nd ltd iti dnanodroplet deposition and manipulation with ... · nd ltd iti dnanodroplet deposition...

22
N d l td iti d Nanodroplet deposition and manipulation with an AFM tip manipulation with an AFM tip Laure Fabié, Hugo Durou, Thierry Ondarçuhu Nanosciences Group, CEMESCNRS Toulouse (France)

Upload: others

Post on 05-Feb-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

N d l t d iti dNanodroplet deposition and manipulation with an AFM tipmanipulation with an AFM tip

Laure Fabié, Hugo Durou, Thierry Ondarçuhu

Nanosciences Group, CEMES‐CNRS Toulouse (France)

Direct deposition methods

Liquid lithography

+ flexibility

Pin and Ring method (DNA chips)~ 200 µm

flexibility

-- Ø ~ 5 to 200 µmInck jet

De Gan et al., Adv Mat 200410 µm

Pins

Belaubre et al., APL 2003 Few µm

Dip pen lithography

+ Ø ~ 10 nm

-- limited in terms of transferrable molecules

2

transferrable molecules-- no reservoir

Piner et al., Science 1999

Direct deposition methods

Liquid lithography

+ flexibility

Pin and Ring method (DNA chips)~ 200 µm

flexibility

-- Ø ~ 5 to 200 µmInck jet

De Gan et al., Adv Mat 200410 µm

Pins

Belaubre et al., APL 2003 Few µm

Dip pen lithography

+ Ø ~ 10 nm

-- limited in terms of transferrable molecules

3

transferrable molecules-- no reservoir

Piner et al., Science 1999

NADIS : Liquid NAnoDISpensing

Meister et al, Appl. Phys. Lett. 2004A.Fang, E. Dujardin, T.Ondarçuhu, NanoLett 2006

4

Tip fabrication

Standard AFM tip: pyramidal and gold coatedChannel milling by FIB

2 steps : (i) thinning of the tip wall from the top (ii) milling at the tip apex from the tip side (record : 35 nm)

1 2

100 nm251 nm

35 nm100 nm

Surface functionnalisation

500 nm251 nm

Surface functionnalisation

Intact gold layer(thiol chemistry)

2 distinct areas : Si3N4 surface for silane chemistry and gold layer for thiol treatment

Tip loading

Deposited liquid

Glycerol or glycerol-water mixture (dilution max 6:4)Solutions of molecules, proteins, nanoparticles…

Loading of the reservoir

ReservoirReservoir

10µm 10µm10µm

6

Drop deposited with a micropipetteand a micromanipulator

micropipette

Deposition process

Nanodroplet deposition : with an AFM in

Deposition

Nanodroplet deposition : with an AFM inforce spectroscopy mode

Line deposition : with an AFM in contactpmode and using a nanopositioning table

7

Deposition process

Nanodroplet deposition : with an AFM in

Deposition

Nanodroplet deposition : with an AFM inforce spectroscopy mode

Line deposition : with an AFM in contactpmode and using a nanopositioning table

Force curve recorded during liquid transfert

8

Deposition process

Nanodroplet deposition : with an AFM in

Deposition

Nanodroplet deposition : with an AFM inforce spectroscopy mode

Line deposition : with an AFM in contactpmode and using a nanopositioning table

Deposit observation (after solvent evaporation)

Force curve recorded during liquid transfert

9

Nanodroplet deposition

Hydrophilic tip with an aperture of 400nm

Ø ~ 75nm1 µmµ

Hydrophobic tip with an aperture of 35nm(treated with dodecanethiol)(treated with dodecanethiol)

500

10

500nm

The influence of the different parameters is studed in : A. Fang, E. Dujardin, T.Ondarçuhu. NanoLett (2006)

1 µm

Flexibility of the method

25 nm PS NPs DsRed Proteins Ruthenium complexes

1 µm

1µm

5µm

1 µm

5µm

11

Nanopatterning conclusion

1 zL=10-21L

1 aL=10-18L

1 fL=10-15L

1 pL=10-12L

1 nL=10-9L

1 µL=10-6L

10 nm

=10 21L

100 nm

=10 18L

1 μm

=10 15L

10 μm

=10 12L

100 μm

=10 9L

1 mm

=10 6L

12

Study of the deposition mechanisms

Final deposits due to :

flow through the channel

spreading on the substrate surface

13

Analyse of the retraction force curves

Force curve study :

nderstanding the deposition mechanisms

F

understanding the deposition mechanisms

capillary force z

10

20z (nm)

-10

0

10

0 100 200 300 400 500 600

S i

-40

-30

-20

F (n

N)

Hydrophobic tip

Small diameter

70

-60

-50

Hydrophilic tip

Hydrophobic tip

-70

14

Modeling with Surface Evolver

Energy minimization for different boundary conditions and constraintsgy y

Pressure and volume

Contact radii and anglesf h• surface shape

• Energy• Pressure• Volume

15

• Force

Hydrophilic NADIS tips

Channel of 35nm

Boundary conditions : fixed radii on the tip and on the substrate

Channel of 280nm

Constant pressure defined by the reservoir : Laplace pressure of a spheric drop with a 20µm radius

Channel of 35nmChannel of 280nm

Constant volume : No liquid flow

radius

0

20

40

z (nm) 40

60

‐60

‐40

‐20

0

0 100 200 300 400

F (nN)

‐20

0

20

0 20 40 60 80

F (nN) z (nm)

R f   400  Rti  250‐120

‐100

‐80experiments

theory

Rsurf    97 nm Rtip  65 nm‐60

‐40 experimentstheory

16More details on the influence of the different parameters on the force curve in :

L. Fabie, H. Durou, T.Ondarçuhu. Langmuir (2010)

Rsurf = 400 nm, Rtip = 250 nmP = 6.4 103 Pa

Rsurf =  97 nm Rtip = 65 nmV = 0.4 aL

Lines deposition

NADIS tip is moved at constant velocity while maintaining contact ontop y gthe surface thanks to a nanopositioning table incorporated to the AFM

Phase image for a better contrast

Velocity increasing

17

Spreading dynamics

Channel of 220nmChannel of 500nmChannel of 760nm

Channel of 220nmChannel of 500nmChannel of 760nm

Different from diffusiveDifferent from diffusive law (Dip pen) in t½

J. Jang et al. J. Chem. Phys. (2001)

18

t=w/V

Spreading dynamics

O.V. Voinov, Fluid Dyn. (1976)R G C J Fl id M h (1986)

Cox-Voinov equation : θ 3 − θm3 = 9 ηv

γln L

l⎛ ⎝ ⎜

⎞ ⎠ ⎟

Classical caseR.G. Cox, J. Fluid. Mech. (1986)

Spreading at constant1

θ

Spreading at constantvolume

R ∝ t110

θ ∝1

R 3

NADIS case

R ∝ tL. Tanner, J. Phys. D (1979)

Avec :tanθ ≈ θ ≈

hR − R0

Spreading at constantpressureAvec :

dRh αθ 933

+⎟⎟⎞

⎜⎜⎛

⎟⎞

⎜⎛=

Llnηαh θ

0 p

19

dtRR m αθ 90

+=⎟⎟⎠

⎜⎜⎝ −

⎟⎠

⎜⎝

=l

lnγ

α

R0R

Results of the model

F θ 0 l ti l l tiFor θm= 0, analytical solution : R-R0 = At1/4

F θ ≠ 0 i l l tiFor θm≠ 0, numerical solution

dtdR

RRh

m αθ 933

0

+=⎟⎟⎠

⎞⎜⎜⎝

⎛−

θm=3.5°R0=380nmln(L/l)=10

dtRR 0 ⎠⎝

20

ln(L/l) 10α=238s/muntreated tip: h=56nmHydrophobic tip : h=42.5nm

Results of the model

F θ 0 l ti l l tiFor θm= 0, analytical solution : R-R0 = At1/4

F θ ≠ 0 i l l tiFor θm≠ 0, numerical solution

dtdR

RRh

m αθ 933

0

+=⎟⎟⎠

⎞⎜⎜⎝

⎛−

θm=3.5°R0=380nmln(L/l)=10

dtRR 0 ⎠⎝

21

ln(L/l) 10α=238s/muntreated tip: h=56nmHydrophobic tip : h=42.5nm

Conclusion

Efficient method for nanopatterningEfficient method for nanopatterning

Fundamental studies

Study of the capillary force at the nanoscale

f l f AFM i iuseful for AFM imaging

Spreading dynamics at constant pressure

interesting for printing techniques

22