K. Karrai et al., APL 66, 1842 (1995)

Tip-sample distance control+

Page 11: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 11

Tip-enhanced Spectroscopy

S.M. Stoeckle et al., Chem. Phys. Lett. 318, 131 (2000)N. Hayazawa et al., Chem. Phys. Lett. 335, 369 (2001) A. Hartschuh et al. Phys. Rev. Lett. 90, 95503 (2003)B. Pettinger et al., Phys. Rev. Lett. 92, 96101 (2004)N. Anderson et al., J. Am. Chem. Soc. 127, 2533 (2005)C.C. Neacsu et al., Phys. Rev. B 73, 193406 (2006)D. Methani, N. Lee, R. D. Hartschuh et al. J. Raman Spectrosc. 36, 1068 (2005).................................

Raman scattering

Two-photon excited fluorescenceE.J. Sánchez et al., Phys. Rev. Lett. 82, 4014 (1999)

H.G. Frey et al., Phys. Rev.Lett. 81, 5030 (2004)J. Farahani et al. Phys. Rev. Lett. 95, 017402 (2005)A. Hartschuh et al. Nano Lett. 5, 2310 (2005)

(Examples…………)

Fluorescence

Page 12: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 12

Single-Walled Carbon Nanotubes (SWCNT)

Graphene sheet + roll up single-walled carbon nanotube

fromShigeo Maruyama

length up to mm

diameter ~ 1-2 nm model

structure (n,m) determines properties:

(n-m) mod 3 =0 metallicelse semiconducting

Page 13: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 13

Near-field Raman Imaging of SWCNTs

only SWCNT detected in optical image chemically specificoptical contrast with 25 nm resolution enhanced field confined to tip

Hartschuh et al. PRL 90, 95503 (2003)500 nm 500 nm

Raman image (G’ band)

Topography

Page 14: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 14

Near-field Raman Spectroscopy

height: 0 - 1.9 nm

Raman image(G band)

Topography image

RBM at 199 cm-1

diam = 1.2 nmstructure (n,m)(14,2) metallic SWCNT

G

RBM

Page 15: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 15

Resolution enhancement

Farfield Near-field

no tip same area with tip

Page 16: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 16

Signal Enhancement

Page 17: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 17

Signal Enhancement

tip-enhanced signal > signal * 2500Hartschuh et al. Phil. Trans. R. Soc. Lond A, 362 (2004)

Page 18: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 18

Distance Dependence

tip-enhancement is near-field effect => tip has to be close to sample

~ d-12 d

Enhanced Raman scattering signal

Page 19: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 19

Near-field Raman Spectroscopy

RBM=251 cm-1 (10,3)

RBM=191 cm-1 (12,6)

(semiconducting)

(metallic)

N. Anderson, unpub.

RBMRBM GG30 nm steps

intramolecular junction (IMJ) pn-junction

Page 20: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 20

Simultaneous Raman and PL Spectroscopy

Photoluminescence

Raman

(7,5) (8,3) (9,1)

Raman Emission

Excitation at 633 nm Emission and Raman signals are spectrally isolated

(6,4)

A. Hartschuh et al. Science 301, 1394 (2003)

Page 21: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 21

Near-field optical imaging of SWCNTs

Farfield Raman image

DNA-wrapped SWCNTs on mica

Topography Raman (G-band) Photoluminescence

correlate Raman and photoluminescence properties length of emissive segment ~ 70 nm

• changes in chirality (n,m)?• coupling to substrate?

Page 22: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 22

Localized PL-Emisssion on Glass

Emission spatiallyconfined to within 10 – 20 nm

Localized excited statesLocalized excited statesBound excitons?Bound excitons?

•role of defects?role of defects?•substrate?substrate?

Photoluminescence Raman scattering

Photoluminescence

SWCNTs on glass

Page 23: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 23

Near-field PL-Spectroscopy

Topography Photoluminescence

PL spectra:30 nm steps between spectra

12

34

56

A. Hartschuh et al. Nano Lett. 5, 2310 (2005)

Emission energy can vary on the nanoscale

(caused by changes in local dielectric environment )

Page 24: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 24

Spatial resolution < 15 nm Signal amplification

Tip as nanoscale „light source“

Tip-enhanced Microscopy

Page 25: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 25

Signal Enhancement

Enhancement of incident fieldand scattered field

SRaman ~ (Elocal / E0)2 (Elocal / E0) 2=f4

Raman scattering Photoluminescene

dissipative energy transfer to metal quenching of PL

knonrad:

kex: enhanced excitation fieldSPL~ (Elocal / E0)2=f2

Q is increased (Q0~10-4)cycling rate is increased

krad: Purcell-effect

krad + knonrad

kradQ =

kex krad knonrad

local fieldat tip

field without tip

PL Enhancement depends on Q0!

SPL~ f2 Q/Q0

Ein Eout

Page 26: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 26

Signal Enhancement

SPL~ f2 Q/Q0

Raman enhancement

500 nm

Far-field Raman ~ 2000 counts/s

Near-field Raman ~ 4000 counts/s

Raman-enhancement ~ 6000 / 2000

~ 3

SRaman ~ f4

PL enhancement

500 nm

No far-field PL < 200 counts/s

Near-field PL ~17000 counts/s

PL-enhancement >17000 / 200

~ 85

PL quantum yield is increased by tip (SEF)

Page 27: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 27

Signal Enhancement

(First data)

PL quenching for very small distances optimum distance for PL enhancement

d

kex

krad

knon-rad

Page 28: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 28

Signal Enhancement

(First data)

d

kex

krad

knon-rad

P. Anger et al.

Page 29: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 29

Signal Enhancement

Topography Raman scattering Photoluminescence

290nm 290nm 290nm

tip-nanotube-distance

Raman scatteringPhotoluminescence

DNA-wrapped SWCNTs

(schematic)

Page 30: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 30

Near-field Interactions

Uncertainty relation:Diffraction limit for propagating waves:

2ΔkΔx x 10.01nmλ

2πk

k-vectors of tip enhanced fields extend through BZ !

selection rules for optical transitions?

1x 1nm10nm5

2πΔx

2πΔk

High resolution provided by evanescent fields that have higher k-vectors:

Nanotubes:

1

t

r|| 1nm

d3

2dk

Page 31: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 31

Summary

High-resolution optical microscopy of carbon High-resolution optical microscopy of carbon nanotubes using a sharp laser-illuminated metal tipnanotubes using a sharp laser-illuminated metal tip

• PL and Raman spectroscoy and imaging• Spatial resolution < 15 nm• Signal enhancement

ResultsResults• Resolved RBM variations (IMJ) on the nanoscale• Non-uniform emission energies that result from local

variations of dielectric environment• Strongly confined emission signals bound excitons?• PL-Quantum yield can be enhanced by metal tip

Page 32: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics München 32

Thanks to

PC Tuebingen:Alfred J. MeixnerMathias SteinerAntonio Virgilio Failla

Funding: DFG, C Siegen, NSF, FCI

PC Siegen: Gregor Schulte

Page 33: Near-field Optical Imaging of  Carbon Nanotubes

Nice, 25.09.2006 Achim Hartschuh, Nano-Optics @ LMU 33

Acknowledgement

PC Tuebingen:Alfred J. MeixnerMathias SteinerAntonio Virgilio Failla

Funding: DFG, C Siegen, NSF, FCI

PC Siegen: Gregor Schulte