nandフラッシュメモリとssd nand circuit design … circuit design ssd o i & d issd...

36
NANDフラッシュメモリとSSD 2010.6.4 竹内 竹内 東京大学 大学院工学系研究科 電気系工学専攻 ()工学部 電気電子工学科 E-mail : takeuchi@lsi.t.u-tokyo.ac.jp http://www.lsi.t.u-tokyo.ac.jp 1 集積デバイス工学 Ken Takeuchi Outline SSD, Memory System Innovation NAND Overview NAND Circuit Design SSD O i &D i SSD Overview & Design Operating System for SSD Operating System for SSD Future Memory Technology Future Memory Technology Future SSD Technology Summary 2 集積デバイス工学 Ken Takeuchi Outline SSD, Memory System Innovation NAND Overview NAND Circuit Design SSD O i &D i SSD Overview & Design Operating System for SSD Operating System for SSD Future Memory Technology Future Memory Technology Future SSD Technology Summary 3 集積デバイス工学 Ken Takeuchi Definition of SSD SSD : S olid- S tate D rive Mass storage to replace HDD of PC/Enterprise Server. Small, robust, low-power and high performance. Small, robust, low power and high performance. SSD consists of NAND Flash Memory and NAND t ll (+RAM) controller(+RAM) J. Elliott, WinHEC 2007, SS-S499b_WH07. 4 集積デバイス工学 Ken Takeuchi

Upload: truongdieu

Post on 17-Apr-2018

228 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

NANDフラッシュメモリとSSD

2010.6.4竹内 健竹内 健

東京大学 大学院工学系研究科 電気系工学専攻(兼)工学部 電気電子工学科

E-mail : [email protected]@ y jphttp://www.lsi.t.u-tokyo.ac.jp

1集積デバイス工学Ken Takeuchi

Outline

SSD, Memory System InnovationNAND OverviewNAND Circuit DesignSSD O i & D iSSD Overview & DesignOperating System for SSDOperating System for SSDFuture Memory TechnologyFuture Memory TechnologyFuture SSD TechnologygySummary

2集積デバイス工学Ken Takeuchi

Outline

SSD, Memory System InnovationNAND OverviewNAND Circuit DesignSSD O i & D iSSD Overview & DesignOperating System for SSDOperating System for SSDFuture Memory TechnologyFuture Memory TechnologyFuture SSD TechnologygySummary

3集積デバイス工学Ken Takeuchi

Definition of SSD

SSD : Solid- State DriveMass storage to replace HDD of PC/Enterprise Server.Small, robust, low-power and high performance.Small, robust, low power and high performance.SSD consists of NAND Flash Memory and NAND

t ll (+RAM)controller(+RAM)

J. Elliott, WinHEC 2007, SS-S499b_WH07.

4集積デバイス工学Ken Takeuchi

Page 2: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Worldwide NAND Shipment and PricePC expected as an emerging application

5集積デバイス工学Ken Takeuchi

Lane Mason, MemCon 2009.

NAND Flash Memory Application

6集積デバイス工学Ken Takeuchi

Jim Cooke, MemCon 2009.

NAND Flash Memory Market (Gbyte)

7集積デバイス工学Ken Takeuchi

Jim Cooke, MemCon 2009.

NAND Flash Memory Market (B$)PC expected as an emerging application

8集積デバイス工学Ken Takeuchi

Jim Cooke, MemCon 2009.

Page 3: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Distribution Type

9集積デバイス工学Ken Takeuchi

Jim Cooke, MemCon 2009.

Memory System Bottleneck

CPU registers (<1ns)

SRAM (<1ns)SRAM ( 1ns)

DRAM (10ns)

HDD (10ms)

Big Gap

HDD (10ms)

Ken Takeuchi 集積デバイス工学 10

SLC NAND as Cache of HDD

CPU registers (<1ns)

SRAM (<1ns)SRAM (<1ns)

DRAM (10ns)

SLC NAND (20us)SLC NAND (20us)

HDD (10ms)

Ken Takeuchi 集積デバイス工学 11

Future Memory System

CPU registers (<1ns)

S/DRAM ( 1 )S/DRAM (<1ns)

DRAM (10ns)

DRAM (10ns)NAND C ll

( )1bit/cell NAND (20us)

NAND Controller

2-4bit/cell NAND (100us~2ms) SSD

Ken Takeuchi 集積デバイス工学 12

K. Takeuchi, ISSCC 2008 Tutorial T-7.

Page 4: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Future Direction: Vertical IntegrationHistory of NAND Flash Memory System

Application SoftwareFuture Block

Abstracted SSD

File System (OS)

MP3 PlayerSD Card

Go verticalintegration toNAND Controller

USB MemoryBad Block Management Wear-leveling

integration to improve system-level performance.

Smart Media

ECC

Smart MediaNAND Flash Memory

Ken Takeuchi 集積デバイス工学 13

Key Challenge of SSD

Need to improve device reliability such as endurance, data retention, and disturb.endurance, data retention, and disturb.

R i d i f NAND d NAND t llRequire co-design of NAND and NAND controller circuits to best optimize both NAND and NAND controllers.

OS/Computer architecture innovation essential.

14集積デバイス工学Ken Takeuchi

K. Takeuchi, ISSCC 2008 Tutorial T-7.

Outline

SSD, Memory System InnovationNAND OverviewNAND Circuit DesignSSD O i & D iSSD Overview & DesignOperating System for SSDOperating System for SSDFuture Memory TechnologyFuture Memory TechnologyFuture SSD TechnologygySummary

15集積デバイス工学Ken Takeuchi

NAND Flash Memory

K Kanda ISSCC 2008

43nm 16Gb NAND

NAND flash Memory cell :

K. Kanda, ISSCC, 2008.

NAND flash memory chip Memory circuit

yFloating Gate-FET

Ken Takeuchi 集積デバイス工学 16

Page 5: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

FN Tunneling Write/EraseTunnel Oxide Electron injection

20 V

Write

20 V

FG Si

e

0 V

Tunnel Oxide

0 V

0 V

FG SiErase

Electron ejection20 V

Ken Takeuchi 集積デバイス工学 17

Page & Block of NAND Flash Memory

Page : program/read unit Block : Erase unit

Bitline

Bitline

Bitline

2 S l t t 2 S l t tSource-line

2 Select-gate32 Word-lines

2 Select-gate32 Word-lines

Memory cells are sandwiched by select gates.Contactless structure : ideal 4F2 cell size

Ken Takeuchi 集積デバイス工学 18

Contactless structure : ideal 4F cell sizeF.Masuoka, IEDM 1987, pp.552-555.

Top View of NAND Flash Cell ArraySource-line(first metal)Bitline (second metal)

STI

Active area

SGDSGD SGS SGSWord-linesContact to bitline Contact to source-line

Simple structure : High scalability, High yield

Ken Takeuchi 集積デバイス工学 19

K. Imamiya, ISSCC 1999, pp.112-113.

MLC vs. SLC

SLC : Single-level cell or 1bit/cellMLC M lti l l ll >2bit/ llMLC : Multi-level cell or >2bit/cell

2bit/cell : Long production record since 20013bit/cell or 4bit/cell : Will be commercialized this year.

Most existing SSD uses SLC. MLC based SSD is gcommercialized this year.

MLC (Multi-level cell)SLC (Single-level cell)

“0” “1” “2” “3”Number of memory cells

“0” “1”Number of memory cells

VthVth

Ken Takeuchi 集積デバイス工学 20

VthVth

Page 6: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

NAND Operation PrincipleReadBit-line (0.8V 0V) “0” “1”

Number of memory cells

Selected word-line

Vread (4.5V)

Bit line (0.8V 0V)

Vth

“0” “1”

Bit line voltage

Selected word-line(Read voltage : 0V)

Vth

Read voltageBit-line voltage

“1”Vread (4.5V)

Time“0”

Vread (4.5V)0V

After precharging, bit-lines are discharged through the memory cell.

U l t d ll bi d t th lt V dUnselected cells are biased to the pass voltage, Vread.

Small cell read current (~1uA) Slow random access (~50us)

Ken Takeuchi 集積デバイス工学 21

Serial access : 30-50ns Fast read = 20-30MB/sec

NAND Operation Principle (Cont’)Program : Electron injection

18V

0V0V

18V

Channel-FN tunneling

High reliabilityHigh reliability

Low current consumption Erase : Electron ejection

0V

(~pA/cell)

Page based parallel program

Erase : Electron ejection0V

Typical page size : 2-4kB20V 20V

20V

Ken Takeuchi 集積デバイス工学 22

20VS. Aritome, IEDM 1990, pp.111-114.

NAND Operation Principle (Cont’)

Bit-line

Page based parallel programming

Page

Row

Bit-line

Page : 2-4KBytesPage decoder ・・・

g y

Page buffer Page bufferMemory cell array

All memory cells in a page are programmed at the same time

T.Tanaka, Symp. on VLSI Circuits 1990, pp.105-106.

programmed at the same time.

Program speed = Page size / Programming time

= 8KByte / 800us

Ken Takeuchi 集積デバイス工学 23

= 10MByte/sec (56nm MLC) K. Takeuchi, ISSCC 2006,pp.144-145.

Outline

SSD, Memory System InnovationNAND OverviewNAND Circuit DesignSSD O i & D iSSD Overview & DesignOperating System for SSDOperating System for SSDFuture Memory TechnologyFuture Memory TechnologyFuture SSD TechnologygySummary

24集積デバイス工学Ken Takeuchi

Page 7: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

NAND Circuit Design

Random AccessHigh Speed ProgrammingHigh Speed ReadHigh Speed Read

Sequential AccessHigh Speed ProgrammingHigh Speed ReadHigh Speed Read

25集積デバイス工学Ken Takeuchi

Random Access : High Speed Programming

Bit-by-bit Program Verify SchemeProgram pulse

Program Algorithm 18V0V0V

Data load

Program Algorithm

FN tunneling0VProgram pulse

Bit-line

Page

Verify‐readNo

・・・

PageAll cellsprogrammed ?

Yes

Page bufferEnd

During the verify-read, the program data in the page buffer is updated so that the program pulse is applied ONLY to

26集積デバイス工学Ken Takeuchi

T.Tanaka, Symp. on VLSI Circuits 1992, pp.20-21.insufficiently programmed cells.

Random Access : High Speed Programming (Cont’)

Incremental Program Voltage Scheme

P lt VWord-line waveform

Program voltage, Vpgm increases by ⊿Vpgm.

Constant electric field

Program pulse

⊿Vpgm

Constant electric field across the tunnel oxide.

Verify read

Tpulse TvfyConstant tunnel current

Vth shift is constant at ⊿Vpgm.

1 cycle

# of program pulses: Npulse cycles

Programming time Tprog = (Tpulse+Tvfy)×Npulse

Constant tunnel current.

Vth Npulse = ⊿Vth0/⊿VpgmProgram characteristics

Programming time, Tprog = (Tpulse+Tvfy)×Npulse

Achieve both fast programming and ⊿Vth0 Npulse

Verifyvoltage

Fastest cellSlowest cell

Vth p pg

p g gprecise Vth control.

(Time)

(⊿Vth0/⊿Vpgm) cycles

27集積デバイス工学Ken Takeuchi

G. Hemink, Symp. on VLSI Technologies 1995, pp.129-130.K. D. Suh, ISSCC 1995, pp.128-129.

Random Access : High Speed Programming (Cont’)

Problems of MLC programmingNumber of memory cells“0” “1” “2” “3”

y

VthY1 Y2 Y1 Y2

T bit i ll i d

MLC

“1”-program & ”1” if

“1”-program & ”1” if

SLCY1 Y2 Y1 Y2

4‐level cell2‐level cell

Two bits in a cell are assigned to two column addresses.3 operations (“1” “2” and

& ”1”verify

“2” program

& ”1”verify

3 operations ( 1 -, 2 - and “3”-program) required.Long programming

“2”-program & ”2”verify

Long programming.“3”-program & ”3”verify

28集積デバイス工学Ken Takeuchi

Page 8: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Random Access : High Speed Programming (Cont’)

Solution : Multi-page Cell Architecture

Number of memory cells

1st page programX1

X1“0” “1”

X2X2

Vth1st page data : “1” “0”

2nd page program

2-level cell 4-level cell

Two bits in a cell are assigned to two row

page p og a

“0” “1” “2” “3”Number of memory cells

addresses.In average, 1.5 operations.

Vth

1st page data : “1” “0” “0” “1”Twice faster than conventional scheme.

2nd page data : “1” “0”

29集積デバイス工学Ken Takeuchi

K. Takeuchi, Symp. on VLSI Circuits 1997, pp. 67-68.

Random Access : High Speed Programming (Cont’)

Program Voltage Optimization

WL0, 31 : Higher capacitive coupling with word-lines.Initial program voltage is set lower.

O ti i d lt l t th i

30集積デバイス工学Ken Takeuchi

T. Hara, ISSCC 2005, pp. 44-45.Optimized program voltage accelerates the programming.

Random Access : High Speed Programming (Cont’)

Problems : FG-FG interference

FG-FG coupling shifts the Vth of a memory cell as the neighboring cell are programmed.To tighten the Vth distribution, ⊿Vpgm is decreased, causing a slow programming.The Vth modulation becomes significant as the memory

ll i l d d

31集積デバイス工学Ken Takeuchi

J.D. Lee, EDL 2002, pp. 264-266.M. Ichige, Symp. on VLSI Technologies 2003, pp.89-90.

cell is scaled down.

Random Access : High Speed Programming (Cont’)

Solution : FG-FG Coupling Compensation[3-step programming] [Programming order][ p p g g] [ g g ]

Step 1

Step2

Step3

Step 1. The memory cell is ROUGHLY programmed.Cells are programmed BELOW the target Vth.Cells are programmed BELOW the target Vth.

Step 2. Neighboring cells are programmed.Step 3. The memory cell is PRECISELY programmed.

FG-FG coupling is suppressed by 90%.Large ⊿Vpgm enables a fast programming.

32集積デバイス工学Ken Takeuchi

N. Shibata, Symp. on VLSI Circuits 2007, pp.190-191.

Page 9: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Random Access : High Speed ReadProblems of MLC read

Number of memory cells“0” “1” “2” “3”

y

VthY1 Y2 Y1 Y2

4 level cell2 level cell 4-level cell2-level cell① ② ③

Two bits in a cell are assigned to two column addresses.

MLC

“1”-read “1”-read

SLC

3 operations (“1”-, “2”- and “3”-read) required.“2”-read

Long random read.“3”-read

33集積デバイス工学Ken Takeuchi

Random Access : High Speed Read (Cont’)Solution : Multi-page Cell Architecture

Number of memory cells

X1X1

“0” “1” “2” “3”y

X2X2

Vth1st page data : “1” “0” “0” “1”

Two bits in a cell are

2-level cell 4-level cell2nd page data : “1” “0”

g

Two bits in a cell are assigned to two rowaddresses1st d ② ③ EXOR

①② ③

addresses.In average, 1.5 operations.Twice faster than

1st page read : ②, ③ EXOR

2nd page read : ① Twice faster than conventional scheme.

34集積デバイス工学Ken Takeuchi

K. Takeuchi, Symp. on VLSI Circuits 1997, pp. 67-68.S. Lee, ISSCC 2004, pp.52-53.

Sequential Access : High Speed Programming

Parallel OperationParallel OperationIncrease page sizeMulti-page operationMulti chip operation (Interleaving)Multi-chip operation (Interleaving)

To be discussed in “NAND Controller Circuit Design” section

Pi li O iPipeline OperationWrite/Read CacheWrite/Read CacheCache Page Copy

35集積デバイス工学Ken Takeuchi

Parallel Operation : Increase Page SizePage size trend

By increasing the word-line length, the page size has been y g g , p gextended to increase the write and read throughput.

9000 Bit-line

Page7000

8000

9000

)

・・・

4000

5000

6000

ge s

ize

(Byt

e

Page buffer

1000

2000

3000Pag

00.25um 0.16um 0.13um 90nm 70nm 50nm 43nm

Design rule

But, the large page size also causes problems.N i i d t th l RC d l f d li

36集積デバイス工学Ken Takeuchi

Noise issue due to the large RC delay of a word-line

Page 10: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Parallel Operation : Increase Page Size (Cont’)Problems : SG-WL noise

[Conventional read/verify read][Conventional read/verify-read]

Bit-line

SGD

SG-WL capacitive coupling

SelectedWL31

SGD1.5V

p g

WL bounce

SGS

WL0

Read failure

Bit-line precharge

Bit-line discharge

37集積デバイス工学Ken Takeuchi

precharge dischargeK. Takeuchi, ISSCC 2006,pp.144-145.

Parallel Operation : Increase Page Size (Cont’)Solution : Raise neighboring SG BEFORE bit-line discharge

38集積デバイス工学Ken Takeuchi

K. Takeuchi, ISSCC 2006,pp.144-145.

Parallel Operation : Increase Page Size (Cont’)Problems : WL-WL noise

39集積デバイス工学Ken Takeuchi

K. Takeuchi, ISSCC 2006,pp.144-145.

Parallel Operation : Increase Page Size (Cont’)Solution

40集積デバイス工学Ken Takeuchi

K. Takeuchi, ISSCC 2006,pp.144-145.

Page 11: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Parallel Operation : Multi-page OperationMulti-page operation

Operate multi-page simultaneously to increase the write/read p p g ythroughput.

[Multi-page operation] 0.25um 256Mb NAND

41集積デバイス工学Ken Takeuchi

K. Imamiya, ISSCC 1999, pp.112-113.

Pipeline Operation : Write/Read CachePipelining of data-in/out & cell read/write

Implement data cache in NANDpInput /output data to the data cache during cell read/program

[Write Cache Example : 0.13um 1Gbit NAND]

42集積デバイス工学Ken Takeuchi

H. Nakamura, ISSCC 2002, pp.106-107.Data Cache

Outline

SSD, Memory System InnovationNAND OverviewNAND Circuit DesignSSD O i & D iSSD Overview & DesignOperating System for SSDOperating System for SSDFuture Memory TechnologyFuture Memory TechnologyFuture SSD TechnologygySummary

43集積デバイス工学Ken Takeuchi

SSD SW ArchitectureFile system

OS

Low level driver

SSDATA I/F

Low level driver

Host I/FNAND Controller

Flash Translation Layer (FTL)

Bad block management Wear-leveling

InterleavingAddress translation from logical address to physicallogical address to physical

address of NAND ECC

NAND I/F

NAND Flash Memory

Ken Takeuchi 集積デバイス工学 44

NAND Flash Memory

Page 12: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

SSD HW ArchitectureBlock diagram (Single channel)

HDD like architecture : DRAM buffer to hide NAND random accessHDD-like architecture : DRAM buffer to hide NAND random access

45集積デバイス工学Ken Takeuchi

C. Park, NVSMW 2006, pp.17-20.

SSD HW Architecture (Cont’)Block diagram (Multi-channel)

DRAM eliminated :DRAM eliminated :Random access of NAND is faster than HDD.is faster than HDD.Multi-channel

Parallel operationpHigh bandwidth

46集積デバイス工学Ken Takeuchi

C. Park, NVSMW 2006, pp.17-20.

SSD HW Architecture (Cont’)Interleaving : Sequential Parallel Write

2 channel 4 way interleaving2-channel 4-way interleavingMax write throughput : 80MB/sec for MLC.HW driven automatic operation

47集積デバイス工学Ken Takeuchi

C. Park, NVSMW 2006, pp.17-20.

HW driven automatic operation.

SSD Interface

Ken Takeuchi 集積デバイス工学 48

Gary Drossel, MemCon 2009.

Page 13: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

SSD Performance

Random access[Data transfer size in PC application]

OS changes such as directory entry and file

[Data transfer size in PC application]

system metadataApplication S/W change50% f d t i 4KB50% of data is < 4KB.Random access mainly d id th fdecides the performance of PC. K.Grimsrud, IDF2006, MEMS004.

Sequential accessBootHibernation

Ken Takeuchi 集積デバイス工学 49

SSD Performance (Cont’)

Random access

Read Write Erase

NAND (SLC) 25 300 1NAND (SLC) 25us 300us 1ms

NAND (MLC) 50us 800us 1ms

HDD 3ms 3ms N.A.

Erase are hidden by operating the erase during the idle period

Read : SSD with SLC and MLD has a great advantage over HDD.

Erase are hidden by operating the erase during the idle period.

g gWrite : SSD still has a performance advantage. Write performance can be an issue in the future if the NAND performance degrades by scaling the memory cell or increasing the number of bits per cell.3-4bit/cell NAND : Random read access time, 100us-3ms

Ken Takeuchi 集積デバイス工学 50

SSD Performance (Cont’)Enterprise SSD

Key benefit : Fast random access readKey benefit : Fast random access readHigh IOPS (Input Output Per Second)Low power consumption

Ken Takeuchi 集積デバイス工学 51

http://japan.emc.com/microsites/japan/techcommunity/lea/intellistorage/flashdrive-3-2.htm

SSD Performance (Cont’)High speed interface example : DDR-type IFToggle/ONFiToggle/ONFi

Ken Takeuchi 集積デバイス工学 52

A. Huffman, MemCon 2008.

Page 14: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

SSD Performance (Cont’)

NAND : Single chip operation NAND : 8 chip interleaving

Sequential access

Read Write Read  Write

NAND (SLC) 25MB/sec 20MB/sec 200MB/sec 200MB/sec( )

NAND (MLC) 20MB/sec 10MB/sec 160MB/sec 80MB/sec

HDD 200MB/sec 200MB/sec ‐ ‐/ /

[Block diagram of SSD w. interleaving function]

SSD (SLC) : Comparable read and write performance with HDD.SSD (MLC) C bl dSSD (MLC) : Comparable read performance. By introducing 16chip interlea ing the rite performanceinterleaving, the write performance can be comparable with HDD.

Ken Takeuchi 集積デバイス工学 53

C. Park, NVSMW 2006, pp.17-20.

SSD Performance (Cont’)Sl d it blSlow random write problem

Page : program/read unit Block : Erase unitg p g

Bitline

Bitline

Bitline

Source-line2 Select-gate32 Word-lines

2 Select-gate32 Word-lines

In case a part of the block is over-written, a block copy operation is performed.

Ken Takeuchi 集積デバイス工学 54

p p

Garbage Collection & Slow Random WriteSystem performance degradation of a large block

70nm 8G MLC[Frequent block copy]56nm 8G MLC70nm 8G MLC

(ISSCC2005)56nm 8G MLC (This work)

Old block

(ISSCC2006)

32WLs 32WLs① Cell read

4KB ( ) 8KB page (ma )

New block

③ Cell program4KB page (max)

512KB block 1MB block8KB page (max)

Page buffer② Data-out,

NAND controller

ECC, Data-inSystem performance

degradationBlock copy time

Fast block copy required

Block copy time = (T_Cell read+T_Data_out+TECC+T_Cell program)

×(# of pages per block)

Ken Takeuchi 集積デバイス工学 55

py q= 125ms K. Takeuchi, ISSCC 2006,pp.144-145.

Solution for Slow Random Write

Fast pipeline block copy operationSmaller block size (All bit-line

hit t )architecture)NV-RAM CacheNV RAM CacheBatch Write AlgorithmPage based data allocation

Ken Takeuchi 集積デバイス工学 56

Page 15: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Pipeline Operation : Cache Page CopyFast block copy

Step1 Step2 Step3 Step4

Old blockPage i

Old block Old block

Page i+1

Old block

p p p p

New blockCell Read New block New block

Page i+1

Cell read

Cell programNew block

Page buffer Page buffer Page buffer

Cell program

Page buffer

NAND controller

Data-outECC NAND

controllerNAND

controllerNAND

controller

Data-outECC

Step 4 : Pipelining of programming Page iand data out / ECC of Page i+1and data out / ECC of Page i+1.

F t bl k

Ken Takeuchi 集積デバイス工学 5757

K. Takeuchi, ISSCC 2006,pp.144-145.

Ken Takeuchi

Fast block copy

Smaller Block Size: All Bit-line ArchitectureAll bit-line architecture

# of pages in a block is half# of pages in a block is half.Block copy time is also half.

56nm NAND(Alternate bit-line architecture)

43nm NAND(All bit-line architecture)

Ken Takeuchi 集積デバイス工学 58

K. Takeuchi, ISSCC 2006,pp.144-145.

R. Cernea, ISSCC 2008,pp.420-421.K. Kanda, ISSCC 2008, pp.430-431.

SSD with NV-RAM Cache

Ken Takeuchi 集積デバイス工学 59

D.J.Jung, Symposium on VLSI Circuits, 2008.

SSD with NV-RAM Cache

Ken Takeuchi 集積デバイス工学 60

D.J.Jung, Symposium on VLSI Circuits, 2008.

Page 16: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Batch Write AlgorithmDouble the SSD performance with batch write algorithm

Accumulate random write data in the cacheAvoid fragmentation of SSD

St 1 St 2 St 3 St 4Memory cellStep1 Step2 Step3 Step4

Memory cell Memory cell Memory cell

Cell program

Selected page

Page buffer Page buffer Page buffer Page buffer

p g

NAND controller

Data-inNAND

controller

Data-inNAND

controller

Data-inNAND

controller

Ken Takeuchi 集積デバイス工学 61

T. Hatanaka, Symp. VLSI Circuits 2009.

Page Based Data AllocationNot to overwrite an old page but write data t tto an empty page.Change the logical-physical address table.g g p y

Old page New page

Ken Takeuchi 集積デバイス工学 62

D. Barnetson, Electonic Journal 192th Technical Symposium, 2008, pp.91-102.

SSD Power ConsumptionPower consumption

NAND : Single chip operation NAND : 8 chip interleavingNAND : Single chip operation NAND : 8 chip interleaving

Read Write Read  Write

NAND (SLC) 20mA 20mA 160mA 160mANAND (SLC) 20mA 20mA 160mA 160mA

NAND (MLC) 20mA 20mA 160mA 160mA

HDD >300 A >300 AHDD >300mA >300mA ‐ ‐

In SSD, additional current (~100mA) are consumed in the

Actual Power ConsumptionNAND controller, RAM and IO.

C. Park, NVSMW 2006, pp.17-20.

In all modes, the power consumption of SSD is smaller

Ken Takeuchi 集積デバイス工学 63

In all modes, the power consumption of SSD is smaller than HDD.

SSD ReliabilitySSD is robust.

No mechanical partsNo mechanical parts.Need to be careful in PC/server application

Portable consumer electronics application(Digital still cameras, MP3 players, Camcorders)( g , p y , )

Effective data retention time << 10yearsD t i kl t f d t PC DVDData quickly transferred to PC or DVD through USB drive and memory cards.Most probably data backup in PC

PC/Enterprise server applicationPC/Enterprise server applicationHigher reliability required w.o. backup

Ken Takeuchi 集積デバイス工学 64

Need longer data retention time : 5-10 years

Page 17: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

SSD Reliability (Cont’)Failure mechanism of NAND

Program disturbProgram disturbDuring programming, electrons are injected to unselected memory cells.Read disturbDuring read, electrons are injected to unselected

llmemory cells. Write/Erase endurance & Data retentionAs the Write/Erase cycles increase, damage of the tunnel oxide causes a leakage of storedthe tunnel oxide causes a leakage of stored charge.

Ken Takeuchi 集積デバイス工学 65

SSD Reliability (Cont’)“Classic” program disturb

Program inhibit ProgramProgram inhibitBitline (Vcc)

Vcc

ProgramBitline (0V)

Vpgm(18V)

Vcc

Vpass disturb cell10V

( )Vpass(10V)

V g dist b cell 10V

Vpass(10V)

Vpgm disturb cell18V

D S0V(10V)0VVcc

D S~8V

B th l t d d l t d ll ff f th di t bKen Takeuchi 集積デバイス工学 66

Both selected and unselected cells suffer from the disturb.K. D. Suh, ISSCC 1995, pp.128-129.

SSD Reliability (Cont’)“Modern” program disturb

J. D. Lee, NVSMW 2006, pp. 31-33.K.T.Park, SSDM 2006, pp.298-299.

Hot carriers generated at the select gate edge inject i t th ll i Vth hiftinto the memory cell causing a Vth shift.The Vth shift can be reduced by increasing SG-WL

Ken Takeuchi 集積デバイス工学 67

space.

SSD Reliability (Cont’)“Modern” program disturb (Cont’)

Select Tr. Dummy Tr. WL0The Vth shift can be reduced by adding dummy WL.

Select Tr. Dummy Tr. WL0

Ken Takeuchi 集積デバイス工学 68

K.T.Park, SSDM 2006, pp.298-299.

Page 18: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

SSD Reliability (Cont’)

Read disturb

Bitline (0.8V 0V)

4.5V

Selected word-line(0V)

Vread (4.5V)

D S0V

(0V)

Vread (4.5V)

W k bi ditiVread (4.5V)

0V

Weak program bias conditionUnselected word-lines suffer

0Vfrom the read disturb.

Ken Takeuchi 集積デバイス工学 69

SSD Reliability (Cont’)Program disturb and read disturb summary

Program disturb and read disturb is a “bit error” not a

Page assignment of MLC

“burst error”.Two bits in MLC are assigned to

X1X1X2g

different pages.Even if one MLC cell fails, one bit in

X2X2

two pages fails.

ECC(Error correcting code) 2-level cell 4-level cellK. Takeuchi, Symp. on VLSI Circuits 1997, pp. 67-68.

effectively corrects the bit error.Existing ECC corrects 4-12bit errors per 512Byte sector.

Ken Takeuchi 集積デバイス工学 70

SSD Reliability (Cont’)Write/Erase Endurance & Data Retention

Endurance : how many times data are writtenData retention : how long the data remains validgClear correlation between endurance and data retention

Damages to the tunnel oxide during write and erase cause the data retention problems.Traps are generated during write and erase.The unlucky cell with traps results in a leakage path causing the charge transferpath, causing the charge transfer.The leakage current is called SILC (Stress Induced Leakage Current).

K. Prall, NVSMW 2007, pp. 5-10.

g )To guarantee data retention, Write/Erase cycles are limited to 100K (SLC) or 10K (MLC).

Ken Takeuchi 集積デバイス工学 71

SSD Reliability (Cont’)100K (SLC) or 10K(MLC) W/E cycles acceptable?

W/E cycles estimation for PCW/E cycles estimation for PC128GB SSD

(#)Usage scenario : 2~5GB/day (#)

Service for 5years100% efficient wear leveling(365 days/year) x 5years / (128GB / 2~5GB/day)(365 days/year) x 5years / (128GB / 2 5GB/day) = 30~70 W/E cycles30~70 cycles are far below the NAND limitation of30~70 cycles are far below the NAND limitation of 100K for SLC or 10K for MLC.Actual W/E cycles are x3 higher for the file management such as garbage collection.

Ken Takeuchi 集積デバイス工学 72

(#) W.Akin, IDF 2007_4, MEMS003.Y.Kim, Flash Memory Summit 2007.

Page 19: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

SSD Reliability (Cont’)Longterm Data Endurance (LDE)

Total amount of data writes allowed in SSD lifespanTotal amount of data writes allowed in SSD lifespanWrite pattern: Typical business PC user (Bapco W it P t )Write Pareto)Lifespan: Data is written equally over system lifeRetention: Data is retained for 1 year after LDE is exhaustede austed

ExampleLDE : 80TBWLDE : 80TBWWrite 20GB per day.LDE becomes zero after 11 years.

Ken Takeuchi 集積デバイス工学 73

D. Barnetson, MemCon 2008.

SSD Reliability (Cont’)Data retention & endurance trade-off

10Scaling MLC target SLC target

ear]

10

1Consumer

li ti Current

on [Y

e 1 application NAND

Future Target

eten

tio 0.1 Future Target

Scaling

ata

Re 0.01

Da 0.001

Write/Erase Cycles (Endurance)100K10K1K100101

0.0001

Ken Takeuchi 集積デバイス工学 74

S. Aritome, ISSCC Memory Forum 2008.Write/Erase Cycles (Endurance)

High Reliability TechnologyWear-leveling

Problem Write/Erase cycle of NAND is limited to 100K for SLC and 10K for MLC.Solution

Write data to be evenly distributed over the entire storage.Count # of Write/Erase cycles of each NAND block.Based on the Write/Erase count, NAND controller re-map the logical address to the different physical address.Wear-leveling is done by the NAND controller (FTL), not by the host system.

Bitline

Block : Erase unit

Bitline

Bitline

75集積デバイス工学Ken Takeuchi

High Reliability Technology (Cont’)

Static dataData that does not change such as system data (OS, application SW).( S, pp S )Dynamic dataD t th t itt ft h d tData that are rewritten often such as user data.

Dynamic wear-levelingWear-level only over empty and dynamic dataWear-level only over empty and dynamic data.Static wear-levelingWear-level over all data including static data.

76集積デバイス工学Ken Takeuchi

Page 20: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

High Reliability Technology (Cont’)Dynamic wear-leveling

Write/Erase countRed : Static data such as system data.Blue : Dynamic data such as user data

Ph i l bl k ddPhysical block address

Block with static data is NOT used for wear-leveling.Write and erase concentrate on the dynamic data block.

77集積デバイス工学Ken Takeuchi

N.Balan, MEMCON2007.SiliconSystems, SSWP02.

High Reliability Technology (Cont’)Static wear-leveling

Write/Erase count Red : Static data such as system data.Write/Erase count Red : Static data such as system data.Blue : Dynamic data such as user data

Physical block addressWear-level more effectively than dynamic wear-leveling.y y gSearch for the least used physical block and write the data to the location. If that location

Is empty, the write occurs normally.Contains static data, the static data moves to a heavily

78集積デバイス工学Ken Takeuchi

used block and then the new data is written. N.Balan, MEMCON2007.SiliconSystems, SSWP02.

High Reliability Technology (Cont’)Bad Block Management

Program/Erase characteristics vs enduranceProgram/Erase characteristics vs. endurance

As the Write/Erase cycles increases, erase failure occurs, y , ,resulting in a bad block.The NAND controller detects and isolates the bad block.

79集積デバイス工学Ken Takeuchi

Y.R. Kim, Flash Memory Summit 2007.

High Reliability Technology (Cont’)High Reliability Technology (Cont’)ECC (Error Correcting Code)

To overcome read disturbTo overcome read disturb, program disturb and data retention failure, ECC have to be applied.ppSince failure pattern is random BCH is sufficientrandom, BCH is sufficient.

Existing NAND controller can correct 4-12bit error per 512Byte sectorper 512Byte sector.

NAND with embedded ECC is

80集積デバイス工学Ken Takeuchi

also published. R. Micheloni, ISSCC2006, pp.142-143.

Page 21: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

High Reliability Technology (Cont’)Diminishing return for ECC

Uncorrectable bit error rate v s raw bit error rateUncorrectable bit error rate v.s. raw bit error rate

2bit correction per 512Byte

81集積デバイス工学Ken Takeuchi

N. Mielke, IRPS 2008, pp.9-19.

Outline

SSD, Memory System InnovationNAND OverviewNAND Circuit DesignSSD O i & D iSSD Overview & DesignOperating System for SSDOperating System for SSDFuture Memory TechnologyFuture Memory TechnologyFuture SSD TechnologygySummary

82集積デバイス工学Ken Takeuchi

Why OS?Motivation

Existing OS is optimized for magnetic drives.Current SSD based PC uses the conventional OS and just replace HDD with SSD.OS and just replace HDD with SSD.To achieve the best performance and reliability

f SSD OS i ll fil t h ld bof SSD, OS especially file system should be optimized.pWindows 7 will treat SSD differently from HDD.

83集積デバイス工学Ken Takeuchi

Windows 7 for SSD

Non spinning disk (SSD) detection

Trim command

Partition alignment to reduce writes

Logo requirements for SSD performance

Ken Takeuchi 集積デバイス工学 84

L. Braginski, WinHEC 2008.

Page 22: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Trim CommandWhy Trim command useful?

Use invalid block for wear-levelingUse invalid block for wear levelingBetter endurance

Use invalid block for garbage collectionBetter performance (random write)se p ( )

85集積デバイス工学Ken Takeuchi

D. Barnetson, MemCon 2008.

New Memory System: NAND/HDD ComboMulti-drive of SSD/HDDNEC Netbook

NAND as a cacheIntel Robson NEC Netbook

16GB SSD:OS, Application S/W160GB HDD : User data

Intel RobsonMicrosoft Ready Boost

160GB HDD : User dataBoot of OS : 12% shorterBoot of Application SW : 40%Boot of Application SW : 40%shorter

http://www.nec.co.jp/press/ja/0906/0201.html

IBM DatabaseSSD: Hot data w. frequent accessHDD: Cold dataCredit check: Speed 800%↑H. Pon, NVSMW 2007.

Energy 90%↓Temporary solution until NAND cost becomes

http://www-03.ibm.com/press/us/en/pressrelease/27566.wss

Ken Takeuchi 集積デバイス工学 86

comparable with HDD cost.

MLC/SLC Hybrid SSDF t Di ti H b id SSD ith SLC d MLCFuture Direction : Hybrid SSD with SLC and MLC

Concept : Right device for the right use.Enjoy the Benefit of both SLC and MLC.SLC : Fast and highly reliable but low capacity.

Use SLC as a cache or system data storage.MLC : Large capacity but slow. Use MLC as user data storage.OS t ti l SSD d NOT k th t t f th filOS support essential: SSD does NOT know the contents of the file.

Samsung Combo SSD J. Elliott, WinHEC2007.Toshiba LBA-NAND

http://www1.toshiba.com/taec/index.jsp

MLCSATA-III

MLC(Multi Level Cell) SATA-III

56/112/224/336/448GB

SATA-II16/32/48/64/96/128GB

SATA-II32/48/64/128/256GB

SATA-II28/56/112/168/224GB

48/64/128/256/512GB

Spansion MirroBit Eclipsehttp://www.spansion.com/products/MirrorBit_Eclipse.html

Combo(SLC+MLC)

SATA-II16/32/64/96/128GB

SATA-II14/28/56/84/112GB

SATA-III32/64/128/192/256GB

2006 20102007 2008 2009

PATA4/8/16/32GB

SATA-I8/16/32/48/64GB

SATA-II8/16/32/48/64GB SLC

(Single Level Cell)57/32 64/45 100/80 160/160 800/800 1300/1300R/W Speed:

Ken Takeuchi 集積デバイス工学 87

2006 20102007 2008 2009

Performance Optimization

Sector size optimizationpMinimum write/read unit of NAND is a page.Typical page size is 4-8KByte.yp p g yA page is written only ONCE to avoid the program disturbance. Page

With current OS having 512Byte sector,one sector write wastes >80% of data in a page.

1 sector ・・・

Remaining portion

LBD(Long Block Data) sector standard (Windows Vista) : write

e a g po t obecomes garbage.

4KByte sector size fits better with SSD.

88集積デバイス工学Ken Takeuchi

Page 23: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Frequent Garbage CollectionSystem performance degradation of a large block

70nm 8G MLC[Frequent block copy]56nm 8G MLC70nm 8G MLC

(ISSCC2005)56nm 8G MLC (This work)

Old block

(ISSCC2006)

32WLs 32WLs① Cell read

4KB ( ) 8KB page (ma )

New block

③ Cell program4KB page (max)

512KB block 1MB block8KB page (max)

Page buffer② Data-out,

NAND controller

ECC, Data-inSystem performance

degradationBlock copy time

Fast block copy required

Block copy time = (T_Cell read+T_Data_out+TECC+T_Cell program)

×(# of pages per block)

Ken Takeuchi 集積デバイス工学 89

py q= 125ms K. Takeuchi, ISSCC 2006,pp.144-145.

Page Size TrendAs the page size increases as NAND is shrinking, larger sector size such as 64KByte or 128KBytelarger sector size such as 64KByte or 128KByte is required.

8000

9000

1000

1200

5000

6000

7000

e (B

yte)

600

800

e (K

Byt

e)

2000

3000

4000

Page

siz

e

400

600

Blo

ck s

ize

0

1000

2000

0.25um 0.16um 0.13um 90nm 70nm 50nm 43nm0

200

0.25um 0.16um 0.13um 90nm 70nm 50nm 43nm

Design rule Design rule

Ken Takeuchi 集積デバイス工学 90

Reliability OptimizationEnhanced Write Filter (Windows Embedded)

Decrease write/erase cycles of NAND, extending the NANDDecrease write/erase cycles of NAND, extending the NAND lifetime.Control the file allocation to store frequently rewritten file in q yDRAM and not to access NAND.Enhanced Write Filter (EWF) is located between file system ( ) yand low level driver interfacing with SSD.OS/Application SW support essential: Again, SSD does NOT know the contents of the file.

Enhance

SSD

Enhance Write FilterApplication

File System Low-level Driver

91集積デバイス工学Ken Takeuchi

http://msdn2.microsoft.com/en-us/library/ms912909.aspx

Reliability Optimization (Cont’)SMART (Self-Monitoring Analysis and Reporting Technology)(Self-Monitoring, Analysis and Reporting Technology)

Monitor the storage and report/predict the failure.SMART for HDD is NOT smart because it is very difficult to

di t th h i l f ilpredict the mechanical failure.(Google report, http://209.85.163.132/papers/disk_failures.pdf)

SMART for SSD can be really smart.Product lifetime can be predicted because the failure rate isProduct lifetime can be predicted because the failure rate is highly correlated with the write/erase cycles.

Predict the SSD lifetime by monitoring the write/erase y gcycles and replace SSD before the fatal failure occurs.

92集積デバイス工学Ken Takeuchi

http://www.tdk.co.jp/tefe02/ew_007.pdf

Page 24: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Outline

SSD, Memory System InnovationNAND OverviewNAND Circuit DesignSSD O i & D iSSD Overview & DesignOperating System for SSDOperating System for SSDFuture Memory TechnologyFuture Memory TechnologyFuture SSD TechnologygySummary

93集積デバイス工学Ken Takeuchi

Green IT : Power Crisis of Data CenterData through internet is increasing drastically.In the U S power consumption at the data centerIn the U.S, power consumption at the data center doubled during last 5 years. (5 nuclear power plants!)I 2025 th d t i b 200 ti d thIn 2025, the data increases by 200 times and the power consumption increases by 12 times.

Data Center

Power increase of HDD

Ken Takeuchi 集積デバイス工学 94

Replace HDD with SSD

SSDSSD(NAND Flash)

HDD

Ken Takeuchi 集積デバイス工学 95

Problems of NAND Flash MemoryReliabilityLow write/erase cycles: Currently <10K cycles (MLC)Low write/erase cycles: Currently <10K cycles (MLC) and decreasing as scaling down memory cells.

100K l i d>100K cycles required

Power ConsumptionBecause of the scaling the parasitic capacitanceBecause of the scaling, the parasitic capacitance increases and the power consumption doubles.

L d i i dLow power memory device required

CapacityCurrently Gbyte TByte required

Ken Takeuchi 集積デバイス工学 96

Currently Gbyte TByte required

Page 25: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Operation Current Trend of NANDIn the scaled VLSIs, most power is consumed to charge and discharge signal-linescharge and discharge signal-lines.Inter signal-line capacitance, Cwire-wire drastically i t k th l i l li i t

100

increases to keep the low signal-line resistance.

80

100

nt [m

A]

80

40

60

n cu

rren 60

40

Cwire-wire Cwire-wire

20

40

Ope

ratio

n 40

20

010 20 30 40 50 60 70

O

10 20 30 40 50 60 70Feature size [nm]

0Cwire-wire Cwire-wire

Ken Takeuchi 集積デバイス工学 97

[ ]

K. Takeuchi, Symposium on VLSI CIrcuits, 2008, pp.124-125.

Scaling Limit of NAND

Reduction of electrons in a floating-gateEnhanced Vth fluctuation.FN tunneling current fluctuation.

10000Stored electrons

1000

ectro

ns

Stored electrons@∆Vth=4.0V

P lln+ n+

Floating‐gate

100

ber o

f el

Charge losstolerance

P-well

Floating‐gate cell

1

10

Num

tolerance@∆Vth=0.2V

110 100

Design Rule (Gate length) [nm]

Ken Takeuchi 98

Design Rule (Gate length) [nm]K. Inoh, Symposium on VLSI Technologies, Short Course 2007.

集積デバイス工学

Scaling Limit of NAND (Cont’)

Enhanced capacitive-coupling between memory cells

FG-FG coupling shifts the Vth of a memory cellFG FG coupling shifts the Vth of a memory cell as the neighboring cell are programmed.

Ken Takeuchi 99

J.D. Lee, EDL 2002, pp. 264-266.M. Ichige, Symp. on VLSI Technologies 2003, pp.89-90.

集積デバイス工学

Scaling Limit of NAND (Cont’)RTN (R d T l h N i )RTN (Random Telegraph Noise)

Both RTN and FG-FG capacitiveBoth RTN and FG FG capacitive coupling become significant as the memory cell is scaled down.

1RTN

memory cell is scaled down.

FG-FG Coupling Noise

Ken Takeuchi 100

S. Ohshima, Symposium on VLSI Circuits, Short Course, 2007.H. Kurata, Symposium on VLSI Circuits, 2006.

集積デバイス工学

Page 26: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Scaling Limit of NANDNAND will face a scaling limit around 10-20nm.

Reduced electrons, FG-FG noise, RTN, ,Enhanced short channel effect

LOCOS Super SA-STI 90nm~SA-STI 0.25um~0.13um New Structure

1

p

32M64M

New Materials

素子分離技術 n+ n+STI Technology

)

256M

512M STI

Floating Gate Control Gate

STI

Floating Gate

Control Gate

Tunnel Oxide

素子分離技術P-well

Floating‐gate cell

STI Technology

0.1

Cel

l Siz

e( u

m2

1G

2G4G

1G2G

Floating Gate

LOCOSTunnel Oxide

Control Gate

WSiONO

Control Gate ONO WSi

多値技術

Scaling limitation:

MLC Technology

C

0.01

4G8G

16G4G

16G32G

Floating Gate

LOCOS

Control GateFloating Gate

Tunnel Oxide STI

Floating GateControl Gate 32G

8G

Scaling limitation: 10‐20nm

0.001J J J J J J J J J J J J J J J J J

4 Level Cell

32G

350nm 250nm 160nm 130nm 90nm 70nm 56nm 43nmSTI

3Xnm

64G

Ken Takeuchi 101

Jan- Jan- Jan- Jan- Jan- Jan- Jan- Jan- Jan- Jan- Jan- Jan-‘96 ‘97 ‘98 ‘99 ‘00 ‘01 ‘02 ‘03 ‘04

Jan-‘05

Jan-‘06

Jan-‘07 ‘08 ‘09

Jan- Jan-‘10 ‘11 ‘12

K. Takeuchi, ISSCC 2006,pp.144-145.

集積デバイス工学

Multi-level Cell (MLC) is NOT a solution.MLC: Multi-Level Cell, SLC: Single-Level CellMLC stores 2 or more bits in one memory cell.

90% of NAND in the market uses 2bit/cell.3bit/cell in production this year.

Performance/reliability degrade as more bits are stored.x1/2.5 and x1/8 write speed for 3bit/cell and 4bit/cell.p

Ken Takeuchi 102

C. Lam, Symposium on VLSI Circuits, Panel, 2008.

集積デバイス工学

3D-NANDMulti-layer NAND (Samsung)

Bit-line and source-line are sharedBit line and source line are shared.Cost is still an issue.

d

1st layer

2nd layer

Ken Takeuchi 集積デバイス工学 103

1st layer

3D-NAND (Cont’)Vertical NAND (Bit Cost Scalable Cell: Toshiba)

Lower cost expected w relaxed design ruleLower cost expected w. relaxed design rule.Device issues such as a-Si channel.

Ken Takeuchi 集積デバイス工学 104

Page 27: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

3D-Cross Point Cell w. New Materials3D stackable, cross-point cell w. diode/MOS switch

Excellent scalabilityExcellent scalabilityCell size: 4F2/N (# of layers)Various memory element: PCRAM, MRAM, RRAMPolycrystalline-Si switch device(Diode, MOS)

Ken Takeuchi 105

H. S. Wong, IWFIPT, 2007.

集積デバイス工学

Candidates for Memory ElementPCRAM (Phase Change RAM)

Memory element: Phase change material ResistanceMemory element: Phase change material, Resistance change with amorphous / polycrystalline phases of h l id ll (G Sb T GST)chalcogenide alloy (Ge2Sb2Te5: GST)

Amorphous(Reset): high R, Crystalline(Set): low RWrite mechanism: Joule heating

Crystalline (Set)

AmorphousAmorphous (Reset)

Ken Takeuchi 106

H. S. Wong, IWFIPT, 2007.

集積デバイス工学

Candidates for Memory Element (Cont’)MRAM (M ti RAM)MRAM (Magnetic RAM)

Memory element: MTJ(Magnetic Tunnel Junction), Ferromagnetic material. Tunneling current changes w. parallel/anti-parallel spin.parallel/anti parallel spin.Write mechanism: Spin transfer torque

Current direction determine the write informationCurrent direction determine the write information.Bi-directional write circuit required.

MgOCoFe/NiFe

CoFe/NiFe

Ken Takeuchi 107

CoFe/NiFe

T. Kawahara, ISSCC2007, pp.480-481.

集積デバイス工学

Candidates for Memory Element (Cont’)RRAM (Resistive RAM)

Memory element: Metal oxideMemory element: Metal oxideWrite mechanism: Not confirmed (Thermal effects, Ionic effects, Mott transition)

Conducting filament modelI Initial Low R (Set) High R (Reset)I

Reset (High R)

Forming Reset

Initial Low R (Set) High R (Reset)

El t d

(Pr,Ca)MnO3, TiO2, NiO,

FormingSet (Low R)Metal Oxide

Electrode

ElectrodeTiO2, NiO, Fe3O4 ,Cu2O

VSet

Low resistance current path (Fil t) Cut-off filament

Electrode

Ken Takeuchi 108

I. G. Baek, IEDM, 2005.(Filament) Cut off filament

集積デバイス工学

Page 28: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Big Question for Current-Driven DeviceIn scaled LSIs, current-driven devices have NOT survived.survived.

Power consumption concernNeed low R nano scale signal line material: CNT?Need low R nano-scale signal-line material: CNT?Switch device

Polycrystalline-Si diode: high current drivability but leakage concerngPolycrystalline-Si MOS: low current drivability

Ken Takeuchi 109

Bipolar(ECL)/BiCMOS/NOR Flash Memory集積デバイス工学

Air-Gap NAND

Air-Spacer NAND (Samsung)R d d FG FG C li N iReduced FG-FG Coupling Noise

Ken Takeuchi 集積デバイス工学 110

D. Kang, NVSMW 2006.

Charge Trap NANDTANOS (Samsung)

Reduced FG-FG Coupling Noise (+)Reduced FG FG Coupling Noise (+)Vertical Scaling (+)R d d h t h l ff t (+)Reduced short channel effect (+)Poor Data Retention (-)Reduced Vth Window (-)

Ken Takeuchi 集積デバイス工学 111

C. H. Lee, IEDM 2003.K. Inoh, Symposium on VLSI Technologies, Short Course 2007.

新材料の導入:強誘電体FET

SGD

BL BLMF

PtSrBi2Ta2O9

NAND/SSDThick ferroelectric

WL0FeFET

Sin+n+

I Hf-Al-O layer for data retention.

MFIS Structure (Metal-

WL31

SGS

p-Si

(Ferroelectric-Insulator-

Semiconductor)Source LineSRAM

Thin ferroelectric layer VDDBLB BL

PU2 PU1

yfor high drivability.

SBT :Ultra-high K>300 (Hf Al O High K=19) WL WL

V1V2PG2 PG1

(Hf-Al-O: High K=19)

VSS

V1V2

PD2 PD1

PG2 PG1

G.Salvatore, et. al., IEDM 2008, “Demonstration of Subthrehold Swing Smaller Than 60mV/decade in Fe

Ken Takeuchi 集積デバイス工学 112

VSSSubthrehold Swing Smaller Than 60mV/decade in Fe-FET with P(VDF-TrFE)/SiO2 Gate Stack”

Page 29: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Fe(Ferroelectric)-NAND Flash MemoryNAND Flash Memory w. Ferroelectric Transistor

Scalable below 20nmScalable below 20nmSBT :Ultra-high K>300 (Hf-Al-O: High K=19)

Low voltage/power operation: 20V 5VWrite/Erase cycles: 10K cycles 100M cyclesWrite/Erase cycles: 10K cycles 100M cyclesMost suitable for data center application

MF

PtSrBi2Ta2O9

MFIS Structure(M t l F l t i

FI

SrBi2Ta2O9

Hf-Al-O(Metal-Ferroelectric-

Insulator-Semiconductor)p-Sin+n+

Ken Takeuchi 集積デバイス工学 113

S. Sakai, NVSMW 2008, pp.103-104.

Operation Principle of Fe-NAND Flash5V0V 5V

M

0V

MF

Low voltage operation

BL BL+

FI

n+n+n+

FI

SGDFeFET

p-well Si

n+n+

p-well Si

n+n+

WL0FeFET

0V Program5V Erase

10-5

WL31 10-7

10

A) "Program"SGS

S Li 11

10-9

I d (A "Erase""Program"

Source Line

10-13

10-11

1 20 80 40 0

Ken Takeuchi 集積デバイス工学 114

S. Sakai, NVSMW 2008, pp.103-104.

10 1.20.80.40.0Vg (V)

Scalable below 20nmF l i i i i i d i 20 i

SrBi Ta O (SBT)

Ferro electricity is maintained in 20nm size.

SrBi2Ta2O9 (SBT)

a = 0 5506 nmTEM Photograph

Sr a = 0.5506 nmb = 0.5534 nmc = 2 498 nm

SrBi2Ta2O9~ 400nm

Bi

T

c 2.498 nm Hf-Al-O~ 10nm

OTa

Si

IL

Oc

Si

IL: Interfacial layerb

IL: Interfacial layer major component – SiO2

aKen Takeuchi 集積デバイス工学 115

S. Sakai, NVSMW 2008, pp.103-104.

10 Year Data Retention

10-4

A) On states

10-8

10-6

ent,

I d (

A

1st2nd

37.0 days

MFI

PtSrBi2Ta2O9

Hf Al O

10-10

10

n C

urre 2nd

3rd 4th 33.5 days

p-Sin+n+

I Hf-Al-O

10-14

10-12D

rai

Off states10 years

p S

10100 102 104 106 108

Time, t (s) Buffer layer improves Si‐i f h i iinterface characteristics.

Ken Takeuchi 集積デバイス工学 116

S. Sakai, NVSMW 2008, pp.103-104.

Page 30: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Excellent W/E Cycles up to 100M1.1

1.0Fe-NAND0.9

0.8h (V

)

Erased0.8

0.7

0 6Vt

h Programmed

0.6

0.5103 104 105 106 107 10810 10 10 10 10 10

Number of Cycles S. Sakai, NVSMW 2008, pp.103-104.

NAND

Ken Takeuchi 集積デバイス工学 117

Y.R. Kim, Flash Memory Summit 2007.

Pros & Cons of New Memories

Endurance &  FG‐FG  Power CapacityData Retention Coupling Noise Consumption (Cost)

Multi‐layer 

3D‐NAND

yNAND

‐ ‐ ‐ ‐

Vertical NAND

‐ Better ‐ BetterNAND

3D‐Cross ll

PRAM, MRAM, Better Better ‐ Better

Point CellMRAM, RRAM

Better Better Better

2DAir‐Gap 

‐ Better ‐ ‐2D‐Memories with New 

NANDBetter

Charge Trap NAND

‐ Better ‐ ‐Materials NAND

Fe‐NAND Better Better Better ‐

Ken Takeuchi 集積デバイス工学 118

Outline

SSD, Memory System InnovationNAND OverviewNAND Circuit DesignSSD O i & D iSSD Overview & DesignOperating System for SSDOperating System for SSDFuture Memory TechnologyFuture Memory TechnologyFuture SSD TechnologygySummary

119集積デバイス工学Ken Takeuchi

Co-design of NAND and Controller CircuitsBy co-designing both NAND and NAND controller circuits, the power consumption of SSD is reduced by 60%.

80

100

系列1系列2nt

[mA

]

80Selective BL prechargeConventional

23% reduction

CE4, R/B4CE3, R/B3CE2, R/B2CE1, R/B1

p p y

40

60系列3

atio

n cu

rren 60

40

Selective BL precharge & Advanced SL program

48%reduction

NANDChip4NAND

Controller

NANDChip1

NANDChip2

NANDChip3

0

20

10 20 30 40 50 60 70

Ope

ra

10 20 30 40 50 60 70F t i [ ]

20

0

Power Detect(PD)

ALE, CLE, RE, WE, WP, IO

NAND Flash Memory

10 20 30 40 50 60 70Feature size [nm]

Time

Current waveform of NAND Chip1

Current waveform

Time

Time

Current waveform of NAND Chip2

Current waveform of NAND Chip3

Time

Time

Current waveform of NAND Chip4

Ken Takeuchi 集積デバイス工学 120

NAND Controller K. Takeuchi, Symposium on VLSI CIrcuits, 2008, pp.124-125.

Page 31: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Importance of 20V generator in NANDWrite time is dominant over read time.

Write 8 to 16 chips simultaneously.p y20V or higher program voltage for write

Energy during write should be reduced.Read time

50

Energy during write should be reduced.

Program voltage:20V~50µs

0V0V

Program voltage:20V

Floating gate

W it ti

0V0V

I j tiWrite time~800µs 0V

Injection

High-speed low-power 20V generator is required

Write operation of NAND flash

Ken Takeuchi 集積デバイス工学 121

High-speed low-power 20V generator is required. K. Ishida, ISSCC 2009, pp.238-239.

Conventional SSD with charge pumpEach NAND flash has charge pump for 20V.

5 to 10% area of NAND flash chip!5 to 10% area of NAND flash chip!

NANDNAND controller

NANDInterposerflash

ChargeDRAM

Chargepump

Ken Takeuchi 集積デバイス工学 122

K. Ishida, ISSCC 2009, pp.238-239.

Problems of Charge PumpSerial MOS diodes lose energy.Large number of stages for low VDD

VOUT =20VVDD OU

ClkClk Large capacitance

for large current

Large capacitance area

Clk for large current

Large capacitance areaEnergy loss VOUT

Bucket brigadeVDD

Ken Takeuchi 集積デバイス工学 123

Bucket brigadeK. Ishida, ISSCC 2009, pp.238-239.

Power Consumption Comparison

a.u.

)

CBL: bit line to bit line capacitance

writ

e (

Memory Memory☺

ring

w Memorycore

Memorycore

☺∝CBLV2

y du

rEnergyCharge

ChargeEn

ergy Energy

increases!Chargepump

Others

pump

1.8V NAND(simulated)

E

3.3V NAND*(Core 2.5V)

Others

( )

*K. Takeuchi, et al., ISSCC 2006Energy by charge pump increases!

(Core 2.5V)

Ken Takeuchi 集積デバイス工学 124

, ,K. Ishida, ISSCC 2009, pp.238-239.

Page 32: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Advantages of Boost convertersFrequency, duty cycle Conversion ratio (VOUT/VDD)Inductance Output current

TON TOFF

Inductance Output currentVOUTVDD

Clk

Frequency = 1 / (TON + TOFF)Duty cycle = TON / (TON + TOFF)

☺ High conversion ratio, large output current☺ High efficiency☺ Small chip area☺ Small chip area

Off-chip inductor

集積デバイス工学Ken Takeuchi 125

K. Ishida, ISSCC 2009, pp.238-239.

Proposed 3D-SSD with boost converter☺ R li i l d l t

Boost converter (shared)☺ Realizing low power and low cost

Adaptive controller

Spiralinductor

Low-cost High-voltage

Boost converter (shared)

controller inductorHigh-voltageMOSNAND

controllerSmaller die size

InterposerCharge

pump

NAND

p pump

ChargeNANDflash

Chargepump

DRAM

Ken Takeuchi 集積デバイス工学 126

K. Ishida, ISSCC 2009, pp.238-239.

Boost converters for flash memoriesPrevious work* This work

Flash NOR NANDFlash NOR NANDProgram voltage 5V 20V(VOUT) 5V 20V

Load Resistive CapacitivepDC load current 20mA 20µA

PWM controller New adaptiveController PWM controller(Duty cycle only)

New adaptivecontrol scheme

Ken Takeuchi 集積デバイス工学 127

*R. Sundaram et al., ISSCC 2005. K. Ishida, ISSCC 2009, pp.238-239.

Output load current with NAND flashVOUT=20VVDD=1.8V ILOAD

Clk RL CL RL ≈1MΩCL ≈100pFCL ≈100pFfor 16Gb NAND

dV V

20µAI LOA

Ddt

dVOUTILOAD=CL + RL

VOUT

20µADCtTransient energy

i i t t Boost converter can stop

UT

is important. Boost converter can stop.

t

V OU 20V

Ken Takeuchi 集積デバイス工学 128

t=0:write startt

K. Ishida, ISSCC 2009, pp.238-239.

Page 33: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Simulated waveforms of boost converterSimulation circuit Simulated waveform

VOUTVDDL

Simulation circuit25

Simulated waveform

V] f=8MHzVOUTVDD

Clk (f) R C20

V OU

T[V Fast, Coarse

AdaptiveClk (f) RL CL 15

tage

V

f=20MHzVDD =1.8VL =270nHR 1MΩ 5

10

ut v

olt

Slow, Fine

RL =1MΩ∗CL =160pF*

0

5

0 0 5 1 1 5 2Out

pu*16Gbit NAND iti

Trade off between rising time and accuracy of VOUT

0 0 0.5 1 1.5 2OTime [µs]

*16Gbit NAND, parasitics

Trade off between rising time and accuracy of VOUT

Conventional PWM is not applicable.Ad ti t ll f f t i i fi lt l

Ken Takeuchi 集積デバイス工学 129

Adaptive controller for fast rising, fine voltage, low powerK. Ishida, ISSCC 2009, pp.238-239.

Microphotograph of boost converterHigh voltage MOS circuit Die microphotograph

MOS diodeVDD VOUT

VDD VOUTIDD

Clk MOS switch Clks tc Clk

VSS

20V CMOS process(0 35 0 50 )

VSS

(0.35mm × 0.50mm)

IDD vs. frequency & IDD vs. duty cycle are measured.

Ken Takeuchi 集積デバイス工学 130

IDD vs. frequency & IDD vs. duty cycle are measured.K. Ishida, ISSCC 2009, pp.238-239.

Measured optimal frequency

A]

40VOUT=22V 20V 18V VDD=1.8V

D[m

A

30

20V 18V 16VVDD 1.8V

ent I

DD

20 I

y cu

rre 20 IDDOptimal

Supp

ly 10

F t C Slow FineS

015 20 25 30 35

Fast, Coarse Slow, Fine

Switching frequency [MHz]15 20 25 30 35

Clock freq enc sho ld be controlled adapti elKen Takeuchi 集積デバイス工学 131

Clock frequency should be controlled adaptively.K. Ishida, ISSCC 2009, pp.238-239.

Measured optimal duty cycle

VOUT=22V20V

40

VDD=1 8V20V18V

16VmA

]

30VDD 1.8V

IDDOptimalt I

DD

[m

20 Optimal

urre

nt 20

pply

cu

10

70 75 80 85 90 95 100

Sup

0

Duty cycle [%]70 75 80 85 90 95 100

D t l h ld b t ll d d ti lKen Takeuchi 集積デバイス工学 132

Duty cycle should be controlled adaptively.K. Ishida, ISSCC 2009, pp.238-239.

Page 34: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Concept of new adaptive controller

20

25)[

V] VREFH = Target VOUT

15

20

e (V

OU

T)

VREFL

VREFM

Fast rising time

10

15

volta

ge

REFL gFine voltage tuningLow power

5

10

utpu

t v

p

Changing frequency and d t l di t th V

0

Ou

f D f D f D

duty cycle according to the VOUT

( f < f < f )

ptiv

e ro

ller

put [

V] 5fL, DL fM, DM fH, DH

Stop

( fL < fM < fH )

01 2A

dap

cont

Out

p

0Stop

Ken Takeuchi 集積デバイス工学 133

Time [µs] K. Ishida, ISSCC 2009, pp.238-239.

Block diagram of boost converter

Ken Takeuchi 集積デバイス工学 134

K. Ishida, ISSCC 2009, pp.238-239.

Block diagram of adaptive controller

DriverCan be f D

Register set

DigitallycontrolledMUX.

Driverprogrammedby serial data.

fH , DH

fM , DM Clkoscillator

M M

fL , DL

V

ex. 11001, 00110

StartStop

SelectVOUT

ControlVREFH

ControllogicVREFM

VREFL

3 step V detector

Ken Takeuchi 集積デバイス工学 135

3-step VOUT detectorK. Ishida, ISSCC 2009, pp.238-239.

Principle of digitally controlled oscillatorSimulated waveforms

2 0[V]

VBVA

V2S Q

VREFSimulated waveforms

1 01.52.0 BA

VREF

V1

R Q1.0

2 0 V1

VREF

[V]VDD VDD VDD

1.02.0

TON TOFF TON

1DD DD DDVA VB

VA VB 0.00 50 100 150 200

Time [ns]RVREF

C C

VA VB

IREF = (VDD - VREF) / RT = R C

Time [ns]IREFIREF IREFCA CB

TON = R x CATOFF = R x CBCA and CB are digitally controlled.

Ken Takeuchi 集積デバイス工学 136

A BRobust against PVT variation K. Ishida, ISSCC 2009, pp.238-239.

Page 35: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Simulated waveforms of boost converter

30/ @14F t i i i V

Boost converter with adaptive controller

25

ltage

V] AdaptiveVREFH = Target VOUT

w/o adaptive@14MHzFast rising, precise VOUT

15

20

put v

oV O

UT)

[V Adaptive

C i lVREFL

VREFM

10

15

Out

p (V Conventionalcharge pump(@13 7MH )

REFL

0

5

er V]

(@13.7MHz)

05

ntro

llepu

t [V

40 1 2 3Ri i i [ ]

0

Con ou

tp

3.45

Ken Takeuchi 集積デバイス工学 137

Rising time [µs]K. Ishida, ISSCC 2009, pp.238-239.

3D-SSD Breadboard ModelHigh voltage MOS

(0.35mm × 0.50mm)

Inductor 16Gb NAND flashInductor(5mm x 5mm)

Adaptive controller(0 67mm × 0 28mm)

Ken Takeuchi 集積デバイス工学 138

(0.67mm × 0.28mm)K. Ishida, ISSCC 2009, pp.238-239.

Measured waveforms of NAND flash

Ready/Busy(16Gb NAND)

Busy-state

(16Gb NAND)

VReady-state

VOUT(Boost converter)

Measured transient energy: 30nJMeasured rising time: 0 92µs (V 0 15V @ V :1 8V)

Ken Takeuchi 集積デバイス工学 139

Measured rising time: 0.92µs (VOUT 0 15V, @ VDD:1.8V)K. Ishida, ISSCC 2009, pp.238-239.

Key FeaturesThis work

(Measured)Charge Pump(Simulated)( ) ( )

Energy (0 15V) 30nJ (12%) 253nJ (100%)Rising time (0 15V) 0 92µs (27%) 3 45µs (100%)Rising time (0 15V) 0.92µs (27%) 3.45µs (100%)Chip area (HV-MOS) 0.175mm2 (15%) 1.19mm2 (100%)Technology(High voltage MOS)

20V CMOS process --------

( g g ) pChip area(Adaptive controller)

0.188mm2 --------(Adaptive controller)Technology 1.8V 0.18µm

d d CMOS --------(Adaptive controller) standard CMOSSupply voltage 1.8V 1.8V

Ken Takeuchi 集積デバイス工学 140

pp y gK. Ishida, ISSCC 2009, pp.238-239.

Page 36: NANDフラッシュメモリとSSD NAND Circuit Design … Circuit Design SSD O i & D iSSD Overview & Design Operating System for SSDOperating System for SSD Future Memory TechnologyFuture

Comparison of energy during writeBoost

converter

Memory Memory

withadaptivecontrolMemory

coreMemory

coreTotal

control

ChCharge

-68%

Chargepump

gpump Memory

coreOthers

This workConventional

Others

Conventional1.8V NAND1.8V NAND

(Simulated)3.3V NAND*(Core 2.5V)

Ken Takeuchi 集積デバイス工学 141

*K. Takeuchi, et al., ISSCC 2006. K. Ishida, ISSCC 2009, pp.238-239.

Wireless IF for 3D-SSDDecrease I/O power consumption by half.

Ken Takeuchi 集積デバイス工学 142

Y. Suginomori, ISSCC 2009, pp.244-246.

Wireless IF for 3D-SSD (Cont’)Introduce shield to avoid crosstalk

Ken Takeuchi 集積デバイス工学 143

Y. Suginomori, ISSCC 2009, pp.244-246.

Summary

New Memory SystemSLC/MLC Hybrid SSD solves the system bottleneck.bottleneck.

E i M k t P C i i t d t tEmerging Market: Power Crisis at data centerSSD is expected to save power at data center.

Device circuit and OS innovation requiredDevice, circuit and OS innovation required.Co-design of NAND and NAND controller circuits.OS ti i ti h t i ti i tiOS optimization such as sector size optimization.New device structure with new material.3D-SSD with new low power circuits.

144集積デバイス工学Ken Takeuchi