nato presentation helen crowley final · title: microsoft powerpoint - nato_ presentation_helen...

28
Using a Displacement-Based Approach for Loss Assessment of Urban Areas Julian Bommer Rui Pinho Helen Crowley NATO ISTANBUL WORKSHOP, MAY-JUNE, 2005

Upload: others

Post on 30-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

Using a Displacement-Based Approach for Loss Assessment

of Urban Areas

Julian Bommer

Rui Pinho

Helen Crowley

NATO ISTANBUL WORKSHOP, MAY-JUNE, 2005

Page 2: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

DBELA

DISPLACEMENT-BASED EARTHQUAKE LOSS

ASSESSMENT

Page 3: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

DEMAND – overdamped DISPLACEMENT

RESPONSE SPECTRA relate displacement

demand of a SDOF system to its fundamental

period of vibration

n Relationship between the frequency content

of the ground motion and dominant period of

the buildings

n Correlation of this ground motion parameter

to damage

Page 4: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

∆LS ∆y

Keff

Vy

BUILDING CLASS CAPACITY – mechanics-derived

equations to relate limit state displacement capacity

of SDOF system to its fundamental period of vibration

MDOF Building

H

Limit state displacement

capacity, ∆c

SDOF System

Limit state

strains

Equivalent Linearisation

Page 5: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

Direct Displacement-Based Design principles

∆c = f(Height, geometrical properties, limit state strains)

Period = f(Height)

∴ ∆c = f(Period, geometrical properties, limit state strains)

φ φy2 φy3 φy1

M M1

M2

M3

φ φy

M M1

M2

M3

Page 6: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

Beam-sway Column-sway

ϑmt

ϑmt

ϑmt

ϑmt

ϑmt

ϑmt

ϑmt

ϑmt

ϑmt

ϑmt

∆m F4

F3

F2

F1

∆m

ϑmc

1 2

h

h

h

h

H

Page 7: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

EXAMPLE OF PRE-YIELD CAPACITY

EQUATIONS

BEAM SWAY

COLUMN SWAY

PERIOD-HEIGHT

RELATIONSHIP

b

byThSy

h

lHef5.0 ε∆ =

c

s

yThSyh

hHef43.0 ε∆ =

Ty H1.0T =

Page 8: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

EXAMPLE OF POST-YIELD CAPACITY

EQUATIONS

BEAM SWAY

COLUMN SWAY

PERIOD-HEIGHT

RELATIONSHIP

( )( ) ( )0.5 0.5 1.7 bSLsi h T y C Lsi S Lsi y h T

b

lef H ef H

hε ε ε ε∆ = + + −

sy)Lsi(S)Lsi(C

c

s

yThSLsi h)14.2(5.0h

hHef43.0 εεεε∆ −++=

LsiyLsi

�TT =

Page 9: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

IF DEMAND > CAPACITY FAILURE OF LIMIT STATE

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 1 2 3 4 5 6 7

Period (s)

Dis

pla

cem

ent

(m)

Page 10: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

CAPACITY

Probabilistic distributions assigned to each

parameter in equation (e.g. Normal / Lognormal)

FORM – Produce the JPDF of displacement

capacity and period

UNCERTAINTY & VARIABILITY

Beam Length (m)

0 2 4 6 8

Fre

qu

ency

0

50

100

150

200

250

300

350

Mean = 3.41m S.D. = 1.16m Gamma Dist.

Storey Height (m)

1.5 2.0 2.5 3.0 3.5 4.0 4.5

Fre

qu

ency

0

10

20

30

40

50

60

70

Mean = 2.93 m S.D. = 0.23 m Normal Dist.

Page 11: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

DEMAND – single scenario earthquakes

Cumultative distribution function computed using logarithmic standard deviation at each period

Reliability Formula

UNCERTAINTY & VARIABILITY

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4 5 6 7

Period (s)

Sp

ectr

al

Dis

pla

cem

ent

(m)

50-percentile

16-percentile

84-percentile

[ ] dxdy)y,x(f.)yT/x(F1PLSiLSi

T

x y

LsiDf ∆∫ ∫ =−=

Page 12: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

DAMAGE BANDS (% of buildings)

SLIGHT – % slight = 1 – Pf1

MODERATE – % moderate = Pf1 – Pf2

EXTENSIVE –% extensive = Pf2 – Pf3

COMPLETE – % complete = Pf3

MEAN DAMAGE RATIO – weights applied to

each damage band to give composite measure

of damage: ratio between cost of repair/retrofit

to cost of rebuilding

Page 13: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

SENSITIVITY STUDY – SEA OF MARMARA, TURKEY

Erdik et al. (2004) fault segmentation model, Mw = 7.2

Building Stock Data – 2000 Building Census

40º

30º29º28º27º

41º

Sea of Marmara

fault

rupture

TekirdagIstanbul

Kocaeli

Black Sea

Page 14: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

BASE MODEL - GROUND MOTION PREDICTION

EQUATION

Boore et al. (1997)

Period (s)

0 2 4 6 8 10

Sp

ectr

al D

isp

lace

me

nt

(m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E: Soft soil

D: Stiff soil

C: Very dense soil

Soft rock

B: Rock

NEHRP GUIDELINES: 2

5

10

=wM

VDT

CORNER PERIOD =12.6 SECONDS

MW = 7.2

Page 15: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

BASE MODEL – CAPACITY

(Poor, Column-sway frames)

Lognormal50%2.25 %Limit state 3 steel strain, εs2

Lognormal50%0.75 %Limit state 3 concrete strain, εc2

Lognormal50%1.25 %Limit state 2 steel strain, εs3

Lognormal50%0.45 %Limit state 2 concrete strain, εc3

Normal10%263 MPaSteel yield strength

Lognormal10%0.55 mBeam depth

Lognormal25%4.0 mBeam length

Lognormal35%0.6 mColumn section depth

Lognormal35%3.6 mGround floor storey height

Probabilistic

Distribution

Coefficient of

variation

Mean valueCapacity Parameter

Page 16: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

BASE MODEL DAMAGE PREDICTIONS

Slight Moderate Extensive Complete MDR

Pro

po

rtio

n o

f R

C F

ram

e B

uild

ing

Sto

ck

0.0

0.2

0.4

0.6

0.8

1.0

'Poor'_Column-sway

'Poor'_Beam-sway

'Good'_Beam-sway

All

MEAN DAMAGE

RATIO (MDR)

2% SLIGHT

10% MODERATE

50% EXTENSIVE

100% COMPLETE

Page 17: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

-25 -20 -15 -10 -5 0 5 10 15 20 25

NEHRP factors applied to Boore et al. (1997)

rock spectra

Site class B to C

Site class E to D

Site class B to C and E to D

Gradient increase 10%

Gradient decrease 20%

Constant spectral displacement at 5 s

85% aleatory variability

% Variation of MDR from Base Model

SENSITIVITY TO DEMAND VARIABLES

Page 18: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

BASE MODEL – CAPACITY

(Poor, Column-sway frames)

Lognormal50%2.25 %Limit state 3 steel strain, εs2

Lognormal50%0.75 %Limit state 3 concrete strain, εc2

Lognormal50%1.25 %Limit state 2 steel strain, εs3

Lognormal50%0.45 %Limit state 2 concrete strain, εc3

Normal10%263 MPaSteel yield strength

Lognormal10%0.55 mBeam depth

Lognormal25%4.0 mBeam length

Lognormal35%0.6 mColumn section depth

Lognormal35%3.6 mGround floor storey height

Probabilistic

Distribution

Coefficient of

variation

Mean valueCapacity Parameter

Page 19: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

SENSITIVITY TO CAPACITY VARIABLES

Combined increase / decrease (10-20%) capacity

parameters – upper bound / lower bound

-100.0 -50.0 0.0 50.0 100.0

slight

moderate

extensive

complete

MDR

% Variation from Base Model

Upper boundcapacity

Lower boundcapacity

Page 20: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

LOSS ASSESSMENT

Single earthquake scenario – useful for disaster

management, communicating seismic risk to public

ALL possible earthquake scenarios

insurance / reinsurance industry

Seismic code drafting committees

Loss versus annual frequency of exceedance

0.0001

0.001

0.01

0 2000 4000 6000 8000 10000 12000 14000

Loss (millions $)

An

nu

al

Fre

qu

ency

of

Exce

edan

ce

Page 21: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

LOSS EXCEEDANCE CURVES

n Need to perform a seismic hazard assessment

of area and convolute results with vulnerability.

n Aleatory variability modelled in hazard and thus

removed from reliability formula.

n Inter-event and intra-event components of

aleatory variability need to be modelled

separately in loss model.

n Need to use thousands of scenario earthquakes

(which can be generated using Monte Carlo

Simulation in conjunction with seismicity model)

to obtain robust loss exceedance curves.

Page 22: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

CONCLUSIONS / FUTURE RESEARCH

n DBELA is a MECHANICS-BASED loss assessment

methodology and the demand and capacity can be plotted on the same displacement-period plane.

n Capacity equations can be EASILY CALIBRATED for

different regions by adapting (µ, σ, DISTRIBUTION) of parameters.

nFurther developments:

INFILL PANELS, SHEAR FAILURE, other STRUCTURAL

TYPES, improved parameters used in EQUIVALENT LINEARISATION, improvement of DISPLACEMENT

SPECTRA (especially at long periods).

n CALIBRATION of the methodology and COMPARISON

of results with damage data.

Page 23: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

Thank you!

Page 24: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM
Page 25: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM
Page 26: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

CALIBRATION OF SEISMIC DESIGN CODES

Quantitative comparison of incremental cost of adding seismic resistance and the associated losses that can be

avoided within an urban area

n DBELA is ideal as structural parameters in displacement capacity equations can easily be adapted to model increasing levels of seismic resistance (e.g. stiffness and ductility).

n Owners and regulators need to decide on a minimum allowable resistance of the building stock considering the return period of ‘tolerable’ levels of death, injury and persons rendered homeless.

n Loss curves derived for various resistance levels of each building class are produced and compared with cost of resistance to define ‘optimum’ resistance.

Page 27: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

BASE MODEL DAMAGE PREDICTIONS FOR EACH NUMBER OF STOREYS FOR POOR,

COLUMN-SWAY

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

slight moderate extensive complete

Pro

po

rtio

n o

f R

C f

ram

e b

uil

din

g s

tock

1 storey

2 storey

3 storey

4 storey

5 storey

6 storey

7-9 storey

Page 28: NATO Presentation Helen Crowley final · Title: Microsoft PowerPoint - NATO_ Presentation_Helen Crowley_final.ppt Author (G\374ney \326zcebe) Created Date: 6/4/2005 5:16:11 PM

SENSITIVITY TO GROUPING OF STOREY

NUMBERS

-25.0 -15.0 -5.0 5.0 15.0 25.0

slight

moderate

extensive

complete

MDR

% Variation from Base Model

Building classes [1-9] , Number of storeys = 3