nanostructured electrode and electrolyte … 2008 peer...nanostructured electrode and electrolyte...

22
Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National Laboratories Albuquerque, NM Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) and by the Small Business Innovation Research (SBIR) program, and managed by Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration, under contract DE-AC04-94AL85000. SNL, GINER, and ADA Electrochemical Storage Program Reviews Capacitor Development Activities

Upload: others

Post on 22-Apr-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

Nanostructured Electrode and Electrolyte Development for Energy Storage Devices

Presented by Karen WaldripSandia National Laboratories

Albuquerque, NMFunded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) and by the Small Business Innovation Research (SBIR) program, and managed by Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration, under contract DE-AC04-94AL85000.

― SNL, GINER, and ADA ― Electrochemical Storage Program Reviews

― Capacitor Development Activities

Page 2: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

D. Ingersoll, F.M. Delnick, and K.E. WaldripSandia National Laboratories

PO Box 5800Albuquerque, NM 87185-0614

Sandia National Labs Program Review High Voltage Electrochemical Capacitor

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

presented at

EESAT 2008September 29-30, 2008

PEER ReviewWashington, D.C.

Page 3: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

3

Objective• Project Began - 7/07• Increasing the energy of the system • Energy = 1/2 CV2

• Four general means to increasing energy– Increased surface area - most common approach

• A - active area of electrode– high surface area materials (carbon - typically > 1000

m2/g)– nanomaterials (e.g. carbon multiwalled nanotube)

– Employ Faradaic processes - psuedocapacitance• asymmetric capacitors • proton and lithium insertion reactions, eg RuOx ,

– Increased Voltage - not typically done– aqueous based - < 2 V – nonaqueous - 2.7 V

• Working range of electrolyte– primary concern - Faradiac processes

» oxidation/reduction of electrolyte» corrosion of current collector» oxidation/reduction of active electrode materials

– Cell Resistance

Cd relatively constant for different systems

– Increased Cd - area specific capacitance

• not typically done

Page 4: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

4

Motivation

• Previous program - room temperature electrodeposition of reactive metals & alloys. (Joint program with LANL)

– highly reactive metals• necessitates large electrolyte working range

(large voltage)– low solution resistance

• ionic liquids (ILs)– neat– as electrolyte in other solvents– typical materials (eg EMI-Im, DMPI-Im)– new materials - DMPIpA-Im– In general, IL working range is limited

& resistance is relatively high.• Typical battery & capacitor electrolytes

– LiBOB, LiTFS, TEABF4 , etc, in DME, PC• atypical electrolyte solutions

– e.g. reactive metal salts in DMSO• We have observed large working range of

some of our systems. (8 V for data shown)

Page 5: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

5

Ionic Liquid Study Conclusions

• Large working ranges were observed• Resistance in cells was high• Capacitance was low• Self discharge was fairly high• Higher voltages did not offset higher

cell resistance and lower capacitance• Determined not to be a viable route at

this time for a high energy density capacitor

• Returned to DMSO + reactive metal salt electrolyte systems

Page 6: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

6

DMSO Electrolyte Working Ranges Depend on Salt and Substrate

0

0.0002

0.0004

0.0006

0.0008

0.001

-14 -12 -10 -8 -6 -4 -2 0

I A/cm2 S63-44I A/cm2 S62-53I A/cm2 S61-51

E Volts vs Ag/AgCl

AlDMSO

200 mV/secRT

FD3-66,68,70

CeCl3

SmCl3

GdCl3

0

0.0002

0.0004

0.0006

0.0008

0.001

-14 -12 -10 -8 -6 -4 -2 0

I A/cm2 S62-10I A/cm2 S63-36I A/cm2 S60-9I A/cm2 S61-44

E Volts vs Ag/AgCl

AuDMSO

200 mV/secRT

FD3-64,66,67,70

CeCl3

SmCl3

GdCl3

CeTFS

0

0.0002

0.0004

0.0006

0.0008

0.001

-14 -12 -10 -8 -6 -4 -2 0

I A/cm2 S61-35I A/cm2 S62-43

E Volts vs Ag/AgCl

MoDMSO

200 mV/secRT

FD3-68,66

CeCl3

SmCl3

0

0.001

0.002

0.003

0.004

0.005

-1 -0.5 0 0.5 1 1.5 2

I A/cm2 S61-3I A/cm2 S60-3

E Volts vs Ag/AgCl

DMSO200 mV/secRTFD3-64,65

PTCeCl3

AuCeTFS

0

0.002

0.004

0.006

0.008

0.01

-12 -10 -8 -6 -4 -2 0 2

I A/cm2 S63-40I A/cm2 S62-49I A/cm2 S61-49

E Volts vs Ag/AgCl

AlDMSO200 mV/secRTFD3-66,68,70

CeCl3

SmCl3

GdCl3

0

0.0002

0.0004

0.0006

0.0008

0.001

-14 -12 -10 -8 -6 -4 -2 0

I A/cm2 S63-23I A/cm2 S62-21I A/cm2 S61-22

E Volts vs Ag/AgCl

Vitreous CDMSO200 mV/secRTFD3-65,67,69,

CeCl3

SmCl3

GdCl3

Page 7: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

7

Observations & Future Work

• Reproduced initial experiments• Voltage scans limited to working range of potentiostat in some cases• Electrochemical behavior highly dependent upon substrate and salt

composition• Passive film is extremely thin (specular, shiny electrode surface)

– May not plug up pores of high surface area carbons– May have to increase layer thickness to reduce leakage current due

to tunneling (?)• Perform these experiments on high surface area carbon electrodes

(voltage, capacitance, leakage current)• Evaluate to determine extent of economic advantage for approach

Page 8: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

8

Acknowledgements

• Dr. Imre Gyuk, Department of Energy

• Drs. W.J. Oldham, W. Averill, D.A. Costa and M.E. Stoll Los Alamos National Laboratories

Page 9: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

9

““NanoNano‐‐Engineered Carbon Engineered Carbon  Electrochemical CapacitorsElectrochemical Capacitors””

U.S. DEPARTMENT of ENERGY (DOE) U.S. DEPARTMENT of ENERGY (DOE) Contract # DEContract # DE‐‐FG02FG02‐‐07ER8493607ER84936

Phase I (June 20, 2007 Phase I (June 20, 2007 ––

March. 19, 2008)March. 19, 2008)

Page 10: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

10

Phase I Study ObjectivePhase I Study Objective

““Design and develop an innovativeDesign and develop an innovativeallall‐‐solidsolid‐‐polymerpolymer‐‐electrolyte EDLC device consisting of electrolyte EDLC device consisting of 

nanonano‐‐porous carbon, synthesized by selective leaching porous carbon, synthesized by selective leaching  of metalof metal

from metal carbides,from metal carbides,and demonstrate its performance.and demonstrate its performance.””

Page 11: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

11

1.1.

HighHigh‐‐surfacesurface‐‐area (1954 marea (1954 m22/g) /g) nanonano‐‐porous carbon porous carbon  powders were synthesized. powders were synthesized. 

2.2.

Single as well as multi cell (5Single as well as multi cell (5‐‐cell) allcell) all‐‐solidsolid‐‐polymerpolymer‐‐ electrolyte electrolyte EDLCsEDLCs, containing no liquid electrolytes, , containing no liquid electrolytes,  toxic or corrosive materials or precious metals, were toxic or corrosive materials or precious metals, were 

fabricated and their performance was successfully fabricated and their performance was successfully  evaluated.evaluated.

Specific Objectives Achieved in Specific Objectives Achieved in  Phase IPhase I

Page 12: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

12

3. High specific capacitance (161.4 F/g) was 3. High specific capacitance (161.4 F/g) was demonstrated from tested alldemonstrated from tested all‐‐solidsolid‐‐polymerpolymer‐‐

electrolyte electrolyte EDLCsEDLCs..4. High4. High‐‐energy density (greater than 10 wattenergy density (greater than 10 watt‐‐h/kg) h/kg) 

and high power (greater than 1000and high power (greater than 1000

watt/kg) watt/kg)  was demonstrated from tested allwas demonstrated from tested all‐‐solidsolid‐‐polymerpolymer‐‐

electrolyte electrolyte EDLCsEDLCs..

Specific Objectives Achieved in Specific Objectives Achieved in  Phase I Phase I ContCont’’dd

Page 13: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

13

Figure 1. (a) singleFigure 1. (a) single‐‐cell (14.5 cmcell (14.5 cm22

active area) active area) 

allall‐‐solidsolid‐‐polymerpolymer‐‐electrolyte EDLC; (b) EDLC electrolyte EDLC; (b) EDLC  test hardwaretest hardware

(a) (b)

Page 14: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

14

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400 450

Discharge Voltage, V

olts

Time, Seconds

Figure 2. Discharge curve of Giner 5Figure 2. Discharge curve of Giner 5‐‐cell allcell all‐‐solidsolid‐‐ polymerpolymer‐‐electrolyte EDLC charged to 5.0 volts. electrolyte EDLC charged to 5.0 volts. 

Page 15: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

15

ADA - DoE SBIR Phase I program

• Project Title:High Performance Carbon Nanomaterials for Electrochemical Capacitors

• DoE SBIR Phase I Grant Award #:DE-FG02-07-ER84688

• Principal Investigator:Wen Lu, Ph.D.

• Company Information:ADA Technologies, Inc.8100 Shaffer Parkway, Suite 130Littleton, Colorado 80127-4107

ADA Technologies, Inc.

Page 16: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

16

ADA - DoE SBIR Phase I program

ADA Technologies, Inc.

Overall Goal & Approach of the Project

Utilize the unique properties of carbon nanotubes (CNT), high-surface-area activated carbons (AC), and environmentally benign ionic liquids (IL) to fabricate high performance CNT composite electrodes and combine them with ionic liquid electrolytes to develop advanced electrochemical capacitors for utility applications.

• Phase I proof-of-conceptcompleted using liquid form of the ionic liquids

• Phase II prototype demonstration will use a solid-state ionic-liquid--incorporated gel polymerelectrolyte (ILGPE) to further improvesafety and lifetime of the capacitors

ADA - DoE SBIR Phase I program

Page 17: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

17ADA Technologies, Inc.

ADA - DoE SBIR Phase I program

Why CNT Composite Electrodes

Roles of components in an AC/CNT/IL composite• AC to provide high surface area• CNT to avoid aggregation of CB (of a conventional AC/CB electrode) and to

provide a highly conductive and highly electrolyte accessible network• IL to untangle CNTs, serve as plasticizer, and reduce polymer binder contentAC/CNT/IL composite electrodes• Enhanced charge storage / delivery capability in ionic liquids over AC/CB

electrodes• Large-scale and low-cost production capability similar to AC/CB electrodes

Conventional AC/CB AC/CNT/IL composite

Phase I electrode sample (composite coating: 22 cm × 10 cm ) prepared manually, which will be scaled up by a automatic coating machine in Phase II.

AC/CNT/IL- Al electrode

Page 18: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

18ADA Technologies, Inc.

ADA - DoE SBIR Phase I program

Why Ionic Liquid Electrolytes

Properties of ionic liquid electrolytes• High ionic conductivity• Large electrochemical window• Wide liquid-phase range• Non-volatility• Non-flammability• Non-toxicityImproved performancefor ultracapacitors• High cell voltage• High energy density• High power density• High safety• Long lifetime

1.2V: 38 wt % H2SO4 (current aqueous electrolyte)2.4V: 1 M Et4NBF4/ACN (current organic electrolyte)4.3V: ionic liquid [EMIM]Tf2N]

Electrochemical windows ofdifferent electrolyte systems

E

max= 1/2(CU2 )

4R/UP 20max

Maximum energy:

Maximum power:

Performance of a ultracapacitor

Page 19: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

19ADA Technologies, Inc.

ADA - DoE SBIR Phase I program

Enhanced Performance of CNT Composites in Ionic Liquids

Conventional AC/CB in ionic liquids• Slow charge / discharge kinetics• Low capacitance (62 F/g)Conventional CNT paper in ionic liquids• Fast charge / discharge kinetics• Low capacitance (20 F/g)AC/CNT composite in ionic liquids• Fast charge / discharge kinetics• Enhanced capacitance (142 F/g)AC/CNT/IL composite in ionic liquids• Fast charge / discharge kinetics• Further enhanced capacitance (188 F/g)

(a): a conventional AC/CB electrode.(b): an AC/CNT composite electrode.(c): an AC/CNT/IL composite electrode.(d): a conventional CNT paper electrode.

Cyclic voltammogram at 20 mV/s

Charge / discharge at 10 mA/cm2

Page 20: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

20ADA Technologies, Inc.

ADA - DoE SBIR Phase I program

Ultracapacitor Performance of CNT Composites with Ionic Liquids against Conventional Electrode Materials

AC - IL capacitors (b)• Conventional AC/CB electrode• Ionic liquid electrolyte• Slow charge / discharge kinetics• High ESR• Small knee frequency• Poor capacitor performanceCNT composite - IL capacitors (a)• AC/CNT/IL composite electrode• Ionic liquid electrolyte• Fast charge / discharge kinetics• Low ESR• Large knee frequency• Excellent capacitor performance (a): CNT composite - IL capacitor incorporating AC/CNT/IL

composite electrode and ionic liquid electrolyte(b): AC - IL capacitor incorporating conventional AC/CB electrode and ionic liquid electrolyte

Charge / discharge at 10 mA/cm2

AC Impedance spectra

Page 21: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

21ADA Technologies, Inc.

ADA - DoE SBIR Phase I program

High Performance of CNT Composite - Ionic Liquid Ultracapacitors against Current Ultracapacitor Technology

Current ultracapacitor technology (AC electrode, organic electrolyte)• Low cell voltage• Limited performance (energy/power density)• Limited safety• Limited cycle lifeAC - IL capacitors• AC/CB electrodes function

poorly with ionic liquids• Slightly improved performanceCNT composite - IL capacitors• High cell voltage• AC/CNT/IL composite electrodes

function well with ionic liquids• Significantly enhanced performance• Improved safety• Improved cycle life

0.1

1

10

100

0.1 1 10 100

Energy density (Wh/kg)

Pow

er d

ensi

ty (k

W/k

g)

Current ultracapacitor technology(2.5 V, 4 ~ 5 Wh/kg, 1 ~ 1.8 kW/kg )

CNT composite - IL ultracapacitors(4 V, 17 Wh/kg, 7.7 kW/kg )

AC - IL ultracapacitors(4 V, 7 Wh/kg, 2.2 kW/kg )

CNT composite - IL vs. current ultracapacitor technologies

Page 22: Nanostructured Electrode and Electrolyte … 2008 Peer...Nanostructured Electrode and Electrolyte Development for Energy Storage Devices Presented by Karen Waldrip Sandia National

22ADA Technologies, Inc.

ADA - DoE SBIR Phase I program

Outline of Proposed Phase II Program

• Continue optimizing AC/CNT/IL composites to further improve ultracapacitor performance

• Produce optimized AC/CNT/IL composite electrode in large scale suitable for fabricating industrial ultracapacitors

• Design, fabricate, and evaluate industrial packaged ultracapacitors. Leverage our established ILGPE technology to further improve safety and lifetime for the capacitors

• Integrate individual ultracapacitors to design, fabricate, and evaluate modules and power systems for utility applications. Demonstrate the superior performance (voltage, power, and energy) of the proposed system over the current technology

• Document the design parameters for larger capacitors, modules and power systems of utility scale applications beyond Phase II