nativemeadows!and!grasslands:!from!vision!to!reality...sun$b06_native.meadows.&.grasslands.$.3....

10
SUNB06_Native Meadows & Grasslands 1 Native Meadows and Grasslands: From Vision to Reality James Patchett & Larry Weaner Learning Objectives Become familiar with how local geology, soils, flora, fauna, hydrology, climate, and cultural factors have shaped North American grassland systems. Gain insight into how native meadow/grassland restoration is being used to develop new paradigms in agriculture, ecological restoration, and sustainable community development. Learn how to design and specify a native meadow/grassland using seed and live plants. Understand how to manage and guide native meadows/grasslands at all stages of their evolution. Section I | James Patchett The integration of native grassland systems represents far more than just an alternative landscape treatment. Native grasslands are an important component of an environmentally restorative, economically sensible approach to land development and management for all types of land uses including commercial, corporate, and institutional campuses, parks and open space systems, and residential settings, to name a few. It is also likely that native grassland restoration will play an important role in the success of emerging restorative agricultural practices. The proper design, installation, and management of native landscapes create a living landscape composed of diverse communities of plant species that can sustain themselves and thrive in the unique ecological habitats found throughout North America. From an aesthetic point of view, native landscapes produce a constantly changing pattern of striking colors and textures throughout the seasons. Although some natives can be utilized in a more traditional horticultural planting as a specimen plant, most species should be designed, installed, and managed within the context of a discrete, living system. Creating the conditions to which species have historically adapted including human relationships such as fire and other stewardship activities is essential for success. In addition to aesthetic richness, native landscape systems offer a variety of environmental and cost savings benefits. Environmental benefits include, but are not limited to, the reduction of surface water runoff and downstream flooding, reduced soil erosion, the redevelopment of organic topsoil, increased groundwater recharge, enhanced regional air and water quality, restored University Research Park, Madison WI. Photo: Bruce Woods (top), James Patchett (bottom).

Upload: others

Post on 23-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NativeMeadows!and!Grasslands:!From!Vision!to!Reality...SUN$B06_Native.Meadows.&.Grasslands.$.3. direct.precipitation...Most.natural.wetlandandaquatic.systems.includinglakes,.streams,.and.rivers.were

SUN-­‐B06_Native  Meadows  &  Grasslands  -­‐  1  

 

 

Native  Meadows  and  Grasslands:  From  Vision  to  Reality  

James  Patchett  &  Larry  Weaner    Learning  Objectives    

• Become  familiar  with  how  local  geology,  soils,  flora,  fauna,  hydrology,  climate,  and  cultural  factors  have  shaped  North  American  grassland  systems.  

• Gain  insight  into  how  native  meadow/grassland  restoration  is  being  used  to  develop  new  paradigms  in  agriculture,  ecological  restoration,  and  sustainable  community  development.    

• Learn  how  to  design  and  specify  a  native  meadow/grassland  using  seed  and  live  plants.  • Understand  how  to  manage  and  guide  native  meadows/grasslands  at  all  stages  of  their  evolution.      Section  I  |  James  Patchett    The  integration  of  native  grassland  systems  represents  far  more  than  just  an  alternative  landscape  treatment.  Native  grasslands  are  an  important  component  of  an  environmentally  restorative,  economically  sensible  approach  to  land  development  and  management  for  all  types  of  land  uses  including  commercial,  corporate,  and  institutional  campuses,  parks  and  open  space  systems,  and  residential  settings,  to  name  a  few.  It  is  also  likely  that  native  grassland  restoration  will  play  an  important  role  in  the  success  of  emerging  restorative  agricultural  practices.    

The  proper  design,  installation,  and  management  of  native  landscapes  create  a  living  landscape  composed  of  diverse  communities  of  plant  species  that  can  sustain  themselves  and  thrive  in  the  unique  ecological  habitats  found  throughout  North  America.    From  an  aesthetic  point  of  view,  native  landscapes  produce  a  constantly  changing  pattern  of  striking  colors  and  textures  throughout  the  seasons.  Although  some  natives  can  be  utilized  in  a  more  traditional  horticultural  planting  as  a  specimen  plant,  most  species  should  be  designed,  installed,  and  managed  within  the  context  of  a  discrete,  living  system.  Creating  the  conditions  to  which  species  have  historically  adapted  including  human  relationships  such  as  fire  and  other  stewardship  activities  is  essential  for  success.      In  addition  to  aesthetic  richness,  native  landscape  systems  offer  a  variety  of  environmental  and  cost  savings  benefits.  Environmental  benefits  include,  but  are  not  limited  to,  the  reduction  of  surface  

water  runoff  and  downstream  flooding,  reduced  soil  erosion,  the  re-­‐development  of  organic  topsoil,  increased  groundwater  recharge,  enhanced  regional  air  and  water  quality,  restored  

University  Research  Park,  Madison  WI.      Photo:  Bruce  Woods  (top),  James  Patchett  (bottom).

Page 2: NativeMeadows!and!Grasslands:!From!Vision!to!Reality...SUN$B06_Native.Meadows.&.Grasslands.$.3. direct.precipitation...Most.natural.wetlandandaquatic.systems.includinglakes,.streams,.and.rivers.were

SUN-­‐B06_Native  Meadows  &  Grasslands  -­‐  2  

wildlife  habitat,  and  increased  bio-­‐diversity  of  both  flora  and  fauna.    Long-­‐term  maintenance  cost  savings  can  also  be  significant.  With  proper  design  and  installation,  along  with  equally  critical  ongoing  stewardship  and  management  (all  3  phases  are  equally  important  for  success),  established  native  grassland  systems  can  be  maintained  without  mowing,  or  the  long  term  use  of  fertilizers,  pesticides,  herbicides,  or  supplemental  watering.    Not  only  good  for  the  environment,  once  established  over  the  first  5  +  years,  native  landscape  systems  can  result  in  annual  long  term  maintenance  cost  reductions  of  as  much  as  80-­‐90%,  in  comparison  to  traditional  turf  grass  maintenance  costs.  It  is  not  uncommon  for  maintenance  cost  savings  in  the  range  of  40-­‐50%  to  be  achieved  during  the  early  establishment  years.    While  my  colleague  Larry  Weaner’s  presentation  will  emphasize  how  to  creatively  incorporate  native  grassland  and  meadow  systems  of  the  Eastern  US  into  contemporary  landscape  design,  my  presentation  will  focus  on  the  many  benefits  associated  with  the  integration  of  the  Tallgrass  ecosystems  of  the  Midwest.  In  order  to  better  grasp  the  range  and  magnitude  of  potential  benefits  associated  with  the  integration  of  native  grasslands,  it  is  critical  to  gain  an  increased  understanding  of  how  these  systems  evolved  and  functioned  historically.    

 The  growth  character  and  adaptations  of  native  prairie  species  are  quite  unique.    Most  of  the  plant  mass  of  a  prairie  community  is  underground  in  the  form  of  extensive  root  systems.  The  richness  and  fertility  of  Midwestern  soils  owe  their  properties  to  the  morphology  and  hydrology  of  the  grasslands,  where  subterranean  reduction  exceeded  oxidation.  Prairie  lands,  with  their  deep  roots  and  water  holding  root  systems,  once  stored  net  amounts  of  soil  organic  carbon  (SOC)  each  year  in  the  creation  of  deep  black  topsoil.    On  average,  70-­‐90%  of  a  prairie  grass’s  total  mass  existed  

below  ground.    The  root  systems  could  reach  or  exceed  depths  of  10  -­‐  15  feet.    A  typical  tallgrass  prairie  generally  contained  15  to  20  thousand  kilograms  of  root  mass/  hectare,  which  equates  to  12  -­‐  18  thousand  pounds  of  root  mass/acre.    Each  year,  approximately  1/3  of  the  root  system  died-­‐off  and  formed  partially  decomposed  matter  that  was  rich  in  organic  carbon  through  the  process  of  photosynthesis.    Depending  on  the  dryness  or  wetness  of  any  specific  habitat,  the  average  net  accumulation  rate  of  SOC  throughout  much  of  the  region  typically  ranged  from  0.5-­‐2  tons/acre/year.    In  contrast,  annual  corn  and  soybean  systems  contain,  on  average,  300  to  600  kilograms  of  root  mass/hectare,  and  result  in  an  annual  net  loss  of  soil  organic  carbon,  rather  than  a  net  gain.    

Historically,  the  terrestrial  ecosystems  of  North  America,  particularly  in  the  tallgrass  prairie  ecosystems  of  the  upper  Midwest,  were  very  effective  at  receiving  and  absorbing  rainfall.  Prior  to  conversion  into  contemporary  urban,  suburban,  and  rural  agricultural  land  uses,  prairie  ecosystems,  with  their  combination  of  vegetation  cover,  fibrous  roots  systems,  and  soils  with  low  bulk  density  and  high  organic  matter  content  created  an  environment  where  very  little  water  ran  off  the  surface  of  the  land.  The  historical  patterns  of  hydrology  throughout  the  region,  and  for  that  matter  throughout  most  of  the  continent,  were  prevailingly  dominated  by  groundwater  hydrology  coupled  with  contributions  from  

The  root  structure  and  rhizosphere  of  native  grasslands  influence  infiltration  and  groundwater  hydrology.  

Page 3: NativeMeadows!and!Grasslands:!From!Vision!to!Reality...SUN$B06_Native.Meadows.&.Grasslands.$.3. direct.precipitation...Most.natural.wetlandandaquatic.systems.includinglakes,.streams,.and.rivers.were

SUN-­‐B06_Native  Meadows  &  Grasslands  -­‐  3  

direct  precipitation.    Most  natural  wetland  and  aquatic  systems  including  lakes,  streams,  and  rivers  were  predominantly  formed  and  sustained  by  constant  sources  of  groundwater  discharge,  or  from  surface  water  systems  derived  from  steady,  stable  groundwater  discharge.    Discharge  occurred  anywhere  along  the  spectrum  from  higher  to  lower  gradients,  depending  on  the  relationship  of  geology,  soils,  surface  and  groundwater  gradients,  and  other  factors.    Virtually  all  of  our  endemic  terrestrial  and  aquatic  species,  both  flora  and  fauna,  are  adapted  to  such  stable  patterns  of  infiltration,  evaporation,  transpiration,  groundwater  discharge,  consistent  hydrology,  and  stable  water  chemistry.  Growing  season  floods  comparable  to  the  frequency  and  magnitude  that  we  suffer  today  in  late  spring  and  summer  would  have  been  extremely  rare  if  not  impossible  to  have  occurred.    No  matter  how  hard  the  rain,  the  prairie  was  very  effective  at  absorbing  the  rainfall,  and  the  region’s  wetlands,  streams,  and  rivers  remained  very  stable  throughout  the  growing  season  both  in  terms  of  water  levels,  and  water  chemistry.    Disruption  of  grassland  ecosystems,  in  most  cases  through  agricultural  tillage  or  mass  grading,  results  in  the  exposure  of  these  highly  organic  soils  to  the  atmosphere.  Exposure  promotes  oxidation  of  accumulated  soil  organic  carbon,  which  in  turn  reduces  the  soil’s  tilth  and  its  capacity  to  absorb  rainwater  and  hold  nutrients.    The  loss  of  a  strong  perennial  ground  cover  exaggerates  the  rate  and  amount  of  soil  loss  and  resources  as  the  exposed  soil  becomes  increasingly  susceptible  to  wind  and  water  erosion.    After  several  years  of  repeated  tillage,  the  extensive  root  system  of  prairie  disappears  altogether  and  a  once  highly  organic  soil  becomes  primarily  mineral  in  composition.    Compaction  and  loss  of  root  structure  and  organic  matter  content  from  mass  grading  or  repeated  tillage  alters  soil  bulk  density  causing  water  infiltration  rates  and  capacity  to  drop  dramatically.      Introduction  of  drainage  tile  acts  to  accelerate  the  rate  of  water  loss,  oxidation,  and  depletion  of  soil  nutrients.    In  turn,  ornamental  landscapes  and  agricultural  crops  need  significant  additional  resources  to  grow  including  fertilizers  and  water.        In  both  urban  and  rural  environments,  the  impact  of  fertilizers,  herbicides,  and  pesticides  in  our  soil,  and  surface  and  groundwater  systems  is  well  documented,  but  other  negative  influences  associated  with  annual  row  crop  tillage  are  far  less  understood.  As  the  water  in  the  soil  is  drained  away,  the  reduction/oxidation  relationships  change  dramatically.    Whereas  once  the  prairies  held  their  water,  and  carbon  was  fixed  beneath  the  surface  in  net  amounts,  annual  row  crop  tillage  now  causes  carbon  to  be  oxidized  more  rapidly  than  it  is  fixed,  a  situation  exacerbated  by  the  constant  drain  of  water  through  the  tile  systems  and  into  the  ditches.    Consequently,  during  each  growing  season,  carbon  dioxide  that  was  fixed  millennia  ago  is  now  released  into  the  atmosphere  in  amounts  greater  than  it  is  taken  up,  which  potentially  contributes  to  the  problem  known  as  global  warning.    This  net  release  of  soil  organic  carbon  (SOC)  is  not  a  minor  concern.    Recent  studies  on  the  amounts  of  carbon  stored  in  the  Conservation  Reserve  Program  (CRP),  in  which  deep-­‐rooted  native  grasses  are  planted  in  some  of  the  less  productive  or  more  erodible  soils,  have  shown  that  ten  years  of  SOC  storage  can  be  oxidized  within  a  single  growing  season  after  tilling.    In  fact,  more  than  90%  of  the  fixed  carbon  can  be  released  in  the  first  15  days  following  tillage,  and  that  net  loss  can  occur  within  30  days.    One  pound  of  SOC,  once  oxidized,  generates  3.4  pounds  of  carbon  dioxide  emissions.    If  the  net  SOC  accumulation  rate  averaged  1  ton/acre/year  for  a  ten-­‐year  cycle  of  CRP  planted  in  native  grassland,  the  CO2  emissions  would  equate  to  approximately  18,000  x  3.4  or  61,200  pounds  of  CO2  emissions/acre  over  a  15-­‐30  day  period.    For  comparison  purposes,  a  car  or  lawn  mower  emits  approximately  16  pounds  of  carbon  dioxide,  carbon  monoxide,  etc.  for  every  gallon  of  gasoline  burned.    This  is  of  course  fossil  carbon,  the  effects  of  which  are  of  concern  in  our  contemporary  atmosphere.  The  ecological  impacts  associated  with  this  type  of  wholesale  landscape  conversion  are  obviously  substantial.    

Page 4: NativeMeadows!and!Grasslands:!From!Vision!to!Reality...SUN$B06_Native.Meadows.&.Grasslands.$.3. direct.precipitation...Most.natural.wetlandandaquatic.systems.includinglakes,.streams,.and.rivers.were

SUN-­‐B06_Native  Meadows  &  Grasslands  -­‐  4  

 Soil  and  water  loss,  coupled  with  air  and  water  pollution  are  not  the  only  concerns.    As  described  by  my  CDF  colleague,  Dr.  Gerould  Wilhelm,  when  the  rhizosphere,  which  includes  the  deep  root  systems  of  the  native  bunch  grasses  is  destroyed,  a  chain  reaction  of  negative  impacts  is  generated:      In  contrast  to  traditional  stormwater  engineering  practices  designed  to  direct  water  away  from  where  it  falls,  restorative  approaches  to  site  and  regional  water  resource  management  strive  to  treat  water  as  a  resource,  not  a  waste  product.    Such  measures  revolve  around  the  restoration  of  stable  groundwater  hydrology  on  a  site  and  regional  watershed  basis  through  the  incorporation  of  cost  effective  measures  that  effectively  cleanse,  diffuse,  and  absorb  water  where  it  falls,  thus  restoring  the  historical  patterns  of  groundwater  dominated  hydrology  and  water  quality.    This  should  be  the  fundamental  design  and  engineering  goal  of  every  type  and  scale  of  development  project,  regardless  of  whether  it  is  situated  in  an  urban,  suburban,  or  rural  environment.  The  integration  of  native  grassland  systems  in  contemporary  environments  is  a  fundamental  component  of  this  restorative  process.    The  emergence  of  green  infrastructure  systems  has  demonstrated  that  many  practical,  cost  effective  design  and  development  innovations  directed  at  the  restoration  of  hydrological  stability  and  enhanced  water  quality  in  urban,  suburban,  and  rural  environments  can  make  a  positive  impact.    Landscape  architects  have  been  instrumental  in  pioneering  the  design  and  development  of  innovative  green  infrastructure  techniques  that  bring  water’s  positive  properties  to  bear,  often  replicating  historical  patterns  of  hydrology.  Green  technologies  such  as  vegetated  green  roofs,  porous  pavement  systems,  bio-­‐swales,  rain  gardens  and  other  bio-­‐retention  measures,  rainfall  harvesting  and  re-­‐use  measures  such  as  storage  cisterns,  and  the  incorporation  of  deep-­‐rooted,  highly  absorbent  native  landscape  systems  are  but  a  few  of  the  multi-­‐beneficial,  cost  effective  landscape  scale  water  resource  management  strategies  that  may  be  applied.  Such  measures  are  important  elements  for  groundwater  recharge,  flood  reduction,  site  and  regional  water  quality  enhancement,  and  the  restoration  of  terrestrial  and  aquatic  ecosystem  viability.  In  urban  and  suburban  environments,  the  proper  design  and  stewardship  of  native  prairie  landscapes  can  form  the  backbone  of  a  thoroughly  integrated  green  infrastructure  system  when  combined  with  other  green  infrastructure  measures  in  the  built  environment.  With  a  hierarchy  of  integrated  green  infrastructure  measures  in  place,  a  fundamental  goal  should  be  to  never  expose  these  native  landscape  systems  to  direct  piped  stormwater  discharge.  These  landscapes  should  represent  the  last  line  of  defense  in  a  comprehensive  on-­‐site  water  resource  management  strategy.  

Page 5: NativeMeadows!and!Grasslands:!From!Vision!to!Reality...SUN$B06_Native.Meadows.&.Grasslands.$.3. direct.precipitation...Most.natural.wetlandandaquatic.systems.includinglakes,.streams,.and.rivers.were

SUN-­‐B06_Native  Meadows  &  Grasslands  -­‐  5  

 While  an  understanding  and  appreciation  of  how  to  incorporate  native  landscape  systems  into  contemporary  urban  and  suburban  environments  has  grown  substantially  over  the  past  quarter  of  a  century,  the  potential  for  the  integration  of  restored  native  grasslands  as  a  fundamental  component  of  restorative  agriculture  may  be  even  more  substantial.  Restorative  agriculture  practices  are  directed  at  the  creation  of  watershed  based  solutions  that  showcase  highly  integrated  and  diversified  farming  operations  designed  to  create  value-­‐added  products  from  species  that  simultaneously  contribute  to  ecosystem  health  and  create  new  revenue  streams.  A  primary  focus  of  this  effort  will  include  the  incorporation  and  examination  of  direct  economic  and  environmental  benefits  associated  with  diverse  native  prairie  grassland  restoration  and  seed  and  bio-­‐mass  production  for  alternative  energy  systems.    In  addition  to  energy  and  seed  production,  fiber  production  for  a  wide  variety  of  annually  renewable  products  such  as  paper,  cardboard,  plastic,  and  textiles,  as  well  as  botanicals  may  be  considered.  A  rotational  program  of  integrated  grazing  and  rest,  to  ensure  that  the  process  restores  systems  vitality,  is  also  anticipated.  The  ultimate  configuration  of  uses  would  be  based,  in  large  part,  on  the  physical  characteristics  of  each  site,  sub-­‐watershed,  and  region.    Key  design  factors  would  include  site  and  regional  topography,  soils,  geology,  and  surface  and  groundwater  hydrology.  

In  a  comprehensive  watershed-­‐scale  restorative  agricultural  approach,  the  restored  native  grasslands  will  be  combined  with  a  diverse  suite  of  ecologically  restorative  agricultural  production  practices  situated  throughout  the  adjoining  landscapes,  collectively  designed  to  provide  greater  revenue  streams  with  less  risk.  The  intent  is  to  illustrate  realistic,  cost  effective,  environmentally  restorative  measures  that  can  aid  in  the  dramatic  reduction  of  North  America’s  reliance  on  foreign  oil  imports,  and  to  demonstrate  and  promote  new  paradigms  in  Midwestern  agriculture,  ecological  restoration,  and  sustainable  community  development  based  on  energy  independence,  sound  economics,  and  environmental  stewardship.  It  is  anticipated  that  these  measures  will  create  a  diverse  suite  of  value-­‐added  byproducts  and  revenue  streams  for  reintroduction  into  the  local  community  and  agricultural  economy.  The  lessons  learned  can  be  applied  throughout  the  Midwest  and  well  beyond.            

Page 6: NativeMeadows!and!Grasslands:!From!Vision!to!Reality...SUN$B06_Native.Meadows.&.Grasslands.$.3. direct.precipitation...Most.natural.wetlandandaquatic.systems.includinglakes,.streams,.and.rivers.were

SUN-­‐B06_Native  Meadows  &  Grasslands  -­‐  6  

Section  II:  Meadow/Grassland  Design,  Installation,  and  Management  |  Larry  Weaner    The  following  materials  represent  a  range  of  considerations  and  techniques  relevant  to  meadow/grassland  design,  installation,  and  management.  While  not  an  exhaustive  guide  to  meadow/grassland  creation,  what  is  provided  here  includes  many  of  the  most  pertinent  aspects.      A. Key  Site  Analysis  Considerations  

• Light  is  critical:  Full  sun  (six  hours  minimum)  is  required.  Insufficient  sunlight  will  favor  woody  species  over  herbaceous  wildflowers  and  grasses,  causing  an  increase  in  maintenance  requirements.  By  undercutting  meadow  vegetation,  lack  of  light  will  also  favor  weed  invasion.  

• Know  your  soils:  Meadows  can  thrive  on  a  variety  of  soil  types—sand,  loam,  clay,  etc.—but  each  requires  a  different  suite  of  adapted  plants.  Barring  an  extreme  deficiency,  do  not  amend  soils.  Leaner,  lower  pH  soils  can  be  advantageous  as  they  are  less  conducive  to  weedy  growth.  

• Grade  and  topography  matter:  Determine  microhabitats  created  by  grade  and  topography  and  modify  planting  choices  to  suit.  Topography  can  also  affect  planting  schedule:  a  sloping  site  may  require  a  spring  seeding  as  fall  planted  meadow  seed  typically  remains  dormant  until  spring  and  is  liable  to  wash  away  on  a  slope  over  the  course  of  a  winter.  

• Existing  vegetation  can  provide  clues:  Assess  existing  vegetation  to  obtain  valuable  information  regarding  what  plants  will  grow  well  on  the  site  and  what  specific  weedy  species  are  likely  to  present  a  problem.  If  a  native  meadow  species  already  occurs  on  the  site,  include  it  and  its  associates  in  your  meadow  palette.  

 

B. Design  

Assembling  a  Plant  Community  

Mimicking  the  growth  of  natural  grassland  and  the  niches  found  therein  will  make  for  the  most  stable,  resilient,  and  functional  planting.  Even  a  cursory  look  at  a  mature  prairie  or  wild  meadow  will  reveal  an  incredibly  dense  tapestry  with  a  canopy,  numerous  middle  layers  of  growth  and  a  creeping  understory.  This  dense  interweaving  of  stems  and  foliage  should  be  mirrored  underground  by  the  root  systems  of  the  meadow  grasses  and  wildflowers,  with  shallow,  spreading  mats  of  roots  that  fill  the  upper  layer  of  soil  complemented  by  deeper-­‐reaching  tap  and  fibrous  roots  that  fill  the  soil  underneath.  Such  a  dense  fabric  of  growth  is  remarkably  weed  resistant  once  established.      Temporal  niches  also  need  to  be  filled.  There  are  two  time  scales  to  consider  with  meadows.  The  first  is  seasonal.  Some  plants  such  as  the  native  meadow  grasses  grow  most  actively  during  the  warm  weather  season,  from  late  spring  until  early  autumn,  while  other  plants  make  their  growth  during  cool  seasons,  especially  spring.  To  neglect  either  group  in  your  planting  is  to  invite  an  invasion  of  weeds  with  a  corresponding  season  of  growth.      The  second  time  scale  is  one  of  years.  To  keep  the  weeds  at  bay,  a  meadow  should  include  fast-­‐growing  plants  that  cover  the  ground  during  the  first  year  of  growth,  biennials  and  short-­‐lived  perennials  to  take  over  as  the  first  year  plants  fade,  and  longer-­‐lived  perennials  to  provide  long-­‐term  cover.  All  of  these  need  to  be  present  to  prevent  a  vulnerable  gap  in  the  meadow’s  ability  to  resist  weeds.    

Page 7: NativeMeadows!and!Grasslands:!From!Vision!to!Reality...SUN$B06_Native.Meadows.&.Grasslands.$.3. direct.precipitation...Most.natural.wetlandandaquatic.systems.includinglakes,.streams,.and.rivers.were

SUN-­‐B06_Native  Meadows  &  Grasslands  -­‐  7  

There  is  one  additional  niche  to  fill  in  the  meadow,  one  that  is  neither  spatial  nor  time  related.  These  are  plants  in  the  legume  family,  which  fix  nitrogen  from  the  air  and  add  it  to  the  soil.  This  produces  a  modest  increase  in  fertility.  Whereas  the  high  levels  of  fertility  that  fertilizers  produce  pose  a  threat  to  meadow  plantings,  the  level  of  fertilization  furnished  by  legumes  is  typically  perfectly  suited  to  the  meadow  plants  that  co-­‐evolved  with  the  nitrogen-­‐fixing  plants.  Plant  decomposition  also  affects  fertility.  Again,  if  you’re  using  a  plant  community  model,  the  fertility  levels  that  result  from  the  decomposition  of  those  plants  should  be  optimal  to  support  that  community.    

Seed  Mix  Formulation  

a) Determine  the  square  footage  of  the  project  area.  b) Determine  desired  seeds  per  square  foot  (typically  =  150-­‐200  seeds  per  square  foot  for  main  mixes,  

60-­‐80  seeds  per  square  foot  for  overlay  mixes).  c) Assign  a  percentage  of  the  total  mix  to  each  species,  totaling  100%.  Note:  grasses  should  generally  

consist  of  40-­‐100%  of  the  mix.  d) Calculate  the  number  of  seeds  needed  to  fulfill  the  assigned  percentage  for  each  species:  a  x  b  x  c  =  

d  (number  of  seeds  needed  for  each  species).  Convert  the  number  of  seeds  to  weight  for  each  species.  

e) Divide  d  by  the  number  of  seeds  per  ounce  of  species.  (Seeds  per  ounce  of  each  species  can  be  obtained  in  online  searches  of  plant  name  seeds  per  ounce  or  in  seed  house  catalogues.)  

 If  this  bit  of  mathematics  seems  intimidating,  a  workaround  exists:  complete  steps  A  through  C  (no  math  required)  and  submit  those  figures  to  a  reputable  seed  house,  which  can  then  take  care  of  steps  D  and  E.  Just  be  sure  to  let  the  seed  company  know  that  the  submitted  percentages  refer  to  seed  counts,  not  weight.      In  addition  to  perennial  grasses  and  wildflowers  (forbs),  you’ll  also  want  to  include  a  nurse  or  cover  crop  in  your  seed  mix.  Cover  crops  typically  consist  of  fast  germinating,  clump-­‐forming  annual  grass  such  as  oats  or  intermediate  rye.  By  providing  quick  coverage  of  the  site,  the  nurse  crop  helps  to  reduce  weed  invasion  and  soil  erosion  during  the  first  season  after  planting.  This  is  very  important  for  the  meadow  is  most  vulnerable  at  this  time  because  the  longer  lived  perennials  and  grasses  are  not  yet  well  enough  established  to  stabilize  the  soil.  These  annual  grasses  are  commonly  used  for  this  purpose  in  the  construction  trades.  Possible  cover  crops  are  listed  in  the  sample  seed  mix  on  the  following  page.    Incorporate  your  nurse  crop  into  the  seed  mix,  and  you  have  a  custom  designed  seed  blend  that  contains  species  names  and  quantities  for  each  (expressed  in  weight),  which  you  can  now  submit  to  a  seed  house  or  houses.        

-­‐    A  sample  seed  mix  appears  on  the  following  page.  -­‐    

   

Page 8: NativeMeadows!and!Grasslands:!From!Vision!to!Reality...SUN$B06_Native.Meadows.&.Grasslands.$.3. direct.precipitation...Most.natural.wetlandandaquatic.systems.includinglakes,.streams,.and.rivers.were

SUN-­‐B06_Native  Meadows  &  Grasslands  -­‐  8  

Sample  Seed  Mix  

This  sample  seed  mix  for  an  upland  meadow  site  in  the  northeast  may  appear  to  include  a  lot  of  species  but  keep  in  mind  that  a  certain  percentage  are  early  successional  and  will  drop  out  as  longer-­‐lived  growth  takes  over.  The  early-­‐successional  species  should  reappear  in  the  event  of  disturbance.    

Nurse  crops  are  listed  as  options  based  upon  the  seeding  time.  Once  a  seeding  time  has  been  determined,  the  relevant  nurse  crop  can  be  specified.  

 

   Using  Live  Plants  

In  some  instances,  using  container-­‐grown—i.e.,  live  plants—in  addition  to  seed  may  be  desired.  This  has  the  advantage  of  faster  establishment,  with  the  meadow  maturing  in  a  year  or  two  rather  than  the  multiyear  time  frame  that  starting  from  seed  typically  requires.  Some  meadow  species  can  take  five  to  ten  years  to  reach  flowering  size  and  these  would  be  good  candidates  to  plant  live.  All  the  wild  indigos  (Baptisia  spp.),  Culver’s  root  (Veronicastrum  virginicum)  and  wild  quinine  (Parthenium  integrifolium)  fall  into  this  category.  And  some  plants  don’t  come  at  all  from  seed  when  sown  directly  into  the  landscape,  

DATE: March 1, 2014

Seed Mix SpecificationsProject name/location: MA meadow Results (excluding cover crop)

Mix: M1 - Main Mesic 19 lbs. of seed/acreArea in acres = 1.1 20 Total lbs. this mixArea in sq ft = 46,030 21 Total spp.

Total seeds per sq ft (150-200 suggested) = 150 5 Number of graminoides% graminoids (suggested range: 40-70%) = 60% 16 Number of forbs

Botanical Name Common Name% of Mix Qty

Seeding Notes Substitutions/Comments

Ht (ft/in)

Season/Color

Grasses, Sedges and RushesAgrostis hymalis Hair Grass 15.00% 1.38 oz 1-2' coolCarex vulpinoidea Fox Sedge 22.00% 9.11 oz 1-3' coolElymus villosus Silky Wild Rye 3.00% 22.60 oz 1-3' coolSchizachyrium scoparium Little Bluestem 44.00% 121.52 oz 2-3' warmTridens flavus Purpletop 16.00% 23.42 oz 2-5' warm

100%ForbsAsclepias tuberosa Butterfly Weed 1.00% 6.42 oz 1-3' SummerAster laevis (Symphiotrichum) Smooth Aster 10.00% 5.02 oz 2-5' FallChamaecrista fasciculata (Cassia) Partridge Pea 3.00% 30.69 oz 1-6' SummerCoreopsis lanceolata Tickseed 10.00% 13.81 oz 2-3' SpringEchinacea purpurea Purple Coneflower 9.00% 37.66 oz 3-5' SummerEchinacea tennesseensis Tennessee Coneflower 2.00% 9.21 oz 2' SummerEryngium yuccifolium Rattlesnake Master 4.00% 14.73 oz 3-5' SummerLespedeza capitata Round-headed Bush Clover 1.00% 3.45 oz 2-4' SummerMondarda punctata Horsemint 10.00% 3.07 oz 1-2' SummerPenstemon digitalis White Beardtongue 15.00% 3.19 oz 2-4' SpringPycnanthemum tenuifolium Slender Mountain Mint 7.00% 0.51 oz 2-3' SummerRudbeckia hirta Black Eyed Susan 10.00% 3.00 oz 1-3' SummerSolidago nemoralis Gray Goldenrod 10.00% 0.92 oz 1-3' FallSolidago rigida (Oligoneuron) Stiff Goldenrod 3.00% 2.02 oz 1-5' FallTradescantia ohioensis Ohio Spiderwort 2.00% 6.90 oz 2-4' SpringZizia aptera Heart-leaf Golden Alexander 3.00% 6.90 oz 1-2' Spring

100%Nurse CropAvena sativa Oats 20.92 lb Spring seedingEchinochloa crusgalli Barnyard Grass 1.05 lb Wetland seedingHordeum vulgare Barley 31.38 lb Summer seedingLolium multiflorum Annual Ryegrass 5.23 lb Summer/fall seedingSecale cereale Rye 31.38 lb Summer/fall seedingTriticum Winter Wheat 10.46 lb Fall seeding

Notes:1. USE THE FOLLOWING ECOTYPES IF AVAILABLE:

NORTH EASTCT, MA, NY, NJ

Page 9: NativeMeadows!and!Grasslands:!From!Vision!to!Reality...SUN$B06_Native.Meadows.&.Grasslands.$.3. direct.precipitation...Most.natural.wetlandandaquatic.systems.includinglakes,.streams,.and.rivers.were

SUN-­‐B06_Native  Meadows  &  Grasslands  -­‐  9  

such  as  Canada  anemone  (Anemone  canadensis)  and  milkvetch  (Astragalus  spp.).  If  you  want  these  plants  in  your  meadow,  you  have  no  choice  but  to  install  them  as  live  specimens.  Using  live  plants  also  allows  for  more  precise  arrangement  of  species.      C. Installation  

Site  preparation  is  of  the  utmost  importance  in  achieving  a  successful  meadow.  It  begins  with  elimination  of  existing  growth.  The  most  common  elimination  methods  are  repeated  applications  of  short-­‐lived  herbicide  sprays,  repeated  tilling  or  a  combination  of  the  two.  Tilling  will  bring  to  the  surface  dormant  weed  seeds,  which  must  be  allowed  to  germinate  and  then  shallowly  cultivated  or  sprayed  with  herbicide  before  planting.  This  can  be  avoided  with  a  no-­‐till  seeding  if  a  shallow  seedbed  can  be  worked  up  among  the  dead  plant  material.  Tarping  or  smothering  existing  growth  can  also  be  done,  but  this  can  be  cost/resource  prohibitive  over  a  large  scale.    Depending  on  the  scale  of  the  site  and  presence  of  obstacles,  seeding  occurs  with  walk-­‐behind  equipment  or  tractor-­‐pulled  equipment,  such  as  a  no-­‐trill  drill  seeder  (e.g.,  Truax  brand)  able  to  accommodate  the  sizes  and  textures  of  native  grass  and  forb  seeds.       D. Post-­‐Planting  Management  

Understanding  ecological  succession  is  key  to  meadow  maintenance.  Succession  is  the  process  by  which  a  disturbed  area  progresses  naturally  from  herbaceous  meadow  (first  annuals  then  perennials)  to  woody  shrubs  and  pioneer  trees  and  finally  to  a  mature  forest.  In  dry  portions  of  the  country,  various  forms  of  prairie  are  the  mature  stage  of  the  process.  By  establishing  a  permanent  meadow  where  woods  naturally  predominate,  however,  we  are  arresting  the  process  of  ecological  development  at  the  herbaceous  perennial  stage.      It  also  important  to  understand  that  while  a  meadow  or  grassland,  once  established,  will  require  substantially  less  maintenance  than  mowed  lawn,  the  first  one  to  two  years  will  require  guidance  in  order  to  achieve  success.  A  maintenance  plan  should  be  in  place  before  starting  to  insure  that  this  crucial  portion  of  the  project  is  not  neglected.    During  the  establishment  period,  it  will  be  necessary  to  carry  out  a  routine  weed  control  program  to  ensure  successful  establishment  of  the  meadow.  The  most  appropriate  methods  are  determined  by  the  size  of  the  project,  maintenance  budget,  method  of  installation,  and  the  appearance  of  weed  species.    Year  1  Management  

As  the  process  of  ecological  succession  would  suggest,  the  first  year  will  bring  a  rapid  cover  of  the  seeded  cover  crop  as  well  as  annual  weeds,  while  the  perennial  wildflowers  and  grasses  are  slowly  developing  underneath.  This  is  to  be  expected,  and  if  managed  properly,  is  not  a  problem.  By  mowing  the  first  year  meadow  during  the  growing  season  to  a  height  of  4-­‐6"  whenever  growth  reaches  10-­‐14”  (see  graphic  on  subsequent  page),  you  not  only  prevent  annual  weeds  from  seeding,  but  also  insure  that  the  young  perennial  plants  growing  below  your  mow  height  receive  enough  light  for  strong  establishment.  These  perennials  will  emerge  the  following  year  far  stronger  than  if  they  had  been  buried  

Seeding  with  a  no-­‐till  drill  seeder.  Note  the  closely  mown  thatch  rather  than  tilled  soil.

Page 10: NativeMeadows!and!Grasslands:!From!Vision!to!Reality...SUN$B06_Native.Meadows.&.Grasslands.$.3. direct.precipitation...Most.natural.wetlandandaquatic.systems.includinglakes,.streams,.and.rivers.were

SUN-­‐B06_Native  Meadows  &  Grasslands  -­‐  10  

under  four  feet  of  annual  foliage  the  first  year.  This  is  why  the  inclusion  of  annual  wildflowers  in  your  seed  mix  can  be  detrimental  to  the  long-­‐term  health  of  the  planting.  Annual  wildflowers  are  included  for  their  ability  to  bloom  the  first  year.  In  order  for  this  to  occur,  you  are  prohibited  from  mowing,  which  allows  annual  weeds  to  go  unchecked  and  deprives  the  emerging  perennials  of  the  light  needed  for  optimal  growth.      When  mowing,  use  equipment  that  chops  dead  top  growth  (flail  or  rotary  style).  Sickle  bar  type  mowers,  which  cut  at  the  base  and  drop  plant  material  intact,  should  not  be  used,  as  meadow  seedlings  can  be  inhibited.  In  locations  inaccessible  to  a  mower  (wet  areas,  steep  slopes,  around  trees,  etc.),  string  trim  vegetation  to  4-­‐6”.  Do  not  remove  chopped  plant  refuse,  as  it  returns  organic  matter  and  nutrients  to  the  soil.  Any  thick  accumulations  of  cut  material  that  remain  to  the  point  where  soil  cannot  be  observed  through  the  cut  material  should  be  dispersed  evenly  over  the  site  or  removed.    Year  2  Management  

During  the  second  year,  the  faster  growing  perennials  (Black  Eyed  Susan:  Rudbeckia  hirta,  Coneflower:  Echinacea  spp.,  Bee  Balm:  Monarda  spp.)  will  begin  to  provide  color,  and  the  entire  planting  should  be  well  enough  established  to  allow  a  decrease  in  weed  control,  although  you  still  need  to  monitor  the  planting  for  those  weeds  that  can  cause  problems  for  the  meadow.  If  necessary,  control  can  be  obtained  through  spot  herbicide  application,  manual  weeding,  or  an  additional  mowing  immediately  following  the  most  active  growth  period  of  the  problem  weed.      Year  3+  Management  

By  the  third  year,  native  meadow  plants  should  be  fairly  dominant  and  able  to  resist  weed  invasion  with  minimal  management.  Maintenance  consists  of  a  single  mowing  or  controlled  burn  in  late  winter/early  spring  and  periodic  monitoring  for  weeds.