name: regents chemistry: mrs. mintz...

35
Name: Regents Chemistry: Mrs. Mintz Practice Packet Chapter 6: Periodic Table

Upload: vodat

Post on 20-Mar-2018

219 views

Category:

Documents


3 download

TRANSCRIPT

Name:      

Regents Chemistry: Mrs. Mintz  

 

Practice  Packet    

Chapter  6:  Periodic  Table    

Name:      

WHY?

Substances that contain only atoms with the same number of protons are called elements. The Periodic Table lists all the known elements in order of their atomic number and in columns that depend on similarities in their chemical and physical properties. The Periodic Table is a useful tool for both students and professionals to identify the properties of the elements and understand the properties of molecules.

INFORMATION

Dmitri Mendeleev (1834 − 1907), a Russian scientist, constructed the first Periodic Table by listing the elements in horizontal rows in order of increasing atomic mass. He started new rows whenever necessary to place elements with similar properties in the same vertical column. Mendeleev found that the correlations in properties between some elements in the columns were not perfect. These observations led him to predict the existence of undiscovered elements and to wonder how the table might be better organized. Later H.G.J. Moseley used x-ray spectra to refine the ordering and show that atomic numbers rather than atomic masses should be used to order the elements.

In the Periodic Table, elements with similar properties occur in vertical columns called groups. Two numbering conventions are used to label the groups. The older convention numbers the groups using Roman numerals I through VIII followed by a letter A or B; the other convention numbers each column 1 through 18. The A groups are known as the main group elements. The B groups are called the transition elements. The group numbers IA through VIIIA in the older convention tells you how many valence electrons an element has. The valence electrons are the outer electrons that are most important in determining the chemical bonding and other properties of the element.

The horizontal rows of the table are called periods, and are numbered 1 through 7 starting with the row that only contains H and He.

INFORMATION  

There   are   three   categories   of   elements   in   the   Periodic   Table:   metals,   nonmetals,   and  metalloids.  The  metals  are  located  in  the  left  and  center.  They  are  good  conductors  of  heat  and   electricity.   The   nonmetals   are   in   the   upper   right-­‐hand   corner.   They   are   poor  conductors   of   heat   and   electricity.   The   metals   and   nonmetals   are   separated   by   the  metalloids,  which  are  six  elements  on  a  diagonal  line.  These  elements  are  B,  Si,  Ge,  As,  Sb,  and   Te.   The   metalloids   are   also   called   semimetals   or   semiconductors   because   their  conductivity  is  between  that  of  metals  and  nonmetals.  Metals  readily  lose  electrons  to  form  positive   ions,   called   cations,   and   nonmetals   readily   gain   electrons   to   form  negative   ions,  called  anions.  

 

Name:      

KEY  QUESTIONS  

1. What  information  about  an  element  is  provided  in  each  box  for  that  element  in  the  Periodic  Table  in  the  model?  

 

2. What  determines  the  sequence  of  the  elements  from  the  first  to  the  last?  

 

3. What  determines  where  one  row  stops  and  another  begins?  Where  are  the  metals,  nonmetals,  and  metalloids  located?          

4. What  is  the  difference  between  a  group  and  a  period?        

5. How  can  you  determine  the  total  number  of  electrons  that  an  atom  has  from  the  Periodic  Table?    

 

6. How  can  you  determine  the  number  of  valence  electrons  that  atoms  in  groups  1,  2  and  13  through  18  have?  

                                 

www.middleschoolscience.com 2008

Lewis Structures Name:

• Lewis structures, or dot diagrams, are a simplified way to show how the valence electrons are arranged in the outer shell. This is where the chemical reactions take place. Atoms will either share or give away these electrons to form bonds.

• Using your periodic table, determine the number of valence electrons for each element. • Draw a dot to represent each valence electron around the element symbol. • Follow the pattern below starting with position number 1.

Xe

Li Be N C B

Mg P Si Al Na

K Ca

NeF O

S Cl Ar

H He1 5

3 7

6 2

8 4

Examples:

Ba In Se

Name:      

 Using  colored  pencils  &  markers,  color  the  following  two  periodic  tables  according  to  the  following  directions  carefully.    Before  you  begin:    

PERIODIC  TABLE  #1    Draw  your  staircase  à  Use  your  Reference  Table  and  a  thick  black  marker  to  do  this  –  it  must  be  easily  visible!  Using  pen  or  pencil,  write  the  atomic  symbols  and  #’s  of  the  elements  in  the  correct  box.      Now,  using  THREE  DIFFERENT  DARK  MARKERS,  draw  a  BORDER  around  the  elements  that  are  categorized  below.    Be  sure  to  include  a  color  key  of  Table  #1.    There  should  not  be  any  empty  squares  when  done.  

 Semi-­‐Metals   (Metalloids)  à   Elements   that   have   characteristics   of   both   metals   and  nonmetals      Metals  à   These   elements   easily   lose   electrons   and   form  positive   ions.     They  have   a  metallic  luster  when  polished.    They  also  have  a  sea  of  valence  electrons  that  aid  to  help  bond  themselves  to   one   another.   Found   to   the   left   of   the   staircase   (be   careful   for   the   “1”   exception).   DON’T  FORGET  to  include  the  two  bottom-­‐most  rows  on  the  Table!    Nonmetals  à   Elements   that   are   highly   electronegative   and   therefore   attract   electrons   in  order  to  form  negative  ions.    They  are  also  typically  covalently  bonded  to  each  other  or  form  ionic  bonds  with  metals.  Found  to  the  right  of  the  staircase.  

___________________________________________    

Now,  using  THREE  DIFFERENT  COLORED  PENCILS,  SHADE  IN  the  elements  that  are:    Liquids  (at  STP)  à  Br  and  Hg  are  the  only  elements  in  this  state      Gases  (at  STP)  à  H,  N,  O,  F,  Cl,  and  all  the  noble  gases  (group  18)    Solids  (at  STP)  à  All  the  rest  of  the  elements  (besides  liquids  and  gases)                  

Name:      

                                                                               

               

Name:      

Periodic  Table  #2  Using  pen  or  pencil,  write  the  atomic  symbols  and  #’s  of  the  elements  in  the  correct  box.      Use  a  different  color  for  each  of  the  following.    Include  a  KEY  at  the  top  or  bottom  of  the  periodic  table  so  that  others  can  read  and  identify  the  following  on  your  table:  

 Diatomic  Elements  à    Place  a  colored  border  (all  the  same  color)  around  each  of  the  7  diatomic  elements.    Diatomic  elements  are  elements  that  cannot  exist  in  nature  by  themselves.    They   therefore  bond   to   themselves  and   travel   in  pairs   (ex:  N2   instead  of  N).    The  seven  diatomic  elements  are  H,  O,  F,  Br,  I,  N,  and  Cl.  The  last  “7”  listed  elements  form  a  numeral   seven   on   the   Periodic   Table   and   the   H   is   found   “UP”   to   the   upper   left   corner  (atomic  number  1).    Hence,  the  memory  device  “7UP.”    

Color  the  following  elements  by  shading  in  their  box  with  a  different  color  (each  group).    For  the  diatomic  elements,  just  simply  color  within  the  border  that  you  have  already  created  for  them:    

• Alkali   Metals  à   All  EXCEPT   for  Hydrogen   (it   is   excluded   from   this   group),  these  are  the  Group  1  elements.    They  are  very  reactive  metals  and  always  form  +1  ions  within  ionic  compounds.  

 • Alkaline   Earth   Metals   à   These   are   the   Group   2   elements.     They   are  

reactive,  but  not  as  much  as  the  alkali  metals.    They  always  form  +2  ions  within  ionic  compounds.  

 • Transition  metals  à  These  metals  are  found  in  the  D-­‐block  (groups  3-­‐12)  of  

the  Periodic  Table  (the  mid-­‐section).    They  can  have  more  than  one  possible  positive  charge  when   part   of   an   ionic   compound.    We   use  Roman   numerals   to   denote   the  charge  when   naming   them.     They   also   usually   form  colored   solutions  when  mixed  with  water.    This  is  one  of  their  unique  characteristics!      

 • Halogens  à   Group   17   elements   that   are   very   reactive   nonmetals.     They   usually  

have  a  –1  charge  when  in  ionic  compounds.    

• Noble   Gases  à   Group   18   elements   that   are   extremely   stable   &   unreactive  compounds   that   do   not   form   bonds   with   other   compounds   in   nature   (AKA   inert  gases).  

 • Lanthanoid   Series   à   Top   row   of   the   bottommost   two   rows   on   table.    

Elements  58-­‐71.      

• Actinoid   Series   à   Bottom   row   of   the   bottommost   two   rows   on   table.    Elements  90-­‐103.  

Name:      

                 

                                               

                         

Periodic  Table  #2  

Name:      

 Questions  

1. The  periodic  table  is  arranged  by  increasing  ___________________.    

2. The  periodic  table  is  essentially  divided  into  two  categories  of  elements.  Those  categories  are  __________________  and  _______________.  

 3. What  do  we  call  the  horizontal  rows  of  the  periodic  table?  

   

4. What  do  all  the  elements  in  a  given  row  have  in  common?      

5. What  do  we  call  the  vertical  columns  of  the  periodic  table?      

6. What  to  all  the  elements  in  a  given  column  have  in  common?      

7. Are  atoms  of  the  elements  in  the  family  of  noble  gases  reactive  (do  readily  form  bonds  with  other  atoms)?  Why  is  this?  

         

8. The  most  metallic  elements  on  the  periodic  table  are  found  in  the  a. Upper  right  b. Lower  right  c. Upper  left  d. Lower  left  

   

                         

Name:      

 An  Alien  Periodic  Table  

Purpose:    To  correctly  place  given  physical  and  chemical  properties  of  unknown  elements  in  a  blank  periodic  table    Materials:  Blank  periodic  table,  modified  for  this  activity  List  of  observations  of  the  unknown  elements  Pencil    Background  Information:     Earth’s  scientists  have  announced  that  they  have  made  radio  contact  with  intelligent  life   on   a   distant   planet.   One   of   this   alien   planet’s   languages   has   been   translated,   and  scientific   information   has   begun   to   be   exchanged.    The   planet   is   composed   of   the   same  elements   as   Earth.    However,   the   inhabitants   of   the   planet   have   different   names   and  symbols  for  them.    Since  the  alien  scientists  do  not  know  the  names  of  our  elements,  they  have  radioed   the   following  data  on   the  known  properties  of   the  elements.    Strangely,  but  luckily,  there  are  no  transition  or  rare  earth  elements  on  the  alien  planet.    This  means  that  their  periodic  table  consists  only  of  the  “A”  groups  of  elements.    The  data  are  as  follows:    

1. The  inert  gases  are  bombal  (Bo),  wobble  (Wo),  jeptum  (J),  and  logon  (L).    Bombal  (Bo)  is  a  noble  gas  but  does  not  have  8  valence  electrons.    The  outside  energy  level  of  logon  (L)  is  its  second  energy  level.    Of  these  noble  gases,  wobble  (Wo)  has  the  greatest  atomic  mass.  

2. The   alkali  metals   are   xtalt   (X),   byyou   (By),   chow   (Ch),   and   quackzil   (Q).    Of   these   alkali  metals,   chow   (Ch)   has   the   lowest   atomic   mass.    Quackzil   (Q)   is   in   the   same   period   as  wobble  (Wo).  

3. The   halogens   are   apstrom   (A),   vulcania   (V),   and   kratt   (Kt).    Vulcania   (V)   is   in   the   same  period  as  quackzil  (Q)  and  wobble  (Wo).  

4. The  metalloids  are  Ernst  (E),  highho  (Hi),  terriblum  (T),  and  sississ  (Ss).    Sississ  (Ss)  is  the  metalloid  with  the  highest  atomic  mass.    Ernst  (E)  is  the  metalloid  with  the  lowest  atomic  mass.    Highho   (Hi)  and   terriblum  (T)  are   in  Group   IV.    T  has  more  protons   than  Hi.    The  element  called  yazzar  (Yz)  is  a  metalloid  by  location  but  has  properties  that  suggest  it  is  a  light  metal.  

5. The  most  metallic   element   on   the   planet   is   called   xtalt   (X).    The  most   chemically   active  nonmetal  on  the  planet  is  called  apstrom  (A).    The  lightest  element  on  the  planet  is  called  pfsst  (Pf).    The  heaviest  element  on  the  planet  is  elrado  (El).    It  is  highly  radioactive.  

6. The  chemical  makeup  of   the  alien  planet’s  oceans  seems   to  be  about   the  same  as  Earth’s  oceans.    When   seawater   is   distilled,   the   liquid   that   is   boiled   off   and   then   condensed   has  been  shown  to  have  molecules  consisting  of  two  atoms  of  pfsst  (Pf)  and  one  atom  of  nuutye  (Nu).    The  solid  left  behind  after  the  distillation  consists  mainly  of  a  crystal  made  up  of  the  elements  byyou  (By)  and  kratt  (Kt).  

7. The  element  called  doggone  (D)  has  only  4  protons  in  its  atom.    8. Floxxit   (Fx)   is   a   black   crystal  with   4   electrons   in   the   outer   shell.    Both   rhastrap   (R)   and  

doadeer  (Do)  have  atoms  with  four  energy  levels.    But  R  is  less  metallic  than  Do.    

Name:      

9. Magnificon  (M),  goldy  (G),  and  sississ  (Ss)  are  all  members  of  Group  V.    G  has  fewer  total  electrons  than  M.  

10. Urrp  (Up),  oz  (Oz),  and  nuutye  (Nu)  all  gain  2  electrons.    Nu   is  diatomic.    Oz  has  a   lower  atomic  number  than  Up.  

11. The  element  anatom  (An)  tends  to  lose  3  electrons.    The  elements  zapper  (Z)  and  pie  (Pi)  both  lose  2  electrons.    Pi  loses  them  from  its  fifth  energy  level,  while  Z  loses  them  from  its  third.    Procedure:  Fill  in  the  blank  periodic  table  with  the  correct  alien  planet  symbol  for  each  element.    The  symbol  is  given  in  parentheses  after  the  element  name  in  the  data  statements.  

 1. Most  elements  that  occur  in  the  same  group  (family)  on  the  periodic  table  have  

similar  chemical  characteristics.    Explain  why  this  is  true?  __________________________________________________________________________________________________________________________________________________________________________________________________  

 2. What  happens  to  valence  electrons  as  you  move  left  to  right  in  a  row?    

__________________________________________________________________________________________________________________________________________________________________________________________________    

3. What  are  4  common  properties  of  metals?  __________________________________________________________________________________________________________________________________________________________________________________________________    

4. What  are  4  common  properties  of  non-­‐metals?  __________________________________________________________________________________________________________________________________________________________________________________________________  

5.  Hydrogen  is  obviously  not  an  alkali  metal.    Why  is  it  in  column  1  of  the  table?  __________________________________________________________________________________________________________________________________________________________________________________________________  

Name:        Element  118,  Heaviest  Ever,  Reported  for  1,000th  of  a  Second  

A  team  of  Russian  and  American  scientists  said  yesterday  that  it  had  created  the  heaviest  element  ever  seen  in  a  laboratory,  a  dab  of  matter  that  lasted  for  less  than  one-­‐thousandth  of  a  second  but  would  add  an  entry  at  the  farthest  reaches  of  the  periodic  table  and  suggest  that  strange  new  elements  may  lie  beyond.  

By   convention,   the   substance   remains   the   Baby   Doe   of   elements   until   its   existence   is  confirmed  at  other  laboratories.  For  now,  the  new  substance  will  be  principally  known  as  element   118   for   the   number   of   protons   in   its   nucleus,   more   than   in   any   other   element  occurring  naturally  or  produced  in  the  laboratory.  

                         Sabrina  Fletcher  and  Thomas  Tegge/Lawrence  Livermore  National  Laboratory  Calcium,  with  20  protons,  being  accelerated  into  Californium,  with   98   protons.   Sabrina   Fletcher   and   Thomas   Tegge/Lawrence   Livermore  National   Laboratory   The   new   element   traveling   through   the  accelerator  to  the  detector.  

Hydrogen,   the   lightest   element,   has   one  proton   in   its   nucleus,   and  uranium,   the  heaviest  naturally  occurring  element,  has  92.  Element  118  would  fit  comfortably  just  below  radon  in  a   column   of   the   periodic   table   containing   what   are   called   noble   gases   for   their   inert  chemical  properties.  

The   results   were   met   with   praise   but   also   caution   from   other   scientists   in   the   field,  particularly  given  the  fraught  history  of  element  118.  Another  California  lab,  the  Lawrence  Berkeley   National   Laboratory,   announced   that   it   discovered   the   element   in   1999   but  retracted  the  claim  two  years  later  after  an  investigation  found  that  one  of  its  researchers,  Dr.  Victor  Ninov,  had  fabricated  data.  Dr.  Ninov  was  later  fired.  

Dr.  Ken  Moody,  the  lead  American  researcher  on  the  work,  said  everything  had  been  done  to  guard  against  fabrication,  with  independent  analyses  being  carried  out  in  Russia  and  the  United  States.  And  the  group’s  paper  on  the  putative  find  has  been  accepted  at  a  prestigious  journal,   Physical   Review   C,   after   other   scientists   reviewed   the   work,   said   Dr.   Jonathan  Lenaghan,  an  editor  at  the  journal.  

But  it  was  less  the  fear  of  fraud  than  ordinary  scientific  caution  that  caused  some  scientists  to   reserve   judgment   on   the   discovery.   The   Russian   lab   and   its   collaborators   have   now  

Name:      

announced  the  discovery  of   five  elements  —  113,  114,  115,  116  and  now  118  —  none  of  which  have  been  confirmed  by  other  scientists.  

“One  has  to  be  extremely  careful  with  those  enthusiastic  announcements,”  said  Dr.  Witold  Nazarewicz,  a  nuclear  theorist  at  the  University  of  Tennessee  and  the  Oak  Ridge  National  Laboratory.  

“This   is   not   because   one   is   doing   something   wrong,”   Dr.   Nazarewicz   said.   “It’s   because  these  are  very  difficult  measurements.  They  are  playing  on  the  edges  of  statistics.”  

The   team   that   created   the   element,   made   up   of   scientists   at   the   Lawrence   Livermore  National   Laboratory   in   California   and   the   Joint   Institute   for   Nuclear   Research   in   Dubna,  Russia,  said  they  had  produced  three  atoms  of  the  new  element  in  six  months  of  smashing  lighter  elements  together  and  trying  to  make  them  stick.  

The  scientists  said  their  results  also  gave  hope  that  they  were  approaching  a  long-­‐predicted  “island  of   stability”  of  even  heavier  elements,  with   longer   lives  and  possibly  strange  new  chemical  properties.  

“This  considerably  expands  the  borders  of  the  existing  material  world,”  Dr.  Yuri  Oganessian  said  in  an  e-­‐mail  message.  He  is  the  scientific  director  of  the  Flerov  Laboratory  of  Nuclear  Reactions  at   the  Dubna   institute,  where   the  experiments  were  carried  out   in  a   cyclotron,  the  circular  particle  accelerator.  

A  Livermore  scientist,  Dr.  Nancy  J.  Stoyer,  said  the  team  had  calculated  that  there  was  less  than  one  chance  in  100,000  that  the  results  were  a  statistical  fluke.  

     “We’re  very  confident,”  Dr.  Stoyer  said.  

Other  experimental  scientists  said  nothing  was  obviously  amiss  with  the  work.  

“I   think   the   evidence   they  have   is   convincing,”   said  Dr.   C.  Konrad  Gelbke,   director   of   the  National   Superconducting   Cyclotron   Laboratory   at   Michigan   State   University.   “It   looks  pretty  good.”  

The   experiments   were   performed   when   scientists   at   the   Russian   laboratory   used   the  cyclotron  to  bash  atoms  of  calcium,  with  20  protons,   into  a  target  of  Californium,  with  98  protons,  like  little  clumps  of  putty  that  they  hoped  would  stick  together,  said  Dr.  Dawn  A.  Shaughnessy,  another  Livermore  scientist  who  worked  on  the  experiment.  

In  extremely   rare   instances,   they  did   stick.   In  10  billion  billion  bombardments,  detectors  found  that  the  two  sets  of  protons  glommed  together  to  produce  element  118.  

An  element’s  weight   is  determined  by  the  total  number  of  protons,  which  have  a  positive  electrical  charge,  and  neutrons,  which  are  neutral,  in  its  nucleus.  

Name:      

By  that  measure,  too,  the  new  element  is  the  heaviest  ever  created.  

Dr.  Gelbke  said  that  there  was  one  good  reason  that  the  Russian  laboratory  might  be  ahead  of   its   competitors   elsewhere   in   the   world.   Scientists   at   that   lab,   he   said,   are   skilled   in  handling  Californium,  which  is  very  radioactive  and  dangerous  to  the  uninitiated.  

“I  wouldn’t  want  to  do  that  myself,”  Dr.  Gelbke  said,  chucking.  “It’s  a  fairly  nasty  substance  for  most  people  to  handle.”  

If   the   results   are   confirmed,   they  would   represent   one  more   step   toward   the   “island   of  stability”  that  theorists  have  predicted  in  even  heavier  regions  of  the  periodic  table.  Nuclei  have  shell-­‐like  structures,  and  the  most  stable  atoms  contain  so-­‐called  “magic  numbers”  of  protons  and  neutrons  that  produce  closed,  or  complete,  shells.  

The  numbers  2,  8,  20,  28,  50  and  82  are  magic  for  both  protons  and  neutrons.  The  highest  known   magic   number   for   neutrons   alone   is   126,   meaning   that   common   lead,   with   82  protons   and   126   neutrons,   is   the   heaviest   known   “doubly   magic,”   or   extremely   stable,  isotope  in  the  periodic  table.  

But  the  theorists  have  predicted  that  there  is  another  closed  shell  out  beyond  all  elements  discovered  so  far,  including  the  latest  one.  

“It’s  rather  like  Plum  Island  at  the  end  of  Long  Island,”  Dr.  Martin  Blume,  the  overall  editor  of  Physical  Review,  said.  “You  go  there,  there’s  a  gap,  and  then  there’s  Plum  Island.”  

There  is  general  agreement  that  the  next  neutron  magic  number  is  184.  But  that  is  still  out  of  reach  of  current  experiments.  

The  next  proton  magic  number  is  a  matter  of  disagreement.  

“That  is,  I  think,  the  basis  for  looking  in  this  region,”  Dr.  Blume  said.  “Have  you  reached  the  island  of  stability?”  

                         http://www.nytimes.com/2006/10/17/science/17heavy.html?ref=chemistry&_r=0  

Name:      

Chemistry  Literacy  -­‐  Heavy  Element  118  Chemistry  -­‐  Breed    

Directions:  Take  a  few  minutes  to  read  the  article  below  either  online  (or  on  the  back  of  this  page.)  Write  responses  to  the  statements  or  questions  below.  Cut/copy/paste  is  not  allowed  –  use  your  own  words  and  thoughts,  based  in  research  if  needed.  

Read  more:  http://www.nytimes.com/2006/10/17/science/17heavy.html?ref=chemistry  Fact-­‐finding:  List  three  facts  that  you  learned  in  this  article.    

1.  

 

2.      

3.  

 

Vocabulary:  List  and  define  three  unfamiliar  words  in  the  space  below.  

 

 

 

 

 

Implications:  What  are  your  feelings  about  this  “discovery”?  Express  your  feelings  (tactfully)  about  whether  this  is  an  advancement  of  science  or  a  bad  idea.  

                         

Example: H = .37cm Example: H = 1.31 cm Example: Li = 0.76 cm Example: H = 1.10 cm

Part 1: ATOMIC

RADIUS

Draw a circle to depict

the size of an atom of

each element using the

measurements below.

Scale: 1cm =1/2 Å

atomic

radius

1 H 0.37

2 He 0.31

3 Li 1.52

4 Be 1.12

5 B 0.85

6 C 0.77

7 N 0.75

8 O 0.73

9 F 0.72

10 Ne 0.71

11 Na 1.86

12 Mg 1.60

13 Al 1.43

14 Si 1.18

15 P 1.10

16 S 1.03

17 Cl 1.00

18 Ar 0.98

19 K 2.27

20 Ca 1.97

31 Ga 1.35

32 Ge 1.22

33 As 1.20

34 Se 1.19

35 Br 1.14

36 Kr 1.12

Part 2: IONIZATION

ENERGY

Draw an “energy bar” to

depict the energy

needed to remove one

electron.

Scale: 1cm=1kJ/mol

ionization energy

1 H 1.31

2 He 2.40

3 Li 0.52

4 Be 0.90

5 B 0.80

6 C 1.09

7 N 1.40

8 O 1.31

9 F 1.68

10 Ne 2.08

11 Na 0.50

12 Mg 0.74

13 Al 0.59

14 Si 0.79

15 P 1.06

16 S 1.00

17 Cl 1.26

18 Ar 1.52

19 K 0.42

20 Ca 0.59

31 Ga 0.58

32 Ge 0.78

33 As 1.01

34 Se 0.94

35 Br 1.14

36 Kr 1.35

Part 3: IONIC

RADIUS

Draw a circle to depict

the size of an ion of

each element.

Scale: 1cm=1/2 Å

ionic

radius

1 H -

2 He -

3 Li 0.76

4 Be 0.31

5 B 0.20

6 C -

7 N 1.46

8 O 1.40

9 F 1.33

10 Ne -

11 Na 1.02

12 Mg 0.72

13 Al 0.54

14 Si 0.41

15 P 2.12

16 S 1.84

17 Cl 1.81

18 Ar -

19 K 1.38

20 Ca 1.00

31 Ga 0.62

32 Ge 0.53

33 As 2.22

34 Se 1.98

35 Br 1.95

36 Kr -

Part 4: ELECTRO-

NEGATIVITY

Draw a bar to depict the

ability of an element’s

atoms to attract

electrons in a chemical

bond.

scale: 1cm = 1 Pauling

electro-

negativity

1 H 2.1

2 He -

3 Li 1.0

4 Be 1.5

5 B 2.0

6 C 2.5

7 N 3.0

8 O 3.5

9 F 4.0

10 Ne -

11 Na 0.9

12 Mg 1.2

13 Al 1.5

14 Si 1.8

15 P 2.1

16 S 2.5

17 Cl 3.0

18 Ar -

19 K 0.8

20 Ca 1.0

31 Ga 1.6

32 Ge 1.8

33 As 2.0

34 Se 2.4

35 Br 2.8

36 Kr -

1 1 1 3

1

2 13 14 15 16 17

2

3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18

19 20 31 32 33 34 35 36

Atomic Radius (Scale: 1 cm = ½Å)

1 18

1

2 13 14 15 16 17

2

3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18

19 20 31 32 33 34 35 36

Ionization Energy (Scale: 1 cm = 1 kJ/mol)

1 18

1

2 13 14 15 16 17

2

3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18

19 20 31 32 33 34 35 36

Ionic Radius (Scale: 1 cm = ½Å)

1 18

1

2 13 14 15 16 17

2

3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18

19 20 31 32 33 34 35 36

Electronegativity (Scale: 1 cm = 1 Pauling)

1 18

Name:      

Periodic  Trends  Summary    

Directions:  Write  “increases”  or  “decreases”  on  the  line.                                                                                      

Name:      

Love  Always,  Francium  by Becky Ratzlaff

Dear  John,  

I’m  writing  to  tell  you  that  I  can’t  marry  you—I’m  breaking  our  engagement.  I  guess  you  want  to  know  why,  so  let  me  explain.  I’ll  start  at  the  beginning.  .  .  

It  all  started  when  I  was  born  the  daughter  of  Actinium-­‐227  by  alpha  emission.  I  not  only  grew  up  unstable,  but  my  psychiatrist  recently  diagnosed  me  as  a  paranoid  schizophrenic  and  said  she  has  trouble  telling  my  20  isotopes  apart.  The  sad  truth  is  that  223Fr  (my  longest  lived  isotope)  has  a  half-­‐life  of  only  21  minutes,  after  which  I  decay  into  that  awful  223Ra!  And  my  221Fr  has  a  half-­‐life  of  only  4.8  minutes!  So  you  see,  there’s  no  use  continuing  our  relationship  when  I  won’t  be  around  long.  

I   was   a   quiet   child.  When  my   existence   was   finally   discovered   in   1939   by   Marguerite   Perey   at   the   Curie  Institute  in  Paris,  I  was  thrilled!  They  named  me  Francium  after  the  country  in  which  I  was  discovered.  They  introduced  me   to   my   sisters:   Lithium,   Sodium,   Potassium,   Rubidium,   and   Cesium.   Soon   I   learned   that,   as  members  of  the  Alkali  metal  family,  we  had  a  lot  in  common.  We  all  had  a  valence  of  one,  tarnished  in  air,  had  low  melting  points,  and  reacted  with  water.  Not  only  that,  we  generally  had  soft  crystals  and  were  commonly  found  as  halides  and  as  aluminosilicates  and  combined  vigorously  with  other  elements.  

Father  said  that  the  strong  similarity  between  my  sisters  and  me  was  the  arrangement  of  the  electrons  in  our  atoms.   But   then,   Father   always   had   an   explanation   for   everything.   I   asked  him  once  why  he   liked   Lithium  best.  He  said  he  loved  us  all  equally  and  that  I  was  only  being  my  unstable  self.  But  I  kept  bugging  him,  and  finally  he  admitted  that  he  liked  Lithium  best  because  she  was  used  in  the  treatment  of  steel  parts  and  was  making  something  of  her  life.  He  said  I  had  no  meaningful  purpose  that  he  could  see.  Then  he  looked  me  up  and  down  and  grunted  that  I  ought  to  do  something  about  my  atomic  weight.  I  ran  to  my  room  in  tears  and  looked   in   the  mirror.  My  atomic  weight  was  around  223,  more   than  anyone  else   in  my  Alkali  metal   family.  John,  I  just  can’t  bear  it!  You  saw  how  futile  my  attempts  to  diet  were.  

Sitting  in  the  Earth’s  crust  the  way  I  do  in  tiny  amounts  (never  more  than  one  ounce),  I  have  a  lot  of  time  to  think.  It  isn’t  so  bad  having  a  melting  point  of  27  °C,  and  my  changes  of  phase  add  some  excitement  to  my  life.  But  something  has  been  bothering  me.  Even  though  I  was  discovered  more  than  30  years  ago,  my  sisters  still  leave  me  out  of  everything.  The  Alkali  family  has  always  been  famous,  but  nobody  knows  the  real  me!  Why,  I  remember   that   in   “Inorganic   Chemistry,”   R.   T.   Sanderson   said,   “Relatively   little   is   known   of   this   element  except  that  a  close  resemblance  to  Cesium  has  been  recognized.”  

Cesium!  He  compared  me  with  Cesium—my  sister  who  hangs  out  in  a  mineral  called  pollucite.  No  one  would  ever  catch  a  weighable  amount  of  me  in  that  trash!  I’m  sorry-­‐there  I  go  being  unstable  again.  

Hey,   did   you   hear   that   people   are   actually   cloning   me?   It’s   true!  What   they   do   is   bombard   thorium  with  protons,  and  they’ve  got  instant  artificially  made  Francium.  Neat,  isn’t  it?  Who  knows?  Maybe  some  day,  good  old  atomic  number  87  will   find  her  niche   in   society,   and   I  will  be  accepted   for  what   I   am!  But  until   then,   I  know  we  could  never  be  right  for  each  other.  

John,   I  am  really  sorry.  Please   try   to  understand.   I  will  always   love  you  and  will  never   forget  our  half-­‐lives  together.  

Love  always  Francium  Alkali  

 

 

Name:      

Questions  

1. Write  the  nuclear  reaction  that  produced  Francium.  

 

2. How  many  different  isotopes  of  Francium  exist?  _________________  

3. Write  the  nuclear  reaction  for  Francium-­‐223  the  longest-­‐lived  isotope?  What  type  of  radiation  particle  is  produced?  _________________  

     

4. Which  country  discovered  Francium?  ___________________________  

5. Who  are  the  “sisters”  of  Francium  and  what  do  they  have  in  common?  

 

6. To  which  group/family  does  Francium  belong?  _________________________________  

7. What  period  does  Francium  belong  to?  _____________________  

8. Is  Francium  classified  as  a  metal,  nonmetal  or  metalloid?  

 

9. What  is  Francium’s:  a. Electron  configuration   ____________________________________  

b. Melting  Point       ____________________________________  

c. Atomic  Radius     ____________________________________  

d. Ionization  energy     ____________________________________  

e. Electronegativity     ____________________________________  

f. Average  atomic  mass   ____________________________________  

10. Why  is  Francium  Alkali  ending  her  relationship  with  John?  

       

Directions: Put a check in each box that applies to each term listed.

Conduct Electricity

Very Reactive

High Luster

Brittle All Solids at STP

All Gases at STP

Can be Solid, Liquid or Gas at STP

High Electro- negativity and Ionization energy

Large Atomic Radius

Form Cations

Form Anions

Metals

Nonmetals

Metalloids

Alkali Metals

Alkaline Earth Metals

Halogens

Noble Gases

Transition Metals

 

Name:      

Periodic  Table  Transfer  Task    

Background:  Walter  White  has  devised  a  plan  to  communicate  the  name  of  his  secret  project  to  his  accomplices,  which  will  tell  them  which  person  will  be  in  charge  of  the  project.    He  only  left  a  strange  set  of  clues  to  them  about  different  elements  in  the  Periodic  Table  which  will  help  them  figure  out  where  his  sinister  plot  will  be  carried  out.    As  a  member  of  the  CIA,  you  have  been  tipped  to  some  of  the  cipher  (code)  that  Walter  uses.    Also,  you  have  been  told  it  will  occur  at  a  State  Capitol  building.    Using  the  directions  below,  determined  by  your  brave,  devoted,  fearless,  genius,  awesome  chemistry  teachers,  FOIL  WALTER’S  PLOT!!!!  Determine  at  which  state’s  capitol  building  the  crime  will  be  committed,  and  therefore,  the  accomplice  who  will  be  in  charge  of  the  crime!!    Good  luck!!    

Accomplice     Location  Fred       Vermont  Agatha       Virginia  Arnold       California  Tony       New  York  Billy-­‐Bob-­‐Ray     Arkansas  Sue-­‐Ann                                    Alabama  Vivian       Florida  Blaine       Minnesota  

 Directions:  For  each  of  the  following  unknown  elements,  use  the  clues  to  determine  the  element  being  described.    Along  the  way,  please  circle  any  multiple  choices  (shown  in  bold)  and  fill  in  any  blanks  within  the  questions.    When  you  determine  the  element,  write  its  element  symbol  in  the  box  provided.  When  finished,  rearrange  the  element  symbols  to  decode  Heisenberg’s  accomplice.      Element  #1:                   Answers:    1. The  radius  decreases  when  an  atom  of  this  element  forms  an  ion.   Metal/Non-­‐metal  2. Unknown  element  has  electrons  in  four  energy  levels.     Period/Group:  ____(number)  3. Not  a  colorful  compound  or  ion  4. Has  a  higher  ionization  energy  than  potassium  

 Element  #2:    5. Contains  five  valence  electrons  in  the  ground  state       Period/Group:  ____(number)  6. Has  properties  of  metals  and  non-­‐metals         Type  of  element:  ___________    7. Has  a  higher  electronegativity  value  than  zinc    Element  #3:  8. It  is  shiny  and  malleable.             Metal/Non-­‐metal  

 9. It  forms  an  oxide  with  the  formula  X2O.         Period/Group:  ____(number)  

 10. At  STP,  it  is  the  solid  with  the  smallest  nuclear  charge  in  its  group.          

1  

2  

3    

Name:      

Element  #4:    11. Diatomic  molecule  at  STP                                Possible  elements:  __________  12. In  the  halogen  family             Period/Group:  _____(number)  13. Solid  at  STP  14. Sublimes  at  room  temperature      Element  #5:    15. Atoms  of  this  element  form  anions.           Metal/Non-­‐metal  16. Is  a  diatomic  molecule  at  STP           Possible  elements:  __________  17. Located  in  a  group  that  contains  elements  that  exist  as  all       Group:  ____  (number)  

three  phases  at  STP    18. Highest  electronegativity  in  the  group           Top/Bottom  of  group  

     Element  #6:      19. Nonconductor               Metal/Non-­‐metal    20. Monatomic  gas               Possible  Elements:  __________  21. 8  valence  electrons               Period/Group:  ____  (number)  

 22. Highest  shielding  in  its  group  for  naturally  occurring  elements    Element  #7:    23. Gains  electrons  when  forming  an  ion         Metal/Non-­‐metal  24. Smaller  atomic  radius  than  carbon           Possible  elements:  __________    25. Least  metallic  in  its  group             Top/Bottom  of  group  

 26. Diatomic  gas  at  room  temperature           Possible  elements:  __________  

 27. Has  two  allotropes  in  our  atmosphere  

                                        Combine  the  symbols  of  the  unknown  elements  to  solve  the  question:    

    _______          _______          _______          _______          _______          _______          _______  

                       1       3          5                  7                            6                                      4                                  2    

Who  will  commit  the  crime????      ___________________________________________________________  

7  

6  

5  

4  

3HULRGLF�7DEOH�5HYLHZ

�� /L��1D��5E�� &U��0R��:

�� 6Q��6L��&�� 2��6��7H

�� :KLFK�OLVW�RI�HOHPHQWV�FRQVLVWV�RI�D�PHWDO��DPHWDOORLG��DQG�D�QRQPHWDO"

�� DWRPLF�PDVV�� DWRPLF�QXPEHU

�� PRODU�PDVV�� R[LGDWLRQ�QXPEHU

�� 7KH�HOHPHQWV�RQ�WKH�3HULRGLF�7DEOH�DUH�DUUDQJHG�LQRUGHU�RI�LQFUHDVLQJ

�� %U��*D��+J�� &U��3E��;H

�� 2��6��6H�� 1��2��)

�� :KLFK�OLVW�LQFOXGHV�HOHPHQWV�ZLWK�WKH�PRVW�VLPLODUFKHPLFDO�SURSHUWLHV"

�� IHZHU�YDOHQFH�HOHFWURQV�� PRUH�YDOHQFH�HOHFWURQV�� IHZHU�HOHFWURQ�VKHOOV�� PRUH�HOHFWURQ�VKHOOV

�� &RPSDUHG�WR�WKH�DWRPV�RI�QRQPHWDOV�LQ�3HULRG���WKH�DWRPV�RI�PHWDOV�LQ�3HULRG���KDYH

�� EHU\OOLXP�� FDOFLXP

�� OLWKLXP�� PDJQHVLXP

�� :KLFK�HOHPHQW�KDV�FKHPLFDO�SURSHUWLHV�WKDW�DUHPRVW�VLPLODU�WR�WKH�FKHPLFDO�SURSHUWLHV�RI�VRGLXP"

�� $UVHQLF�KDV�DQ�DWRPLF�QXPEHU�RI������ $UVHQLF�KDV�D�PHOWLQJ�SRLQW�RI����.��� $Q�DWRP�RI�DUVHQLF�LQ�WKH�JURXQG�VWDWH�KDV�HLJKW

YDOHQFH�HOHFWURQV��� $Q�DWRP�RI�DUVHQLF�LQ�WKH�JURXQG�VWDWH�KDV�D

UDGLXV�RI�����SP�

�� :KLFK�VWDWHPHQW�LGHQWLILHV�WKH�HOHPHQW�DUVHQLF"

�� DWRPLF�QXPEHU�� PDVV�QXPEHU�� WRWDO�QXPEHU�RI�QHXWURQV�LQ�DQ�DWRP�RI�WKH

HOHPHQW�� WRWDO�QXPEHU�RI�YDOHQFH�HOHFWURQV�LQ�DQ�DWRP�RI

WKH�HOHPHQW

�� :KLFK�TXDQWLW\�LGHQWLILHV�DQ�HOHPHQW"

�� FKORULQH�� LRGLQH

�� VLOYHU�� VXOIXU

�� $W�673��ZKLFK�HOHPHQW�LV�D�JRRG�FRQGXFWRU�RIHOHFWULFLW\"

�� PHWDO�� PHWDOORLG

�� QREOH�JDV�� QRQPHWDO

�� $�VROLG�HOHPHQW�WKDW�LV�PDOOHDEOH��D�JRRG��FRQGXFWRURI�HOHFWULFLW\��DQG�UHDFWV�ZLWK�R[\JHQ�LV�FODVVLILHG�DVD

�� PDJQHVLXP�� IOXRULQH

�� JDOOLXP�� LRGLQH

��� :KLFK�HOHPHQW�LV�D�OLTXLG�DW�����.�DQG����DWPRVSKHUH"

�� FDUERQ�� JHUPDQLXP

�� VLOLFRQ�� WLQ

��� :KLFK�*URXS����HOHPHQW�LV�FODVVLILHG�DV�D�PHWDO"

�� PHWDO�� PHWDOORLG

�� QRQPHWDO�� QREOH�JDV

��� $Q�HOHPHQW�WKDW�KDV�D�ORZ�ILUVW�LRQL]DWLRQ�HQHUJ\DQG�JRRG�FRQGXFWLYLW\�RI�KHDW�DQG�HOHFWULFLW\�LVFODVVLILHG�DV�D

�� ORZ�ILUVW�LRQL]DWLRQ�HQHUJ\�DQG�ORZHOHFWURQHJDWLYLW\

�� ORZ�ILUVW�LRQL]DWLRQ�HQHUJ\�DQG�KLJKHOHFWURQHJDWLYLW\

�� KLJK�ILUVW�LRQL]DWLRQ�HQHUJ\�DQG�ORZHOHFWURQHJDWLYLW\

�� KLJK�ILUVW�LRQL]DWLRQ�HQHUJ\�DQG�KLJKHOHFWURQHJDWLYLW\

��� :KLFK�WZR�FKDUDFWHULVWLFV�DUH�DVVRFLDWHG�ZLWKPHWDOV"

�� ERURQ�DQG�FDUERQ�� R[\JHQ�DQG�VXOIXU�� DOXPLQXP�DQG�EURPLQH�� DUJRQ�DQG�VLOLFRQ

��� :KLFK�HOHPHQWV�KDYH�WKH�PRVW�VLPLODU�FKHPLFDOSURSHUWLHV"

�� PHWDO�� PHWDOORLG

�� QRQPHWDO�� QREOH�JDV

��� 7KH�HOHPHQW�VXOIXU�LV�FODVVLILHG�DV�D

�� $O �� . �� 1H �� 6

��� $W�673��ZKLFK�HOHPHQW�LV�VROLG��EULWWOH��DQG�D�SRRUFRQGXFWRU�RI�HOHFWULFLW\"

�� %H �� $O �� 6L �� &O

��� :KLFK�HOHPHQW�LV�FODVVLILHG�DV�D�QRQPHWDO"

�� FDUERQ�� PDJQHVLXP

�� QHRQ�� R[\JHQ

��� :KLFK�DWRP�LQ�WKH�JURXQG�VWDWH�KDV�D�VWDEOHHOHFWURQ�FRQILJXUDWLRQ"

�� NU\SWRQ�� FKORULQH

�� DQWLPRQ\�� PDQJDQHVH

��� :KLFK�HOHPHQW�LV�D�QREOH�JDV"

�� WLQ�� VLOLFRQ

�� OHDG�� FDUERQ

��� :KLFK�*URXS����HOHPHQW�LV�D�PHWDOORLG"

�� EURPLQH�� FHVLXP

�� IUDQFLXP�� LRGLQH

��� :KLFK�HOHPHQW�LV�D�OLTXLG�DW�673"

�� SKRVSKRUXV�� QLWURJHQ

�� ELVPXWK�� DUVHQLF

��� :KLFK�*URXS����HOHPHQW�H[LVWV�DV�GLDWRPLFPROHFXOHV�DW�673"

�� VFDQGLXP�� VHOHQLXP

�� VLOLFRQ�� VRGLXP

��� :KLFK�HOHPHQW�KDV�WKH�JUHDWHVW�GHQVLW\�DW�673"

��

��

��

��

��� :KLFK�/HZLV�HOHFWURQ�GRW�GLDJUDP�UHSUHVHQWV�DQLWURJHQ�DWRP�LQ�WKH�JURXQG�VWDWH"

��

��

��

��

��� :KLFK�/HZLV�HOHFWURQ�GRW�GLDJUDP�UHSUHVHQWV�DQDWRP�LQ�WKH�JURXQG�VWDWH�IRU�D�*URXS����HOHPHQW"

�� �� �� ��

��� :KLFK�/HZLV�HOHFWURQ�GRW�GLDJUDP�UHSUHVHQWV�DERURQ�DWRP�LQ�WKH�JURXQG�VWDWH"

�� DWRPLF�QXPEHU�� PDVV�QXPEHU�� QXPEHU�RI�HOHFWURQ�VKHOOV�� QXPEHU�RI�YDOHQFH�HOHFWURQV

��� 7KH�HOHPHQWV�LQ�*URXS���KDYH�VLPLODU�FKHPLFDOSURSHUWLHV�EHFDXVH�HDFK�DWRP�RI�WKHVH�HOHPHQWVKDV�WKH�VDPH

�� FRORUOHVV�LRQV�LQ�VROXWLRQ��PXOWLSOH�SRVLWLYHR[LGDWLRQ�VWDWHV

�� FRORUOHVV�LRQV�LQ�VROXWLRQ��PXOWLSOH�QHJDWLYHR[LGDWLRQ�VWDWHV

�� FRORUHG�LRQV�LQ�VROXWLRQ��PXOWLSOH�SRVLWLYHR[LGDWLRQ�VWDWHV

�� FRORUHG�LRQV�LQ�VROXWLRQ��PXOWLSOH�QHJDWLYHR[LGDWLRQ�VWDWHV

��� :KLFK�VHW�RI�SURSHUWLHV�LV�PRVW�FKDUDFWHULVWLF�RIWUDQVLWLRQ�HOHPHQWV"

�� SRWDVVLXP�� UXELGLXP

�� IUDQFLXP�� FHVLXP

��� :KLFK�DWRP�KDV�WKH�ODUJHVW�DWRPLF�UDGLXV"

����

����

��� :KLFK�LRQ�KDV�WKH�VPDOOHVW�UDGLXV"

�� DWRPLF�PDVV�� DWRPLF�UDGLXV�� HOHFWURQHJDWLYLW\�� ILUVW�LRQL]DWLRQ�HQHUJ\

��� $V�WKH�HOHPHQWV�LV�3HULRG���DUH�FRQVLGHUHG�LQ�RUGHURI�LQFUHDVLQJ�DWRPLF�QXPEHU��WKHUH�LV�D�JHQHUDO�GHFUHDVH�LQ

�� QRQPHWDOOLF�SURSHUWLHV�DQG�DWRPLF�UDGLXV�� QRQPHWDOOLF�SURSHUWLHV�DQG�LRQL]DWLRQ�HQHUJ\�� PHWDOOLF�SURSHUWLHV�DQG�DWRPLF�UDGLXV�� PHWDOOLF�SURSHUWLHV�DQG�LRQL]DWLRQ�HQHUJ\

��� :KLFK�FKDUDFWHULVWLFV�ERWK�JHQHUDOO\�GHFUHDVH�ZKHQ�WKH�HOHPHQWV�LQ�3HULRG���RQ�WKH�3HULRGLF7DEOH�DUH�FRQVLGHUHG�LQ�RUGHU�IURP�OHIW�WR�ULJKW"

�� DOXPLQXP�� FKORULQH

�� PDJQHVLXP�� VRGLXP

��� $Q�LRQ�RI�ZKLFK�HOHPHQW�KDV�D�ODUJHU�UDGLXV�WKDQDQ�DWRP�RI�WKH�VDPH�HOHPHQW"

�� )± �� &O±� �� .� �� &D��

��� :KLFK�RI�WKH�IROORZLQJ�LRQV�KDV�WKH�VPDOOHVW�UDGLXV"

�� 7KH�ILUVW�LRQL]DWLRQ�HQHUJ\�GHFUHDVHV�DQG�WKHHOHFWURQHJDWLYLW\�GHFUHDVHV�

�� 7KH�ILUVW�LRQL]DWLRQ�HQHUJ\�LQFUHDVHV�DQG�WKHHOHFWURQHJDWLYLW\�LQFUHDVHV�

�� 7KH�ILUVW�LRQL]DWLRQ�HQHUJ\�GHFUHDVHV�DQG�WKHHOHFWURQHJDWLYLW\�LQFUHDVHV�

�� 7KH�ILUVW�LRQL]DWLRQ�HQHUJ\�LQFUHDVHV�DQG�WKHHOHFWURQHJDWLYLW\�GHFUHDVHV�

��� :KLFK�JHQHUDO�WUHQGV�LQ�ILUVW�LRQL]DWLRQ�HQHUJ\�DQGHOHFWURQHJDWLYLW\�YDOXHV�DUH�GHPRQVWUDWHG�E\*URXS����HOHPHQWV�DV�WKH\�DUH�FRQVLGHUHG�LQ�RUGHUIURP�WRS�WR�ERWWRP"

�� FKORULQH�� QLWURJHQ

�� IOXRULQH�� R[\JHQ

��� :KLFK�HOHPHQW�KDV�DWRPV�ZLWK�WKH�VWURQJHVWDWWUDFWLRQ�IRU�HOHFWURQV�LQ�D�FKHPLFDO�ERQG"

�� D�ERURQ�DWRP�� D�FDOFLXP�DWRP

�� D�IOXRULQH�DWRP�� D�QLWURJHQ�DWRP

��� :KLFK�DWRP�KDV�WKH�ZHDNHVW�DWWUDFWLRQ�IRUHOHFWURQV�LQ�D�FKHPLFDO�ERQG"

�� D�GHFUHDVH�LQ�DWRPLF�UDGLXV�� D�GHFUHDVH�LQ�HOHFWURQHJDWLYLW\�� DQ�LQFUHDVH�LQ�ILUVW�LRQL]DWLRQ�HQHUJ\�� DQ�LQFUHDVH�LQ�QRQPHWDOOLF�EHKDYLRU

��� :KLFK�JHQHUDO�WUHQG�LV�GHPRQVWUDWHG�E\�WKH�*URXS���HOHPHQWV�DV�WKH\�DUH�FRQVLGHUHG�LQ�RUGHU�IURPWRS�WR�ERWWRP�RQ�WKH�3HULRGLF�7DEOH"

�� OLWKLXP�DWRP�� SRWDVVLXP�DWRP

�� UXELGLXP�DWRP�� VRGLXP�DWRP

��� :KLFK�DWRP�LQ�WKH�JURXQG�VWDWH�UHTXLUHV�WKH�OHDVW�DPRXQW�RI�HQHUJ\�WR�UHPRYH�LWV�YDOHQFH�HOHFWURQ"

�� *URXS����3HULRG���� *URXS����3HULRG��

�� *URXS����3HULRG���� *URXS����3HULRG�

��� ,Q�WKH�JURXQG�VWDWH��HDFK�DWRP�RI�DQ�HOHPHQW�KDVWZR�YDOHQFH�HOHFWURQV��7KLV�HOHPHQW�KDV�D�ORZHUILUVW�LRQL]DWLRQ�HQHUJ\�WKDQ�FDOFLXP��:KHUH�LV�WKLVHOHPHQW�ORFDWHG�RQ�WKH�3HULRGLF�7DEOH"

�� DWRPLF�UDGLXV�� ILUVW�LRQL]DWLRQ�HQHUJ\�� WRWDO�QXPEHU�RI�SURWRQV�� R[LGDWLRQ�VWDWH

��� 6RGLXP�DWRPV��SRWDVVLXP�DWRPV��DQG�FHVLXPDWRPV�KDYH�WKH�VDPH

%DVH�\RXU�DQVZHUV�WR�TXHVWLRQV����WKURXJK����RQ�WKH�LQIRUPDWLRQ�EHORZ�DQG�RQ�\RXU�NQRZOHGJH�RI�FKHPLVWU\�

�����7KHUH�DUH�VL[�HOHPHQWV�LQ�*URXS����RQ�WKH�3HULRGLF�7DEOH��2QH�RI�WKHVH�HOHPHQWV�KDV�WKH�V\PERO�8XT�ZKLFK�LV�D�WHPSRUDU\��V\VWHPDWLF�V\PERO��7KLV�HOHPHQW�LV�QRZ�NQRZQ�DV�IOHURYLXP���� 6WDWH�WKH�H[SHFWHG�QXPEHU�RI�YDOHQFH�HOHFWURQV�LQ�DQ�DWRP�RI�WKH�HOHPHQW�IOHURYLXP�LQ�WKH�JURXQG�VWDWH�

��� ([SODLQ��LQ�WHUPV�RI�HOHFWURQ�VKHOOV��ZK\�HDFK�VXFFHVVLYH�HOHPHQW�LQ�*URXS����KDV�D�ODUJHU�DWRPLFUDGLXV��DV�WKH�HOHPHQWV�DUH�FRQVLGHUHG�LQ�RUGHU�RI�LQFUHDVLQJ�DWRPLF�QXPEHU�

��� ,GHQWLI\�DQ�HOHPHQW�LQ�*URXS����WKDW�LV�FODVVLILHG�DV�D�PHWDOORLG�

%DVH�\RXU�DQVZHUV�WR�TXHVWLRQV����WKURXJK����RQ�WKH�LQIRUPDWLRQ�EHORZ�DQG�RQ�\RXU�NQRZOHGJH�RI�FKHPLVWU\�

�����%HIRUH�DWRPLF�QXPEHUV�ZHUH�NQRZQ��0HQGHOHHY�GHYHORSHG�D�FODVVLILFDWLRQ�V\VWHP�IRU�WKH����HOHPHQWVNQRZQ�LQ�������XVLQJ�R[LGH�IRUPXODV�DQG�DWRPLF�PDVVHV��+H�XVHG�DQ�5�LQ�WKH�R[LGH�IRUPXODV�WR�UHSUHVHQWDQ\�HOHPHQW�LQ�HDFK�JURXS��7KH�DWRPLF�PDVV�ZDV�OLVWHG�LQ�SDUHQWKHVHV�DIWHU�WKH�V\PERO�RI�HDFK�HOHPHQW�$�PRGLILHG�YHUVLRQ�RI�0HQGHOHHYV�FODVVLILFDWLRQ�V\VWHP�LV�VKRZQ�LQ�WKH�WDEOH�EHORZ�

��� ([SODLQ���LQ�WHUPV�RI�FKHPLFDO�UHDFWLYLW\��ZK\�WKH�HOHPHQWV�LQ�*URXS����RQ�WKH�PRGHUQ�3HULRGLF�7DEOHZHUH�QRW�LGHQWLILHG�E\�0HQGHOHHY�DW�WKDW�WLPH�

��� %DVHG�RQ�7DEOH�-��LGHQWLI\�WKH�OHDVW�DFWLYH�PHWDO�OLVWHG�LQ�*URXS�,�RQ�0HQGHOHHYV�WDEOH�

��� %DVHG�RQ�0HQGHOHHYV�R[LGH�IRUPXOD��ZKDW�LV�WKH�QXPEHU�RI�HOHFWURQV�ORVW�E\�HDFK�DWRP�RI�WKH�HOHPHQWVLQ�*URXS�,,,"

��� ,GHQWLI\�RQH�FKDUDFWHULVWLF�XVHG�E\�0HQGHOHHY�WR�GHYHORS�KLV�FODVVLILFDWLRQ�V\VWHP�RI�WKH�HOHPHQWV�

%DVH�\RXU�DQVZHUV�WR�TXHVWLRQV����DQG����RQ�WKH�LQIRUPDWLRQ�EHORZ�

�����7KH�DWRPLF�QXPEHU�DQG�FRUUHVSRQGLQJ�DWRPLF�UDGLXV�RI�WKH�3HULRG���HOHPHQWV�DUH�VKRZQ�LQ�WKH�GDWD�WDEOHEHORZ�

��� ([SODLQ��LQ�WHUPV�RI�HOHFWURQV��WKH�FKDQJH�LQ�UDGLXV�ZKHQ�D�VRGLXP�DWRP�EHFRPHV�D�VRGLXP�LRQ�

��� 6WDWH�WKH�JHQHUDO�UHODWLRQVKLS�EHWZHHQ�WKH�DWRPLF�QXPEHU�DQG�WKH�DWRPLF�UDGLXV�IRU�WKH�3HULRG��HOHPHQWV�

��� 'UDZ�D�/HZLV�HOHFWURQ�GRW�GLDJUDP�IRU�DQ�DWRP�RI�VLOLFRQ�

%DVH�\RXU�DQVZHUV�WR�TXHVWLRQV����WKURXJK����RQ�WKH�LQIRUPDWLRQ�EHORZ�������������7KH�DWRPLF�UDGLXV�DQG�WKH�LRQLF�UDGLXV�IRU�VRPH�*URXS���DQG�VRPH�*URXS����HOHPHQWVDUH�JLYHQ�LQ�WKH�WDEOHV�EHORZ�

��� 6WDWH�WKH�UHODWLRQVKLS�EHWZHHQ�DWRPLF�QXPEHU�DQG�ILUVW�LRQL]DWLRQ�HQHUJ\�DV�WKH�HOHPHQWV�LQ�*URXS���DUHFRQVLGHUHG�LQ�RUGHU�RI�LQFUHDVLQJ�DWRPLF�QXPEHU�

��� ([SODLQ��LQ�WHUPV�RI�HOHFWURQ�VKHOOV��ZK\�WKH�UDGLXV�RI�D�.��LRQ�LV�JUHDWHU�WKDQ�WKH�UDGLXV�RI�DQ�1D��LRQ�

��� (VWLPDWH�WKH�UDGLXV�RI�D�%U±�LRQ�

%DVH�\RXU�DQVZHUV�WR�TXHVWLRQV����WKURXJK����RQ�WKH�LQIRUPDWLRQ�EHORZ�7KH�LRQLF�UDGLL�RI�VRPH�*URXS���HOHPHQWV�DUH�JLYHQ�LQ�WKH�WDEOH�EHORZ�

��� ([SODLQ��LQ�WHUPV�RI�HOHFWURQV��ZK\�WKH�LRQLF�UDGLXV�RI�D�*URXS���HOHPHQW�LV�VPDOOHU�WKDQ�LWV�DWRPLFUDGLXV�

��� 6WDWH�WKH�WUHQG�LQ�LRQLF�UDGLXV�DV�WKH�HOHPHQWV�LQ�*URXS���DUH�FRQVLGHUHG�LQ�RUGHU�RI�LQFUHDVLQJ�DWRPLFQXPEHU�

��� (VWLPDWH�WKH�LRQLF�UDGLXV�RI�VWURQWLXP�

��� 2Q�WKH�VDPH�JULG��SORW�WKH�GDWD�IURP�WKH�GDWD�WDEOH��&LUFOH�DQG�FRQQHFW�WKH�SRLQWV�

��� 2Q�WKH�JULG��PDUN�DQ�DSSURSULDWH�VFDOH�RQ�WKH�D[LV�ODEHOHG��,RQLF�5DGLXV��SP���

��� %DVH�\RXU�DQVZHU�WR�WKH�IROORZLQJ�TXHVWLRQ�RQ�WKH�LQIRUPDWLRQ�EHORZ�

,Q�WKH�VSDFH�EHORZ��GUDZ�D�/HZLV�HOHFWURQ�GRW�GLDJUDP�IRU�DQ�DWRP�RI�VXOIXU����