munir ahmed khan division of heat transfer dept. of energy sciences lth

24
Numerical Simulation of Multi-scale Transport Processes and Reactions in PEM Fuel Cells Using Two-Phase Models Munir Ahmed Khan Division of Heat Transfer Dept. of Energy Sciences LTH

Upload: lysandra-bullock

Post on 30-Dec-2015

17 views

Category:

Documents


1 download

DESCRIPTION

Numerical Simulation of Multi-scale Transport Processes and Reactions in PEM Fuel Cells Using Two-Phase Models. Munir Ahmed Khan Division of Heat Transfer Dept. of Energy Sciences LTH. Outline. Introduction Brief History of Development Modeling Approach Numerical Modeling Results - PowerPoint PPT Presentation

TRANSCRIPT

Numerical Simulation of Multi-scale Transport Processes and Reactions in PEM Fuel Cells

Using Two-Phase Models

Munir Ahmed Khan

Division of Heat TransferDept. of Energy Sciences

LTH

Heat Transfer / Energy Sciences / LTH

Outline

• Introduction

• Brief History of Development

• Modeling Approach

• Numerical Modeling

• Results

• Conclusion

Heat Transfer / Energy Sciences / LTH

PEMFC Schematic

(Jacobson, 2004)

Heat Transfer / Energy Sciences / LTH

History of PEMFC Development

• 1839 (Fuel Cell Principle)• 1965 (NASA)• 1968 (Nafion)• 1969 (Biosatellite Missions)• 1970 – 1989 (Abeyance)• 1990 – Present (Ballard Power and Los Alamos Labs)

Heat Transfer / Energy Sciences / LTH

Scientific Research Activities

Scientific Research

Experimental Approach Numerical Approach

Heat Transfer / Energy Sciences / LTH

Numerical Approach

PEMFCModels

Based on Thermal Analysis

Based on Flow domain

Single Phase

Multi Phase

Isothermal

Non-isothermal

Based on CatalystModels

Thin Interface

Discrete Volume

AgglomerateModel

Heat Transfer / Energy Sciences / LTH

Presented Modeling

• Interdigitated Flow Field

• Cathode Side Only

• 2-Phase– 2 Phase Flow

– 2 Phase Temperature

– 2 Phase Current

• Agglomerate Catalyst Modeling

Heat Transfer / Energy Sciences / LTH

Computational Domain

(Larminie J, 2003)

Component Dimension (mm)

Inlet 0.4

Outlet 0.4

Current Collector 0.8

PTL thickness 0.4

Catalyst layer thickness

0.1

Heat Transfer / Energy Sciences / LTH

Flow Fields

(www.me.udel.edu)

Heat Transfer / Energy Sciences / LTH

Bridging Numerical and Experimental Modeling

NumericalModeling

ActualMachine

ExperimentalModeling

Heat Transfer / Energy Sciences / LTH

Idealized Catalyst Layer

ElectrolyteBulk

Gas Pores

AgglomerateNafion

Pt Particle

Carbon Particle

Heat Transfer / Energy Sciences / LTH

Transport Phenomena

• Multicomponent Diffusion• Oxygen Dissolution• Dissolved Oxygen Diffusion• Electron Transport• Proton Migration

H2O

H+ H+

H2O

e- e-e-O2

O2 O2

O2 O2

O2

Heat Transfer / Energy Sciences / LTH

Oxygen Reduction Reactions

• Reaction Steps

• Rate of Reaction

22 OMOM

HOMeHOM 22

MOHeHHOM 22 233

localOcO CkR

22 locallocalc Tfk ,

CurrentRO 2

surfaceOcrnetO CkER

22 ,

Heat Transfer / Energy Sciences / LTH

Boundary Conditions

1. Inlet

Gas Concentration

Fluid Temperature

Pressure

Water Saturation

1

2. Catalyst/Membrane InterfaceNominal Cathode Overpotential (NCO)

3. Current CollectorSolid Phase PotentialSolid Phase Temperature

2

3

Heat Transfer / Energy Sciences / LTH

Velocity and Pressure Fields

Velocity Distribution (m/s)

Pressure Field (N/m2)

Heat Transfer / Energy Sciences / LTH

Oxygen Mass Fraction

222.0cmAI

257.0cmAI

289.0cmAI

Heat Transfer / Energy Sciences / LTH

Water Saturation

222.0cmAI

257.0cmAI

289.0cmAI

Heat Transfer / Energy Sciences / LTH

Fluid Temperature (K)

222.0cmAI

257.0cmAI

289.0cmAI

Heat Transfer / Energy Sciences / LTH

Solid Temperature (K)

222.0cmAI

257.0cmAI

289.0cmAI

Heat Transfer / Energy Sciences / LTH

Membrane Phase Conductivity

1.47

1.48

1.49

1.5

1.51

1.52

1.53

1.54

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016

Lenght (m)

σm (

S/m

)

1.85

1.9

1.95

2

2.05

2.1

2.15

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016

Length (m)

σm (

S/m

)

222.0cmAI 289.0

cmAI

Heat Transfer / Energy Sciences / LTH

Cathode Overpotential (V)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016

Length (m)

NC

O -

Lo

cal O

ver

Po

ten

tial

(V

)

0.89 A/cm2 0.57 A/cm2 0.22 A/cm2

Heat Transfer / Energy Sciences / LTH

Model Verification & Comparison

Heat Transfer / Energy Sciences / LTH

Conclusion

• Effect of Liquid Water– More prominent at higher current density

• Membrane Phase Conductivity– Highly dependant on water activity

• Losses– Higher losses are observed at higher current density

• Mass Limitation Effects– Adequately captured by agglomerate model

• Power– Maximum power is observed at 0.55 V

Heat Transfer / Energy Sciences / LTH

THANKS TO ALL

Jinliang Yuan Bengt Sundén

HEC Pakistan Swedish Research Council

& Special Thanks to