n eutrinos options at cern

48
GDR NEUTRINO - SESSION 2009 27-28 April, 2009 - LPNHE N N eutrinos eutrinos options options at CERN at CERN . Garoby – 27/04/2009

Upload: amandla

Post on 19-Jan-2016

27 views

Category:

Documents


0 download

DESCRIPTION

N eutrinos options at CERN. R. Garoby – 27/04/2009. OUTLINE. Context: plans for future LHC injectors Potential neutrino options 2.1 “Conventional” n beams: CNGS SPS with the new injectors Low energy n “Super-beam” 2.2 Neutrino Factory 2.3 Beta beams 3.Summary. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

NNeutrinos optionseutrinos options

at CERNat CERN

R. Garoby – 27/04/2009

Page 2: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/20092

OUTLINEOUTLINE

1.1. Context: plans for future LHC injectorsContext: plans for future LHC injectors

2.2. Potential neutrino optionsPotential neutrino options2.1 “Conventional” 2.1 “Conventional” beams: beams:

- CNGSCNGS- SPS with the new injectorsSPS with the new injectors- Low energy Low energy “Super-beam” “Super-beam”

2.2 Neutrino Factory2.2 Neutrino Factory2.3 Beta beams2.3 Beta beams

3.3. SummarySummary

Page 3: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/20093

Plans for future LHC injectorsPlans for future LHC injectors

Page 4: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/20094

MotivationMotivation

parameters icrelativist classical :

raccelerato theof radiusmean :

emittances e transversnormalized :

nchprotons/bu ofnumber :with

,

2,

R

N

RNQ

YX

b

YX

bSC

1. Reliability The present accelerators are getting old (PS is 48 years old !) and they operate far beyond their initial design parameters

need for new accelerators designed for the needs of SLHCneed for new accelerators designed for the needs of SLHC

2. Performance Brightness N/* of the beam in LHC must be increased beyond the capability of the presentinjectors to allow for phase 2 of the LHC upgrade.[Excessive incoherent space charge tune spreadsQSC at injection in the PSB and PS].

need to increase the injection energy in the synchrotronsneed to increase the injection energy in the synchrotrons• Increase injection energy in the PSB from 50 to 160 MeV kinetic

• Increase injection energy in the SPS from 25 to 50 GeV kinetic

• Design the PS successor (PS2) with an acceptable space charge effect for the maximum beam envisaged for sLHC => injection energy of 4 GeV.

Page 5: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/20095

DescriptionDescription

PSB

SPS SPS+

Linac4

(LP)SPL

PS

LHC / SLHC DLHC

Out

put e

nerg

y

160 MeV

1.4 GeV4 GeV

26 GeV50 GeV

450 GeV1 TeV

7 TeV~ 14 TeV

Linac250 MeV

LP-SPL: Low Power - Superconducting Proton Linac (4-5 GeV)

PS2: High Energy PS(~ 5 to 50 GeV – 0.3 Hz)

SPS+: Superconducting SPS(50 to1000 GeV)

sLHC: “Super-luminosity” LHC(up to 1035 cm-2s-1)

DLHC: “Double energy” LHC(1 to ~14 TeV)

Proton flux / Beam power

PS2

Page 6: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/20096

PS2 parametersPS2 parametersPS2 goals:• to provide the beam brightness required by all sLHC options• to improve SPS operation in fixed target mode

Reason Physical parameter Value Space charge PS2 Injection energy (kinetic) 4 GeV SPS improvement Ejection energy (kinetic) 50 GeV LHC Transverse normalized 1 sigma emittances at

ejection for LHC 3 mm.mrad

LHC Longitudinal emittance/bunch with 25 ns bunch spacing at ejection

0.35 eVs

2.2 ultimate brightness for LHC (includes 10% loss)

Nb of protons / bunch with 25 ns bunch spacing at ejection for LHC (total 168 bunches)

41011 (6.71013)

Flux for SPS / PS2 fixed target physics

Nb of protons / bunch with 25 ns bunch spacing (total)

61011 (~11014)

Possible bunch spacings in LHC (25, 50 & 75 ns)

Size (ratio PS2/SPS) 15/77 Circumference 1346.4 m hRF for 25 ns (resp. 50 or 75 ns) bunch spacing 180 (resp. 90 or 60)

Flux for SPS / PS2 fixed target physics + LHC filling time

Cycling period to 50 GeV (case of no injection flat porch)

2.4 s

Page 7: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/20097

PS2 injectorPS2 injector

Reason Physical parameter Value Space charge Injection energy (kinetic) 4 GeV Twice the ultimate brightness + 20 % margin for beam loss

Nb of protons per PS2 cycle for LHC 6.71013

SPS / PS2 fixed target physics Nb of protons per PS2 cycle for PS2 / SPS fixed target physics

1.11014

Requirements of PS2 on its injector:

Page 8: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/20098

Why an SPL?Why an SPL?

• An H- linac combined with charge exchange injection in the following synchrotron is a proven solution for reliably reaching high beam brightness,

• Superconducting accelerating structures allow for reaching 4 GeV with a single accelerator (minimum beam loss/irradiation + maximum reliability),

• An SPL provides a large potential of extension to adapt to future needs. Among the identified possibilities:– Radioactive ion beam facility (4 MW at ~ 2.5 GeV)– Proton driver for a neutrino factory (4 MW at 5 GeV) [design available]– e+/e- acceleration to ~20 GeV (using recirculation in the =1 part of

the SPL) for LHeC [preliminary study in progress]

• Large synergy with other projects (ESS, ADS, EURISOL, SNS…) and access to EU support for R & D.

Page 9: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/20099

Implementation of the new injectors: Stage 1 (1/2)Implementation of the new injectors: Stage 1 (1/2)LINAC4

Ion species H-

Output kinetic energy 160 MeV

Bunch frequency 352.2 MHz

Max. repetition rate 1.1 (2) Hz

Beam pulse duration 0.4 (1.2) ms

Chopping factor (beam on) 62%

Source current 80 mA

RFQ output current 70 mA

Linac current 64 mA

Average current during beam pulse 40 mA

Beam power 5.1 kW

Particles / pulse 1014

Beam characteristics

HH- - sourcesource RFQRFQ choppechopperr

DTLDTL CCDTLCCDTL PIMSPIMS

3 MeV 50 MeV 102 MeV

352.2 MHz

160 MeV

Layout

Page 10: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200910

Implementation of the new injectors: Stage 1 (2/2)Implementation of the new injectors: Stage 1 (2/2)

Milestones

End CE works: December 2010

Infrastructure: 2011

Installation:2011-2012

Commissioning: 2012-2013

Modifications PSB: shut-down 2013/14

Beam from PSB: 1rst of April 2014

Page 11: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200911

Implementation of the new injectors: Stage 2 (1/4)Implementation of the new injectors: Stage 2 (1/4)LP-SPL + PS2

HH- - sourcesource RFQRFQ choppchopperer DTLDTL CCDTLCCDTL PIMSPIMS

3 MeV 50 MeV 102 MeV

352.2 MHz

β=0.6β=0.655

β=0.9β=0.922

643 MeV 4 GeV

704.4 MHz

160 MeV

Linac4 (160 MeV) SC-linac (4 GeV)

Kinetic energy (GeV) 4

Beam power at 4 GeV (MW) 0.12

Rep. period (s) 0.6

Protons/pulse (x 1014) 1.1

Average pulse current (mA) 20

Pulse duration (ms) 0.9

LP-SPL beam characteristics

Length: 470 m

Page 12: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200912

Implementation of the new injectors: Stage 2 (2/4)Implementation of the new injectors: Stage 2 (2/4)LP-SPL + PS2

Construction of LP-SPL and PS2 will not interfere with the regular operation of Linac4 + PSB for physics.

Similarly, beam commissioning of LP-SPL and PS2 will take place without interference with physics.

First milestones Project proposal: 2011- 2012 Project start: January 2013

Critical path: Design

Study & Civil Engineering! DRAFT

Page 13: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200913

Implementation of the new injectors: Stage 2 (3/4)Implementation of the new injectors: Stage 2 (3/4)Site layoutSPS

PS2

SPL

Linac4

PS

ISOLDE

Page 14: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200914

Implementation of the new injectors: Stage 2 (4/4)Implementation of the new injectors: Stage 2 (4/4)

Page 15: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200915

Implementation of the new injectors: Stage 3 (1/2)Implementation of the new injectors: Stage 3 (1/2)HP-SPL

HH- - sourcesource RFQRFQ chopperchopper DTLDTL CCDTLCCDTL PIMSPIMS

3 MeV 50 MeV 102 MeV

352.2 MHz

β=0.65β=0.65 β=1.0β=1.0

643 MeV 5 GeV

704.4 MHz

160 MeV

Linac4 (160 MeV) SC-linac (5 GeV)

Option 1 Option 2

Energy (GeV) 2.5 or 5 2.5 and 5

Beam power (MW) >2 MW (2.5 GeV)

or

>4 MW (5 GeV)

4 MW (2.5 GeV)

and

4 MW (5 GeV)

Rep. frequency (Hz) 50 50

Protons/pulse (x 1014) 1.1 2 (2.5 GeV) + 1 (5 GeV)

Av. Pulse current (mA) 20 40

Pulse duration (ms) 0.9 0.8 (2.5 GeV) + 0.4 (5 GeV)

HP-SPL beam characteristics

Page 16: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200916

Implementation of the new injectors: Stage 3 (2/2)Implementation of the new injectors: Stage 3 (2/2)HP-SPL

The upgrade from LP-SPL to HP-SPL will depend upon the approval of major new physics programmes for Radioactive Ion beams (EURISOL-type facility) and/or for neutrinos (Neutrino factory).

Staged hardware upgrade during shutdowns

Earliest year of operation: >2020

Page 17: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200917

Potential neutrino optionsPotential neutrino options

Page 18: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200918

CONVENTIONAL CONVENTIONAL BEAMS: CNGS (1/2) BEAMS: CNGS (1/2)

CERN

Gran Sasso

• From SPS: 400 GeV/c• Cycle length: 6 s• Extractions:

– 2 separated by 50ms• Pulse length: 10.5s• Beam intensity:

– 2x 2.4 · 1013 ppp• 0.5 mm• Beam performance:

– 4.5· 1019 pot/year

Proton beam characteristics

732 km baseline– From CERN to Gran Sasso (Italy) [Elevation of 5.9°]– Far detectors:

OPERA (1.21 kt), Icarus (600 t)Commissioned 2006Operational since 2007

from E. Gschwendtner

Page 19: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200919

CONVENTIONAL CONVENTIONAL BEAMS: CNGS (2/2) BEAMS: CNGS (2/2)

43.4m100m

1095m 18m 5m 5m67m

2.7m

TBID

Air cooled graphite target magazine– 4 in situ spares– 2.7 interaction lengths– Target table movable horizontally/vertically for alignment

• TBID multiplicity detector• 2 horns (horn and reflector)

– Water cooled, pulsed with 10ms half-sine wave pulse of up to 150/180kA, 0.3Hz, remote polarity change possible

• Decay pipe: – 1000m, diameter 2.45m, 1mbar vacuum

• Hadron absorber: – Absorbs 100kW of protons and other hadrons

• 2 muon monitor stations: muon fluxes and profiles

p + C (interactions) , K+

(decay in flight)

from E. Gschwendtner

Page 20: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200920

CONVENTIONAL CONVENTIONAL BEAMS: SPS with new injectors (1/3) BEAMS: SPS with new injectors (1/3)from M. Meddahi

Page 21: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200921

CONVENTIONAL CONVENTIONAL BEAMS: SPS with new injectors (2/3) BEAMS: SPS with new injectors (2/3)fromM. Meddahi

Page 22: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200922

CONVENTIONAL CONVENTIONAL BEAMS: SPS with new injectors (3/3) BEAMS: SPS with new injectors (3/3)

Performance range: 2 – 4 x flux for CNGS

fromM. Meddahi

Page 23: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200923

FACTORY: SPL-based proton driver (1/4)FACTORY: SPL-based proton driver (1/4)

An HP-SPL based 5 GeV – 4 MW proton driver has been designed [HP-SPL + 2 fixed energy rings (accumulator & compressor)]

CERN-AB-2008-060 BI

Feasibility Study of Accumulator and Compressor for the 6-bunches SPL based Proton Driver

M. Aiba

Table 1: Requirements for the neutrino factory proton driver. Taken from the summary of 3rd ISS [4]. * Maximum bunch spacing ~50/(Nb-1) for the number of bunches Nb >2.

Parameters Values

(basic/range) Unit

Kinetic energy 10 / 5-15 GeV Burst repetition rate 50 / - Hz Number of bunches per burst 4 / 1-6 Bunch spacing 16 / 0.6-16 * s Total duration of the burst ~50 / 40-60 s Bunch length 2 / 1-3 ns

from M. Aiba

Page 24: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200924

Compressor[120 ns bunch -V(h=3) = 4 MV]

Target[2 ns bunches

– 5 times]

FACTORY: SPL-based proton driver (2/4)FACTORY: SPL-based proton driver (2/4)

Accumulation Duration = 400 s

Compression t = 0 s

t = 12 s

t = 24 s

t = 36 s

etc. until t = 84 s

Accumulator[120 ns pulses

-95 ns gaps]

SPL beam[42 bunches -

33 gaps]

Page 25: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200925

FACTORY: SPL-based proton driver (3/4)FACTORY: SPL-based proton driver (3/4)

-40 -20 0 20 40-2

-1

0

1

2

x' (

mra

d)

x (mm)

Injection Rotated

-10 -5 0 5 10-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6 Injection Rotated

y' (

mra

d)

y (mm)

-40 -20 0 20 40-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15 Injection Rotated

dE (

GeV

)

RF phase/3 (deg.)

-3 -2 -1 0 1 2 30

5

10

15

Cou

nts/

bin

(%, b

in=

0.2

deg)

RF phase/3 (deg)

Rotated=1.98 ns

from M. Aiba

Page 26: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200926

FACTORY: SPL-based proton driver (4/4)FACTORY: SPL-based proton driver (4/4)

SPL for proton driver Output beam Parameters Values Parameters Values

Kinetic beam energy 5 GeV Kinetic beam energy 5 GeV Repetition rate 50 Hz Repetition rate 50 Hz Average current during the burst 40 mA No. of bunches per cycle 6 Beam power 4 MW Bunch length (r.m.s.) ~2 ns Bunch spacing ~12 s

Transverse emittance (r.m.s., physical) 3 mm-mrad

Accumulator Compressor Parameters Values Parameters Values

Circumference 318.5 m Circumference 314.2 m Transition gamma 6.33 Transition gamma 2.3 RF voltage - RF voltage 4 MV Harmonics number - Harmonic number 3 No. of arc cells 24 No. of arc cells 6 Super periodicity 2 Super periodicity 2 Nominal transverse tune 7.77/ 7.67 Nominal transverse tune 10.79/5.77 No. of turns for accum. 400 No. of turns for comp. 36 Maximum no. of bunches 6 Maximum no. of bunches 3

Main quadrupole Bore radius Field gradient Magnetic length

56 mm 5.5 T/m 1.2 m

Main quadrupole Bore radius Field gradient Magnetic length

148 mm 7.1 T/m 1.9 m

Main bending Full gap Full width Field stength Magnetic length

103 mm 162 mm

1.7 T 1.5 m

Main bending Full gap Full width Field strength Magnetic length

125 mm 379 mm

5.1 T 3 m

from M. Aiba

Only the accumulator would be needed for

a low energy superbeam

Page 27: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200927

=100

BEAM FACILITY: PrincipleBEAM FACILITY: Principle

Aim: production of (anti-)neutrino beams from the beta decay of radio-active ions circulating in a storage ring– Similar concept to the neutrino factory, but parent particle is a beta-

active isotope instead of a muon.Beta-decay at rest

– spectrum well known from electron spectrum– Reaction energy Q typically of a few MeV

Accelerate parent ion to relativistic max

– Boosted neutrino energy spectrum: E 2Q– Forward focusing of neutrinos: 1/

Pure electron (anti-)neutrino beam!– Depending on +- or - - decay we get a neutrino or anti-neutrino– Two different parent ions for neutrino and anti-neutrino beams

Physics applications of a beta-beam– Primarily neutrino oscillation physics and CP-violation– Cross-sections of neutrino-nucleus interaction

Aim: production of (anti-) beams from the decay of radio-active ions circulating in a storage ring

• Similar concept to the factory, but parent particle is a -active isotope instead of a .

Beta-decay at rest• spectrum well known from electron spectrum• Reaction energy Q typically of a few MeV

Accelerate parent ion to relativistic max

• Boosted energy spectrum: E 2Q• Forward focusing of : 1/

Pure electron (anti-) beam!• Depending on +- or - - decay we get a or anti-• Two different parent ions for and anti- beams

Physics applications of a beta-beam• Primarily oscillation physics and CP-violation• Cross-sections of -nucleus interaction

from E. Wildner

Page 28: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200928

BEAM FACILITY: EURISOL scenarioBEAM FACILITY: EURISOL scenarioBased on CERN boundariesIon choice: 6He and 18NeBased on existing technology and machines

– Ion production through ISOL technique– Bunching and first acceleration: ECR, linac– Rapid cycling synchrotron– Use of existing machines: PS and SPS

Relativistic gamma=100 for both ions– SPS allows maximum of 150 (6He) or 250 (18Ne)– Gamma choice optimized for physics reach

Opportunity to share a Mton Water Cherenkov detector with a CERN super-beam, proton decay studies and a neutrino observatory

Achieve an annual neutrino rate of – 2.9*1018 anti-neutrinos from 6He– 1.1 1018 neutrinos from 18Ne

The EURISOL scenario will serve as reference for further studies and developments: Within Euro we will study 8Li and 8B

top-down approach

from E. Wildner

Page 29: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200929

BEAM FACILITY: Ions production schemes (1/2)BEAM FACILITY: Ions production schemes (1/2)

ISOL method at 1-2 GeV (200 kW)• > 1 1013 6He per second• < 8 1011 18Ne per second• Studied within EURISOL

Direct production• > 1 1013 (?) 6He per second• 1 1013 18Ne per second• Studied at LLN, Soreq, WI and GANIL

Production ring• 1014 (?) 8Li • > 1013 (?) 8B• Will be studied within EURO-

Courtesy M. Lindroos

Aim:He 2.9 1018 (2.0 1013/s) Ne 1.1 1018 (2.0 1013/s)

from E. Wildner

Page 30: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200930

BEAM FACILITY: Ions production schemes (2/2)BEAM FACILITY: Ions production schemes (2/2)

Courtesy M. Lindroos

from E. Wildner

Page 31: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200931

SummarySummary

Page 32: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200932

(1/2)(1/2)

• There has been significant progress during the past years in the definition of CERN future proton accelerators for the needs of LHC

• The possibility to upgrade to high beam power has been studied and kept compatible with the proposals

HOWEVER

• Schedule is continuously shifting (level of resources + better understanding of Civil Engineering needs…)

• Numerous issues deserve special investigation to prepare for multi-MW proton drivers (Beam dynamics and hardware design for the accelerators, Design of target and target area…)

• The possibility to upgrade to high beam power will have a cost: approval by the CERN Council cannot be taken as granted.

Page 33: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200933

(2/2)(2/2)

MILESTONES

• 2009: “Definition of the CERN scientific strategy”• 10-13 May 2009: workshop on New Opportunities in the Physics

Landscape at CERN• September 2009: workshop on neutrino physics (organized by a working

group of the CERN SPC)

• 2012: “Authorization of the new projects”• June 2012: Council decision (the whole planning is locked on the starting

date)

If the case for a high power SPL is strong, it would be ideal to immediately implement it.

If the high power option is considered of too low interest, the investment required to implement it later can be rejected.

• End of 2010’s: “Start of commissioning of sLHC”

Page 34: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

Page 35: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200935

SPARE SLIDESSPARE SLIDES

Page 36: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200936

PIMS

A 70 m long transfer line connects to the existing line Linac2 - PS Booster

RFQ DTL CCDTL PIMS Output energy 3 50 102 160 MeV Frequency 352 352 352 352 MHz No. of resonators 1 3 7 12 Gradient E0 - 3.2 2.8-3.9 4.0 MV/m Max. field 1.95 1.6 1.7 1.8 Kilp. RF power 0.5 4.7 6.4 11.9 MW No. of klystrons 1 1+2 7 4+4 Length 6 18.7 25.2 21.5 m

Linac4 accelerating structuresLinac4 accelerating structuresLinac4 accelerates H- ions up to 160 MeV energy:

in about 80 m length

using 4 different accelerating structures, all at 352 MHz

the Radio-Frequency power is produced by 19 klystrons

focusing of the beam is provided by 111 Permanent Magnet Quadrupoles and 33 Electromagnetic Quadrupoles

Page 37: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200937

Linac4 civil engineeringLinac4 civil engineering

Linac4 tunnel

Linac4-Linac2 transfer line

Equipment building

Access building

Low-energy injector

ground level

Page 38: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200938

Equipment Hall (Bld. 400)Equipment Hall (Bld. 400)

Page 39: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200939

700mm

RF

Services Généraux

Sécurité

Linac4 tunnel cross-sectionLinac4 tunnel cross-section

Final position of cable trays:

Page 40: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200940

REFERENCESREFERENCES- SPL -- SPL -

Page 41: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200941

http://cdsweb.cern.ch/record/1136901/files/CERN-AB-2008-067.pdf

Page 42: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200942

704 MHz 1408 MHz 352 MHz (spoke) + 1408 MHz

length 439 m +14% +10%

Ncavities 239 +16% +12%

Nβ-families 2 3 2+1

tr. beam loss - - -

jitter medium medium medium

ε-growth (x/y/z) 5.6/8.2/6.8 6.3/7.8/12.1 1.5/5.3/2.5

trans. beam loading - - -

BBU (HOM) IBBU,704 1/(8..128) higher/lower

trapped modes normal risk 2..4 higher risk ?/higher

SC gradients - - -

field control more complex

Comparison of frequencies (1/2)Comparison of frequencies (1/2)

Page 43: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200943

704 MHz 1408 MHz 352 MHz (spoke) + 1408 MHz

cryo-modules ~ ILC ~ ILC2 different

types

cooling power @4.5 K 15.3 kW 15.5 kW ?

klystronscomfortable:

MBKdifficult existing/difficult

RF power coupler feasible feasible feasible

RF power density limit (distribution) ok problematic

bulky/problematic

overall power consumption

(RF+cryo, nom. SPL)28 MW -30% ?

power converter more bulkysaves tunnel

space-

synergy with ESS yes no no

Comparison of frequencies (2/2)Comparison of frequencies (2/2)

Page 44: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200944

Conclusions of the assessmentConclusions of the assessment

Page 45: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200945

SPL cryomodulesSPL cryomodules

Page 46: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200946

REFERENCESREFERENCES- Site Layouts (Stage 3) -- Site Layouts (Stage 3) -

Page 47: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200947

Plan for a Radioactive Ion Beam Facility (Stage 3)Plan for a Radioactive Ion Beam Facility (Stage 3)HP-SPLTARGETS RADIOACTIVE

IONS LINAC

EURISOL EXPERIMENTAL HALLS

ISOLDE OREURISOL HIGH ENERGY EXPERIMENTAL HALL

TRANSFER LINES SPL to EURISOL

TRANSFER LINE SPL to ISOLDE

Page 48: N eutrinos options at CERN

GDR NEUTRINO - SESSION 200927-28 April, 2009 - LPNHE

R.G. 27/04/200948

Plan for a Neutrino Factory (Stage 3) Plan for a Neutrino Factory (Stage 3)

MUON PRODUCTION

TARGET

MUON ACCELERATORS

MUON STORAGE

RING

SPL

ACCUMULATOR & COMPRESSOR