naruki wakabayashi shimizu corporation tokyo japan

23
1 Naruki Wakabayashi Shimizu Corporation Tokyo Japan Study on the Jointed Rock Mass Study on the Jointed Rock Mass for for the Excavation of Hyper-KAMIOK the Excavation of Hyper-KAMIOK ANDE Cavern at Kamioka Mine ANDE Cavern at Kamioka Mine N07 Hamamatsu, Japan 3-5 October 2007

Upload: ezhno

Post on 09-Jan-2016

39 views

Category:

Documents


0 download

DESCRIPTION

Study on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cavern at Kamioka Mine. Naruki Wakabayashi Shimizu Corporation Tokyo Japan. NNN07 Hamamatsu, Japan 3-5 October 2007. Topics  ・ Previous Geological Survey and Stability Analysis for the Hyper-K cavern - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

11

Naruki WakabayashiShimizu Corporation Tokyo Japan

Study on the Jointed Rock Mass forStudy on the Jointed Rock Mass for the Excavation of Hyper-KAMIOKANDE Cav the Excavation of Hyper-KAMIOKANDE Cav

ern at Kamioka Mineern at Kamioka Mine

NNN07 Hamamatsu, Japan 3-5 October 2007

Page 2: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

22

Topics ・ Previous Geological Survey and Stability Analysis for the Hyper-K cavern ・ Site Selection ・ Isotropic Elastic FEM Analysis for the Investigation of Cavern Shape, Size and Type

 ・ Ongoing Investigation and Analysis for Jointed Rock Mass ・ Investigation of Joint Orientation ・ Obtaining In-Situ Rock Joints and Investigation of Joint Mechanical Properties ・ Pull-out Test of Two Types of Cable Bolt ・ Two Type Analysis to Consider the Influence of Joint and Support System

Page 3: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

33

Mozumi mine

Tochibora mine

Proposed Area

Kamioka Mine Location

Kamioka Mine

Hamamatsu

Tokyo

Super-K

Proposed Area in Mozumi Mine is about 10km South from the Super-Kamiokande.

Site Selection

Page 4: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

44

Hyper-K Hyper-K proposed Siteproposed Site

HornblendeHornblendeBiotite GneissBiotite Gneiss& Migmatite& Migmatite

Biotite GneissBiotite Gneiss

LimestoneLimestone

”” AN

KO

” Fa

ult

AN

KO

” Fa

ult

”” 240

240

゜゚- M

E” F

au

lt- M

E” F

au

lt

””NAMARI” FaultNAMARI” Fault

Skarn OreSkarn Orebody Zonbody Zonee

Core BoringCore Boring

ExistingExistingTunnelTunnelSurveyedSurveyed

Geological Map of Proposed Siteat Tochibora Mine   Plan View of + 550mEL

N

Proposed Site Formation is Hornblende Biotite Gneiss and Migmatite.

100m

Page 5: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

55

18m

42m

60m

ƒÓ 60m (r=30m)

Cylindrical Dome Larger than Super-K Huge Tunnel

Comparison of the Hyper-K Cavern from Various View PointsMultipleDomes

Single TunnelTwo Parallel

Tunnels

× ○ ○

△ △ ○

○ × ○

× ○ △

◎ ○ ○

× △ ○ Height 60.0 54.0 54.0 Width Φ 60 48.0 48.0 Length - - - 500 250

3,368 2,076 2,076152,600 1,038,000 519,000

7 1 21,068,200 1,038,000 1,038,000 Total Volume of Caverns (m3)

Size of oneCavern (m)

Cost Performance of Detector Tank

Construction Period & Cost

Cavern Stability

Total Evaluation

Observation during Maintenance

Early Observation Startup

Cavern Type

Vertical Cross Section Area (m2) Volume of one Cavern (m3) Required No. of Caverns

Two Parallel TunnelsIsotropic Elastic FEM Analysis

Image Design of Two 250m Long Parallel Tunnels

Spacing

Spacing

Offset

Offset

””NAMARI” FaultNAMARI” Fault”” AN

KO

” Fau

ltA

NK

O” F

ault

”” 240°-ME

” Fau

lt240°-M

E” F

ault

Page 6: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

66

Summary of Previous StudySite Selection : Tochibora Mine, +480mEL~+550m EL is the most appropriate location with very competent rock condition.Cavern Design: Two 250m Long Parallel Tunnels with Section of 2,076m2 are capable of being safely excavated. This Type is possible to continue observation during Maintenance. Cavern Layout : Two Parallel Tunnels as above should be Located with 80m –100m (about 2 Diameter Distance) Spacing and 50m-100m Offset to avoid the poor Zone of Surrounding Faults.

In Isotropic Elastic FEM Analysis of Previous Study, Young’s Modulus was empirically decreased as Jointed Rock Mass.It is Important and Necessary to Consider the Influence of Joint Orientation and Mechanical Properties Numerically.

Page 7: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

77

Analysis for Jointed Rock Mass

Anisotropic Young’s Modulus Considering Joint Orientation and Mechanical Properties

Composition of Elastic Blocks Surrounding Joints

Equivalent Continuum Analysis

Discontinuous Analysis

Damage TensorCrack Tensor

Key BlockDistinct Element

Method (DEM)

・ Characteristics of Joint Orientation・ Mechanical Properties of Joint and Rock Core・ Mechanical Properties of Support such as Cable Bolt

Page 8: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

88

Investigation of Jointed Rock Mass

B-ⅡB-Ⅰ

B-ⅡB-Ⅲ

B-Ⅳ

D-Ⅴ

C-Ⅳ

C-Ⅲ

B-Ⅱ

B-Ⅲ

B-Ⅲ

B-Ⅱ

B-Ⅲ

B-Ⅲ

B-Ⅲ

B-Ⅲ

B-Ⅲ

B-Ⅲ

C-Ⅲ

B-Ⅲ

B-Ⅳ

C-Ⅳ

B-Ⅰ

B-Ⅰ

B-Ⅱ

B-Ⅱ

B-Ⅰ

B-ⅡB-Ⅰ

B-Ⅱ

B-Ⅰ

B-Ⅱ

B-Ⅱ

B-Ⅱ

B-Ⅱ

B-Ⅱ

B-Ⅲ

B-Ⅲ

D-Ⅳ

B-Ⅱ

C-Ⅳ

B-Ⅲ

B-Ⅱ

B-ⅡB-Ⅲ

B-Ⅲ

B-Ⅱ

B-Ⅱ

B-Ⅲ

C-Ⅳ

B-ⅡB-Ⅲ

B-Ⅱ

B-Ⅱ

B-Ⅲ

B-Ⅲ

B-Ⅱ

B-ⅡB-Ⅲ

B-Ⅲ

B-Ⅳ

B-Ⅳ

-200

+200

- 200

+100

0

-200

- 100

Ap

Ap

Ap

Ap

Ap

Ap

Ap

ApAp

Ap

Ap

Ap

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

70

70

70

75

80

Ao

Ap

Ap

Ap

Ap

Ap

Ap

ApAp

Ap

Ap

ApAp

Ap

Ap

Ap

ApAp

Ap

85

75

80

85

80

80

70

Ap

Ap

Ap

ApAp

Ap

Ap

Ap

ApAp

Ap

Ap

Ap

Ap

Ap

Ap

Ap Ao Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

AoAo

AoAo

AoAo

Ao

AoAo

Ao

Ao

Ao

Ao

Ao

Ap

Ap

Ap

Ap

Ap

Ap

Ap

Ap

Ap

60

S70E

240°目断層

~~~

~~~~

300

220

230

240

250

260

270

280

290

310

320

330

340

350

360

370

380

390

400

210

200

190

140

150

160

170

180

110

120

130

100

90

80

70

60

50

40

30

20

10

0

調査終了点

調査開始点

大規模地下空洞立地可能性調査400m 1:300坑道調査( )縮尺

凡例

伊西岩角閃石片麻岩スカルンアプライト緑泥石化片麻岩片理面

割れ目

滴水あり

岩盤分類凡例

B B- B-( Ⅰ、 Ⅱ)

CH B- C-( Ⅲ、 Ⅱ)

CM B- C-( Ⅳ、 Ⅲ)

CL D- C- C-( Ⅲ、 Ⅳ、 Ⅴ)

D D- D-( Ⅳ、 Ⅴ)

AP

Ao

巻末資料3岩盤分類図

B-ⅡB-Ⅰ

B-ⅡB-Ⅲ

B-Ⅳ

D-Ⅴ

C-Ⅳ

C-Ⅲ

B-Ⅱ

B-Ⅲ

B-Ⅲ

B-Ⅱ

B-Ⅲ

B-Ⅲ

B-Ⅲ

B-Ⅲ

B-Ⅲ

B-Ⅲ

C-Ⅲ

B-Ⅲ

B-Ⅳ

C-Ⅳ

B-Ⅰ

B-Ⅰ

B-Ⅱ

B-Ⅱ

B-Ⅰ

B-ⅡB-Ⅰ

B-Ⅱ

B-Ⅰ

B-Ⅱ

B-Ⅱ

B-Ⅱ

B-Ⅱ

B-Ⅱ

B-Ⅲ

B-Ⅲ

D-Ⅳ

B-Ⅱ

C-Ⅳ

B-Ⅲ

B-Ⅱ

B-ⅡB-Ⅲ

B-Ⅲ

B-Ⅱ

B-Ⅱ

B-Ⅲ

C-Ⅳ

B-ⅡB-Ⅲ

B-Ⅱ

B-Ⅱ

B-Ⅲ

B-Ⅲ

B-Ⅱ

B-ⅡB-Ⅲ

B-Ⅲ

B-Ⅳ

B-Ⅳ

-200

+200

- 200

+100

0

-200

- 100

Ap

Ap

Ap

Ap

Ap

Ap

Ap

ApAp

Ap

Ap

Ap

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

70

70

70

75

80

Ao

Ap

Ap

Ap

Ap

Ap

Ap

ApAp

Ap

Ap

ApAp

Ap

Ap

Ap

ApAp

Ap

85

75

80

85

80

80

70

Ap

Ap

Ap

ApAp

Ap

Ap

Ap

ApAp

Ap

Ap

Ap

Ap

Ap

Ap

Ap Ao Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao

AoAo

AoAo

AoAo

Ao

AoAo

Ao

Ao

Ao

Ao

Ao

Ap

Ap

Ap

Ap

Ap

Ap

Ap

Ap

Ap

60

S70E

240°目断層

~~

~~

~~~

300

220

230

240

250

260

270

280

290

310

320

330

340

350

360

370

380

390

400

210

200

190

140

150

160

170

180

110

120

130

100

90

80

70

60

50

40

30

20

10

0

調査終了点

調査開始点

大規模地下空洞立地可能性調査400m 1:300坑道調査( )縮尺

凡例

伊西岩角閃石片麻岩スカルンアプライト緑泥石化片麻岩片理面

割れ目

滴水あり

岩盤分類凡例

B B- B-( Ⅰ、 Ⅱ)

CH B- C-( Ⅲ、 Ⅱ)

CM B- C-( Ⅳ、 Ⅲ)

CL D- C- C-( Ⅲ、 Ⅳ、 Ⅴ)

D D- D-( Ⅳ、 Ⅴ)

AP

Ao

巻末資料3岩盤分類図

Pull-out Tests of Cable bolt (6 Places)

Obtaining Rock Joint (3 Places)

+550m EL

N

Rock Classification B Very Good CH Good CM Medium

Measurement of Joint Orientationin this Existing Tunnel

Rock Types Gneiss Migmatite

Page 9: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

99

Investigation of Joint Orientation・ Major Joint Set   : Strike E-W and Dip ±70 ~ 90°・ Another Joint Set : Strike NE-WS and Dip ±40 ~ 50°

Projection of Poles

Pole Density Contours

0

Equal angle projection, lower hemisphere

n=130 (P)Num total: 130

0

Equal angle projection, lower hemisphere

n=131 (P)Num total: 131

0

Equal angle projection, lower hemisphere

n=130max. dens.=5.82 (at 344/ 15)min. dens.=0.00Contours at:0.00, 1.00, 2.00, 3.00,4.00, 5.00,(Multiples of random distribution)

0

Equal angle projection, lower hemisphere

n=131max. dens.=9.44 (at 180/ 5)min. dens.=0.00Contours at:0.00, 1.00, 2.00, 3.00,4.00, 5.00, 6.00, 7.00,8.00, 9.00,(Multiples of random distribution)

Gneiss MigmatiteN

W

S

E

N

W

S

E

N

W

S

E

N

W

S

E

N

S

W E

Strike

Dip

Pole

Joint

×

Page 10: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

1010

Situation of Obtaining In-Site Rock Joints

Recovered Core with Joint

Diamond Drilling

Joint

Joint

Page 11: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

1111

・ Joint Deformability Parameters such as Normal and Shear Stiffness, Dilatancy Angle ・ Joint Shear Strength such as Cohesion and Internal Friction Angle

Normal Stress

Shear Displacement

Joint Mechanical Properties

Direct Shear Test of Rock Joints

Shear Test Equipment(Normal and Shear load are 1MN)

Rock Joint Specimen with extensometers

Page 12: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

1212

0.00 0.05 0.10 0.15 0.20 0.25 0.300

2

4

6

8

10

12shear-3-1-v

(mm)垂直変位

(N

/mm

垂直

応力

2 )σn=10N/mm2

Normal Stiffness=67N/mm2/mm

Normal Displacement (mm)

No

rmal

Str

ess

(N/m

m2 )

- 0.2

- 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 1.0 2.0 3.0 4.0 5.0

(mm)せん断変位

(mm

)垂

直変

3- 1(σ n=10MPa)2- 1(σ n=5MPa)1- 1(σ n=5MPa)2- 2(σ n=2MPa)

Di l atancy angle=2.4°

Shear Displacement (mm)

No

rmal

Dis

pla

cem

ent

(mm

)

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12

(N/ mm2)鉛直応力

(N/m

m2)

せん

断強

τ =0.5+σ n tan33°

τ =σ n tan54°

Normal Stress (N/mm2)

Sh

ear

Str

eng

th (

N/m

m2 )

Cohesion=0.57N/mm2

Internal Friction angle =33°

Results of Direct Shear Test

0

2

4

6

8

10

12

14

16

0.0 1.0 2.0 3.0 4.0 5.0

(mm)せん断変位

(N/m

m2)

せん

断応

3- 1(σ n=10MPa)2- 1(σ n=5MPa)1- 1(σ n=5MPa)2- 2(σ n=2MPa)

=60N/ mmせん断剛性 2/ mm

Shear Displacement (mm)

Sh

ear

Str

ess

(N/m

m2 ) Shear Stiffness=60N/mm2/mm

Shear Strength

Page 13: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

1313

Pull-Out Test of Two Type Cable Bolts

Economical Support System should be used ・ Usual Support System for Large Cavern is Rock Anchor → Expensive ・ Proposed Support System is Rock Bolt and Cable Bolt → Economical ・ Special Cable Bolt with Dimples has very high Strength ・ Mechanical Properties of Cable bolt was estimated by Pull-Out Test

Usual Cable Bolt without Dimples( PC-Cable Bolt )

Special Cable Bolt with Dimples( ST-Cable Bolt )

Page 14: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

1414

Situation of Pull-Out Tests

PC-Cable bolt

ST-Cable Bolt

Jock and Dial Gauge Pressure Pump

Diamond Drilling Inserting Cable Bolts

Pull-Out TestSetting up Equipments

Page 15: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

1515

Results of Pull-Out TestsB片麻岩 級

0

50

100

150

200

250

0 2 4 6 8 10 12 14(mm)変位

(kN)

荷重

No.1- LNo.2- LNo.2- 上No.1- RNo.2- RNo.2- 下

ST

PC

Displacement (mm)

Load

(kN

)

Gneiss (B)

B伊西岩 級

0

50

100

150

200

0 2 4 6 8 10 12 14

(mm)変位

(kN

)荷

No.3- LNo.6- LNo.3- RNo.6- R

ST

PC

Displacement (mm)

Load

(kN

)

Migmatite (B)

0.00E+00

2.00E+04

4.00E+04

6.00E+04

8.00E+04

1.00E+05

1.20E+05

1.40E+05

0 50 100 150 200 250 300 350 400(kN/ m)付着強度

(kN/m

/m)

付着

剛性

B ST片麻岩 級( ) CM ST片麻岩 級( )B ST)伊西岩 級( CH ST)伊西岩 級(B PC片麻岩 級( ) CM PC片麻岩 級( )B PC)伊西岩 級( CH PC)伊西岩 級(

PC 53kN/ m:付着強度 以上 40100kN/ m/ m.付着剛性 以上

ST 270kN/ m:付着強度 以上 53900kN/ m/ m.付着剛性 以上

Strength (kN/m)

Stif

fnes

s (k

N/m

/m)

ST

PC

□Gneiss (B) ◇Migmatite(B) □Gneiss (B) ◇Migmatite(B)

△Gneiss (CH) ○Migmatite(CH)△Gneiss (CH) ○Migmatite(CH)

PC Strength above 53kN/m Stiffness above 40MN/m/m

ST Strength above 270kN/m Stiffness above 53MN/m/m

付着剛性付着強度

Stiffness (kN/m/m)Strength (kN/m)

Cable bolt model

Page 16: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

1616

Mechanical Properties of Intact Rock Core Migmatite Gneiss

Compressive Strength (N/mm2) 191 176

Young’s Modulus (kN/mm2) 60.4 64.3

Poisson’s Ratio 0.24 0.26

Density (MN/m3) 0.027 0.027

Mechanical Properties Properties for Analysis

Rock Mass(Same as Intact Rock)

Young’s Modulus=64.3 kN/mm2 Poisson’s Ratio=0.25Density=0.27NM/m3

JointNormal Stiffness=67N/mm2/mm Shear Stiffness=60N/mm2/mm Dairatancy Angle=2.4°Cohesion=0.57N/mm2 Internal Frictional angle=33°

ST-Cable Bolt Shear Strength= 270kN/m Shear Stiffness=53MN/m/m

PC-Cable Bolt Shear Strength= 53kN/m Shear Stiffness=40MN/m/m

Page 17: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

1717

Analysis Cases

SupportSupport In-Situ StressIn-Situ Stress

Case 1Case 1 Without SupportWithout SupportIsotropic Stress

σH=σv=14.4

( N/mm2 )(Overburden:500m)

Case 2Case 2Rock Bolt (Length=6m :Space=2m)Rock Bolt (Length=6m :Space=2m)

Double PC-Cable Bolt (Length=15m :Space=2m)Double PC-Cable Bolt (Length=15m :Space=2m)

Case 3Case 3Rock Bolt (Length=6m :Space=2m)Rock Bolt (Length=6m :Space=2m)

Double ST-Cable Bolt (Length=15m :Space=2m)Double ST-Cable Bolt (Length=15m :Space=2m)

Discontinuous Analysis by DEM

DEM Analysis is Performed to Establish the Behavior of Jointed Rock Mass and the Effect of Support System.

Cavern Direction is East and West

Huge TunnnelW48m×H54m

2070m2

Cavern Shape and Direction

”” AN

KO

AN

KO

””F

au

ltF

au

lt

”” 240

240 ゜゚--

ME

ME

””F

au

ltF

au

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fa

ult

Fa

ult

”” 240

240 ゜゚--

ME

ME

””F

au

ltF

au

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fa

ult

Fa

ult

”” 240

240 ゜゚--

ME

ME

””F

au

ltF

au

lt

””NAMARINAMARI”” FaultFaultNNN

Join

t S

trik

e

Page 18: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

1818

200m

Strike E-W Dip ±70 ~ 90°(Major Joint Set)

Procedure of Analysis

Establishing Support System after Each Excavation Step

First Step SecondStep

Third Step

FourthStepAnalysis Model

200m

Strike NS-WS Dip ± 40 ~ 50°(Another Joint Set)

Joints are Generated Statistically According to the Joint Orientation

Page 19: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

1919

Displacement Vector and Cable Axial Force

Case 3: RB+ST-Cable Bolt (Double)

Displacement of Right and Left Side Wall are nearly same because of Symmetrical Joint Dip Angle (±70 ~ 90°).

Displacement of Case-3 is smaller than Case-2 because of Support Effect of ST Cable Bolts

Case 1 : Without Support

89 17

15

93

17

45

67 13

15

41

10

35

60 13

15

37

10

32

284

464415

( kN )

474

618620

( kN )

(mm)

(mm)

(mm)

Case 2 : RB+PC-Cable Bolt (Double)

Page 20: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

2020

  Equivalent Continuum Analysis by Crack Tensor

ModelX

Z

Cavern shape and Region (528m×528m)

240m 240m48m

240

m23

4m54

mHuge TunnnelW48m×H54m

2070m2

Crack Tensor Analysis is Performed to Estimate the Relation between Tunnel Direction and Joint Orientation.

In-Situ Stress is Isotropic σH=σv=14.4 ( N/mm2 )Case 1:Cavern Direction is East and West, parallel to Joint StrikeCase 2:Cavern Direction is North and South, right-angled to Joint Strike

”” AN

KO

AN

KO

””F

ault

Fau

lt

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fau

ltF

ault

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fau

ltF

ault

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultNNN

Case 1 Case 2

”” AN

KO

AN

KO

””F

ault

Fau

lt

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fau

ltF

ault

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fau

ltF

ault

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultNNN

Join

t S

trik

e

Join

t S

trik

e

Page 21: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

2121

Displacement

Case 1 Case 2Output Set: I- DEAS Case 1Deformed(0.0391): Total Translation

9mm

15mm

39mm39mm

Output Set: I- DEAS Case 1Deformed(0.0391): Total Translation

9mm

15mm

39mm39mm

Output Set: I- DEAS Case 1Deformed(0.0181): Total Translation

12mm

18mm8mm

18mm

Output Set: I- DEAS Case 1Deformed(0.0181): Total Translation

12mm

18mm8mm

18mm

”” AN

KO

AN

KO

””F

ault

Fau

lt

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fau

ltF

ault

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fau

ltF

ault

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultNNN

Join

t S

trik

e ”” AN

KO

AN

KO

””F

ault

Fau

lt

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fau

ltF

ault

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultN”” A

NK

OA

NK

O””

Fau

ltF

ault

”” 240240 ゜゚--

ME

ME

””F

ault

Fau

lt

””NAMARINAMARI”” FaultFaultNNN

Join

t S

trik

e

Side Wall Displacement of Case 1 is 2 times Larger than Case 2 because of influence of Joint Strike Direction.

Page 22: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

2222

Summary

Joint Orientation : At Proposed Site in Tochibora Mine, Major Joint Set Strike Direction is E-W and Dip Angle is ±70 ~ 90°Joint Properties : Normal and Shear Stiffness, Shear Strength are Estimated. Cable Bolt Properties : Shear Strength and Stiffness of ST and PC Cable Bolt are Estimated. Shear Strength of ST-Cable Bolt is 5 Times Higher than PC-Cable Bolt. ST-Cable Bolt is very Effective Support.Results of Analysis : Discontinuous and Equivalent Continuum Analysis are able to Estimate the Effect of Rock Support System and the Anisotropic Behavior of Jointed Rock Mass. Joint Orientation is very Important factor to decide the Cavern Direction.Further Investigation : It is Necessary for Estimation of Accurate Joint Orientation to investigate in Different Direction Tunnel or Bore Hole Additionally. Measurements of In-Situ Initial Stresses and In-Situ Tests on Rock Mass Deformability are indispensable.

Page 23: Naruki  Wakabayashi Shimizu Corporation  Tokyo  Japan

2323

END