nanomaterial risk assessment: current challenges and future

25
Assessing Nanomaterial Risks: Current Challenges and Future Opportunities For Risk Assessment Ronald H. White, M.S.T. Johns Hopkins Bloomberg School of Public Health American Chemistry Council Long Range Research Initiative Workshop: Navigating Obstacles Towards Modernizing Risk Assessment Washington, DC February 24, 2010

Upload: others

Post on 09-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Assessing Nanomaterial Risks:Current Challenges and Future 

Opportunities For Risk Assessment

Ronald H. White, M.S.T.Johns Hopkins Bloomberg School of Public Health

American Chemistry Council ‐ Long Range Research Initiative Workshop: 

Navigating Obstacles Towards Modernizing Risk AssessmentWashington, DCFebruary 24, 2010

Engineered Nanomaterials: What Are We Talking About?

Nanotechnology is “…the understanding and control of matter at dimensions between approximately 1 and 100 nanometers, where unique phenomena enable novel applications”. (NNI, 2007)

Where Are Engineered Nanomaterials Used?

• Clothing– stain‐resistant– wrinkle‐resistant– odor‐resistant

• Personal care products– lotions– sunscreens– toothpaste

• Athletic equipment– bicycles– tennis rackets– golf clubs

• Food– emulsifiers– food storage containers– knives and kitchenware

• Environmental remediation– nano zero‐valent iron

• Coatings– paints– conductive– protective

• Computers– processors – memory

• Electronics – light emitting diodes– hearing aids– batteries

• Household goods – door knobs– air purifiers – pet product

Why Worry About Engineered Nanomaterial Risks?

• Relatively little information on hazard, exposure, and dose‐response

• Similarities to ultrafine PM (nanoparticles) & asbestos (carbon nanotubes)

• Dramatic increase in 

potential releases 

and exposures

• Novel propertiesWoodrow Wilson international Center for Scholars PEN

Engineered Nanomaterials Aren’t Necessarily Very Small Versions of Bulk Substances 

• The European Commission Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR, 2007): – “Extrapolation from data concerned with bulk chemical or chemical 

analogues to nanoparticles is not straightforward. Moreover, the simple reduction in size of a given material to nanoscale dimensions will change physical characteristics and hence the potential for biological effects of the substance…Some substances that may be deemed to be of low risk in bulk form may well have significant risk when in nanoparticulate form.” 

• The U.K. Royal Society and Royal Academy of Engineering (2004):– “…chemicals in the form of nanoparticles and nanotubes should be 

treated separately from those produced in a larger form.”

Nanomaterial Risk Assessment: The Challenges• How do we define “nanomaterials”? 

– Size (<100 nm) 

– Structure?

– Properties?

– Single particles v. agglomorates/aggregates

– Transformation

• How do we measure exposure?– Units (mass? number? surface area?)

– Low LOD methods

– Distinguish engineered materials from background nano‐sized particles

• Lack of fate, transport, and uptake (ADME) data– Impact of solubility, coatings, surface charge, etc. on bioavailability, 

translocation and toxic effects 

• How do we deal with all this uncertainty and variability?

Little is known about exposure to nanomaterials

RS & RAE, 2004

Little is known about toxicity of nanomaterials

In vivo studies• Increased deposition (by 

inhalation)

• Altered clearance

• Inflammation

• Oxidative stress

• Fibrosis and granulomas

• Death

• Translocation to other organs (incl. brain)

• Pre‐cancerous lesions

In vitro studies• Genotoxicity

• Oxidative stress

• Inflammatory response

• Increased cell death

• Alterations to cell cycle

• Penetration of barriers (e.g., intestine, skin, placenta)

Are we assessing the right outcomes?

What about more subtle, but potentially harmful affects?

Interactions with DNA or proteins or larger structures?– Alter gene structure, 

maintenance, or expression

– Masking or changing conformation of binding sites on proteins

– Altering structures within cells or organisms  

Zhao, et al. 2005

Approaches to Addressing Nano Risk Assessment Challenges 

• Nanomaterial risk assessment frameworks– Screening life cycle analysis

– Comprehensive environmental assessment

• Expert judgment

• Bridging toxicology

• High through‐put screening toxicology

• Predictive toxicology– (Q)SAR

– Read‐across (Nearest analogue)

Nanoparticle Risk Assessment Framework

(Morgan, 2005)

Nanoparticle Risk Assessment Framework (2)

(Tsuji et al. 2006)

Nanoparticle Risk Assessment Framework (3)

Kandlikar et al. 2007

Davis 2007

Applying Expert Judgment to Nano Risk Assessment

(Wardak et al. 2008)

Nanoparticle Toxicity Testing Challenges

“There is a clear need for validated in vitro assays for nanoparticle evaluation, including assays with meaningful endpoints for genotoxicity tests. In vitro tests should address key properties of the nanoparticles such as biopersistence, free radical generation, cellular toxicity, cell activation and other generic endpoints and provide target cell‐specific endpoints.” (SCENIHR, 2007)

“…In vitro cellular systems will need to be further developed, standardized, and validated (relative to in vivo effects) in order to provide useful predictive screening data on the relative pulmonary toxicities of inhaled particles” (Warheit et al., 2008)

Nanomaterial Toxicity Mechanisms

(Linkov et al. 2009)

Nanotoxicology Bridging Studies

(Warheit et al. 2008)

Oxidative Stress Model

“…several NM characteristics can culminate in ROS generation, which is currently the best‐developed paradigm for nanoparticle toxicity”. 

Nel et al., 2006

Conceptual QSAR Approach to Nanomaterial Biological Effects

(Xia et al. 2009)

QSAR Approach To Nanoparticle Toxicology

“The successful application of a QSAR approach to nanoparticles is dependent on the ability to derive properties of a new nanoparticle from its atomic and molecular structure, thus providing information for screening and prioritising. Such QSAR models are plausible, but represent a significant challenge in toxicology.” (SCENIHR, 2007)

Nanomaterial Risks: Implications for Chemical Risk Assessment

• Integration of risk assessment frameworks and techniques –e.g., “Classic” risk assessment paradigm + Life cycle analysis + expert judgment 

• Increased emphasis on exposure assessment and development of exposure biomarkers – “No exposure, no risk”

• Need for screening approaches to prioritize hazard assessment, research needs

• Significant investment needed in risk‐related data generation