multivariate linear regression

Upload: ezgi-ates

Post on 06-Apr-2018

241 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Multivariate Linear Regression

    1/45

    A. The Basic Principle

    We consider the multivariate extension of multiplelinear regression modeling the relationshipbetween m responses Y1,,Ym and a single set of rpredictor variables z1,,zr. Each of the m responses is

    assumed to follow its own regression model, i.e.,

    Y1 = B01 + B11z1 + B21z2 + 0 + Br1zrY2 = B02 + B12z1 + B22z2 + 0 + Br2zr

    1 1 1

    Y1 = B01 + B11z1 + B21z2 + 0 + Br1zr

    where

    V. Multivariate Linear Regression

    -

    1

    2

    m

    E = E = 0, Var =

  • 8/3/2019 Multivariate Linear Regression

    2/45

    Conceptually, we can let

    [zj0, zj1, , zjr]

    denote the values of the predictor variables for the jth

    trial and

    be the responses and errors for the jth trial. Thus we

    have an n x (r + 1) design matrix

    ,

    - -

    j1 j1

    j2 j2

    j

    jm jm

    Y

    Y

    Y = =

    Y

    -

    10 11 1r

    20 21 2r

    n0 n1 nr

    z z z

    z z zZ =

    z z z

  • 8/3/2019 Multivariate Linear Regression

    3/45

    - -

    -

    '

    '

    '

    | | |

    1

    11 12 1m 2

    21 22 2m

    1 2 m

    n1 n2 nm

    m

    = = =

    If we now set

    | | |

    -

    -

    11 12 1m

    21 22 2m

    1 2 m

    n1 n2 nm

    Y Y Y

    Y Y YY = = Y Y Y

    Y Y Y

    | | |

    -

    -

    01 02 0m

    11 12 1m

    1 2 m

    r1 r2 rm

    = =

  • 8/3/2019 Multivariate Linear Regression

    4/45

    and

    the multivariate linear regression model is

    - i

    E = 0

    Note also that the m observed responses on the jth

    trial have covariance matrix

    i k ikCov , = I, i,k = 1, ,m

    Y = Z +

    with

    -

    11 12 1m

    21 22 2m

    m1 m2 mm

    =

  • 8/3/2019 Multivariate Linear Regression

    5/45

    The ordinary least squares estimates F are found in amanner analogous to the univariate case we beginby taking

    -1

    ' '

    i i = Z Z Z Y

    collecting the univariate least squares estimates yields

    ^

    ~

    - - -1 -1

    ' ' ' '

    1 2 m 1 2 m = | | | = ZZ Z Y | Y | | Y = ZZ Z Y

    Now for any choice of parameters

    - 1 2 m

    B = b | b | | b

    the resulting matrix of errors is

    - ZY

  • 8/3/2019 Multivariate Linear Regression

    6/45

    The resultingError Sums of Squares and Crossproductsis

    -

    ' '

    1 1 1 1 1 1 m m

    '

    ' '

    m m 1 1 m m m m

    Y - Zb Y - Zb Y - Zb Y - Zb

    - ZB - ZB =

    Y - Zb Y - Zb Y - Zb Y - Zb

    Y Y

    We can show that the selection b(i) =F(i) minimizes theith diagonal sum of squares

    ^

    ~~

    '

    i i i iY - Zb Y - Zb

    i.e.,

    - ' '

    tr - ZB - ZB and - ZB - ZBY Y Y Y

    are both minimized.

    generalizedvariance

  • 8/3/2019 Multivariate Linear Regression

    7/45

    so we have matrices of predicted values

    -1' '- Z = ZZ ZY Y

    and we have a resulting matrices of residuals

    -

    -1' '

    = - = I - Z ZZ ZY Y Y

    Note that the orthogonality conditions amongresiduals, predicted values, and columns of the

    design matrix which hold in the univariate case arealso true in the multivariate case because

    - -1

    ' ' ' ' 'Z I - Z ZZ Z = Z - Z = 0

  • 8/3/2019 Multivariate Linear Regression

    8/45

    which means the residuals are perpendicular to thecolumns of the design matrix

    and to the predicted values

    -

    -1' ' ' ' '

    = Z I - Z ZZ Z = 0Y Y

    Furthermore, because

    = + Y Y

    - -1' ' ' ' ' '

    Z = Z I - Z ZZ Z = Z - Z = 0

    we have

    ' ' '

    = + YY YY

    total sums of

    squares and

    crossproducts

    predicted sums

    ofsquares and

    crossproducts

    residual (error)

    sums of squares

    and crossproducts

  • 8/3/2019 Multivariate Linear Regression

    9/45

    Example suppose we had the following six sampleobservations on two independent variables (palatability

    and texture) and two dependent variables (purchaseintent and overall quality):

    Palatability TextureOverall

    Quality

    Purchase

    Intent

    65 71 63 67

    72 77 70 70

    77 73 72 70

    68 78 75 72

    81 76 89 88

    73 87 76 77

    Use these data to estimate the multivariate linearregression model for which palatability and texture areindependent variables while purchase intent andoverall quality are the dependent variables

  • 8/3/2019 Multivariate Linear Regression

    10/45

    We wish to estimate

    Y1 = B01 + B11z1 + B21z2

    and

    Y2 = B02 + B12z1 + B22z2

    jointly.

    The design matrix is

    -

    1 65 71

    1 72 771 77 73

    Z =1 68 78

    1 81 76

    1 73 87

  • 8/3/2019 Multivariate Linear Regression

    11/45

    so

    - -

    -

    '

    1 65 71

    1 72 771 1 1 1 1 1 6 436 462

    1 77 73ZZ = 65 72 77 68 81 73 = 436 31852 33591

    1 68 7871 77 73 78 76 87 462 33591 35728

    1 81 76

    1 73 87

    -

    -

    -1

    -1'

    6 436 462

    ZZ = 436 31852 33591462 33591 35728

    62.560597030 -0.378268027 -0.453330568

    = -0.378268027 0.005988412 -0.000738830

    -0.453330568 -0.000738830 0.006584661

    and

  • 8/3/2019 Multivariate Linear Regression

    12/45

    and

    - - -

    '

    1

    63

    701 1 1 1 1 1 445

    72Zy = 65 72 77 68 81 73 = 3253675

    71 77 73 78 76 87 3434589

    76

    - -

    -1' '

    1 1 = ZZ Zy

    62.560597030 -0.378268027 -0.453330568 445

    = -0.378268027 0.005988412 -0.000738830 32536

    -0.453330568 -0.000738830 0.006584661 34345

    -37.501205460

    = 1.134583728

    0.

    - 379499410

    so

  • 8/3/2019 Multivariate Linear Regression

    13/45

    and

    - - -

    '

    2

    67

    701 1 1 1 1 1 444

    70Zy = 65 72 77 68 81 73 = 3243072

    71 77 73 78 76 87 3426088

    77

    - -

    -1' '

    2 2 = ZZ Zy

    62.560597030 -0.378268027 -0.453330568 444

    = -0.378268027 0.005988412 -0.000738830 32430

    -0.453330568 -0.000738830 0.006584661 34260

    -21.432293350

    = 0.940880634

    0.

    - 351449792

    so

  • 8/3/2019 Multivariate Linear Regression

    14/45

    so

    - -

    1 2

    -37.501205460 -21.432293350

    = | = 1.134583728 0.940880634

    0.379499410 0.351449792

    This gives us estimated values matrix

    - -

    1 65 71 63.19119 64.67788

    1 72 77 73.41028 73.37275-37.501205460 -21.432293350

    1 77 73 77.56520 76.67135

    = Z = 1.134583728 0.940880634 =1 68 78 69.20.379499410 0.351449792

    1 81 76

    1 73 87

    Y

    -

    5144 69.96067

    83.24203 81.48922

    78.33986 77.82812

  • 8/3/2019 Multivariate Linear Regression

    15/45

    and residuals matrix

    - -

    63 67 63.19119 64.67788 0.191194960-2.322116943

    70 70 73.41028 73.37275 3.

    72 70 77.56520 76.67135 = - = - =

    75 72 69.25144 69.96067

    89 88 83.24203 81.4892276 77 78.33986 77.82812

    Y Y

    -

    410277515 3.372746244

    5.565198512 6.671350244

    -5.748557985 -2.039326498

    -5.757968347 -6.5107778452.339855345 0.828124797

    Note that each

    column sums to zero!

  • 8/3/2019 Multivariate Linear Regression

    16/45

    B. Inference in Multivariate Regression

    The least squares estimators

    F = [F(1) |F(2) ||F(m)]

    of the multivariate regression model have thefollowing properties

    -

    -

    -

    if the model is of full rank, i.e., rank(Z)= r + 1 < n.

    Note that I and F are also uncorrelated.

    - -

    i i

    E = i.e., E =

    -1'

    iki kCov , = ZZ , i,k = 1, , m

    ' -11E = 0 and E =

    n - r - 1

    ~ ~ ~ ~

    ~ ~

    ~

  • 8/3/2019 Multivariate Linear Regression

    17/45

    This means that, for any observation z0

    - -

    ' ' ' ' '

    0 0 0 0 01 2 m 1 2 m z = z | | | = z | z | | z is an unbiased estimator, i.e.,

    ~

    -

    ' '

    0 0E z = z

    We can also determine from these properties that theestimation errors

    ' '

    0 0i iz - z

    have covariances

    -

    - -

    ''

    0 0i i i i

    ' -1' ' '

    0 0 ik 0 0i i i i

    E z - - z

    = z E - - z = z ZZ z

  • 8/3/2019 Multivariate Linear Regression

    18/45

    Furthermore, we can easily ascertain that

    '

    0 0z = Y

    i.e., the forecasted vector Y0 associated with the valuesof the predictor variables z0 is an unbiased estimatorof Y0.

    The forecast errors have covariance

    - -1

    ' ' ' '

    0i 0 0k 0 ik 0 0i kE Y - z Y - z = 1 + z ZZ z

    ~~

    ^

    ~

  • 8/3/2019 Multivariate Linear Regression

    19/45

    Thus, for the multivariate regression model with full

    rank (Z) = r + 1, nu

    r + 1 + m, and normallydistributed errors I,

    -1' '

    = ZZ Z Y

    is the maximum likelihood estimator ofF and

    ~~

    ~

    ~ N ,

    where the elements of 7 are~

    -1'

    iki kCov , = ZZ , i,k = 1, , m

  • 8/3/2019 Multivariate Linear Regression

    20/45

    Also, the maximum likelihood estimator ofF isindependent of the maximum likelihood estimator of

    the positive definite matrix7

    given by

    '

    '1 1 = = - Z - Z

    n nY Y

    and

    all of which provide additional support for using the

    least squares estimate when the errors are normallydistributed

    ~

    -1 'and n

    ~

    ^

    p,n-r-1n ~ W

    are the maximum likelihood estimators of

    and

  • 8/3/2019 Multivariate Linear Regression

    21/45

    These results can be used to develop likelihood ratiotests for the multivariate regression parameters.

    The hypothesis that the responses do not depend onpredictor variables zq+1, zq+2,, zr is

    -

    1

    0 2

    2

    H : = 0 where =

    ~

    (q + 1) x m

    (r - q) x m

    I

    f we partition Z in a similar manner

    -

    1 2Z = Z | Z

    m x (q + 1) m x (r - q)

    Big Bet

    a (2)

  • 8/3/2019 Multivariate Linear Regression

    22/45

    we can write the general model as

    - - -

    1

    1 2 1 21 2

    2

    E = Z = Z | Z = Z + Z

    Y

    The extra sum of squares associated withF(2) are~

    ' '

    1 1 11 1- Z - Z - - Z - Z = n - Y Y Y Y

    -1' '

    1 1 11= Z Z Z Y

    '

    -1

    1 1 11 1 = n-Z

    -ZY Y

    where

    and

    ^

  • 8/3/2019 Multivariate Linear Regression

    23/45

    The likelihood ratio for the test of the hypothesis

    H0:F(2) = 0

    is given by the ratio of generalized variances

    1

    n 2

    1 11,

    1,

    max L , L , = = =

    max L , L ,

    ~

    which is often converted to Wilks Lambda statistic

    ~

    2 n

    1

    =

  • 8/3/2019 Multivariate Linear Regression

    24/45

    Finally, for the multivariate regression model withfull rank (Z) = r + 1, n u r + 1 + m, normally

    distributed errors I, and the null hypothesis is true(so n(71 7) ~ Wq,r-q(7))

    -

    2

    m r-q

    1

    1- n - r - 1 - m- r + q + 1 ln ~

    2

    ~

    when n r and n m are both large.

    ~

    ~~ ~

    ^ ^

  • 8/3/2019 Multivariate Linear Regression

    25/45

    If we again refer to theError Sum of Squares andCrossproducts as

    E = n7

    and theHypothesis Sum of Squares and Crossproductsas

    H = n(71 - 7)

    then we can define Wilks lambda as

    ~

    s

    2 n

    i=1 i1

    E 1 = = =E + H 1 +

    ~^

    ~ ~

    where L1 u L2 u u Ls are the ordered eigienvalues ofHE-1 where s = min(p, r - q).~ ~

    ~

  • 8/3/2019 Multivariate Linear Regression

    26/45

    1

    1

    1 +

    There are other similar tests (as we have seen in ourdiscussion of MANOVA):

    - s

    -1i

    i=1 i

    = tr H H + E

    1 +

    Each of these statistics is an alternative to Wilkslambda and perform in a very similar manner(particularly for large sample sizes).

    Pillais Trace

    Hotelling-Lawley Trace

    Roys Greatest Root

    - s

    -1

    ii=1 = tr HE

  • 8/3/2019 Multivariate Linear Regression

    27/45

    Example For our previous data (the following sixsample observations on two independent variables -

    palatability and texture - and two dependent variables -purchase intent and overall quality

    Palatability TextureOverall

    Quality

    Purchase

    Intent

    65 71 63 67

    72 77 70 70

    77 73 72 70

    68 78 75 72

    81 76 89 88

    73 87 76 77

    to test the hypotheses that i) palatability has no jointrelationship with purchase intent and overall qualityand ii) texture has no joint relationship with purchaseintent and overall quality.

  • 8/3/2019 Multivariate Linear Regression

    28/45

    We first test the hypothesis that palatability has nojoint relationship with purchase intent and overall

    quality, i.e.,H0:F(1) = 0

    The likelihood ratio for the test of this hypothesis isgiven by the ratio of generalized variances

    2

    n 2

    2 22,

    2

    ,

    max L , L , = = =

    max L , L ,

    For ease of computation, well use the Wilks lambdastatistic

    2 n

    2

    E = =

    E + H

    ~

  • 8/3/2019 Multivariate Linear Regression

    29/45

    The error sum of squares and crossproducts matrix is

    -

    114.31302415 99.335143683E =

    99.335143683 108.5094298

    and the hypothesis sum of squares and crossproductsmatrix for this null hypothesis is

    -

    214.96186763 178.26225891H =

    178.26225891 147.82823253

  • 8/3/2019 Multivariate Linear Regression

    30/45

    so the calculated value of the Wilks lambda statistic is

    -

    - -

    2 nE

    =E + H

    114.31302415 99.335143683

    99.335143683 108.5094298=

    114.31302415 99.335143683 214.96186763 178.26225891+

    99.335143683 108.5094298 178.26225891 147.82823253

    2536.570299=

    7345.2380= 0.34533534

    98

  • 8/3/2019 Multivariate Linear Regression

    31/45

    The transformation to a Chi-square distributedstatistic (which is actually valid only when n r and n

    m are both large) is

    -

    -

    1

    1- n - r - 1 - m- r + q + 1 ln

    2

    1= - 6 - 2 - 1 - 2 - 2 + 1 + 1 ln 0.34533534

    2

    = 0.92351795

    at E = 0.01 and m(r - q) = 1 degrees of freedom, thecritical value is 9.210351 - we have a strong non-rejection. Also, the approximate p-value of this chi-square test is 0.630174 note that this is an extremely

    gross approximation (since n r = 4 and n m = 4).

  • 8/3/2019 Multivariate Linear Regression

    32/45

    We next test the hypothesis that texture has no jointrelationship with purchase intent and overall quality,

    i.e.,H0:F(2) = 0

    The likelihood ratio for the test of this hypothesis isgiven by the ratio of generalized variances

    1

    n 2

    1 11,

    1

    ,

    max L , L , = = =

    max L , L ,

    For ease of computation, well use the Wilks lambdastatistic

    2 n

    1

    E = =

    E + H

    ~

  • 8/3/2019 Multivariate Linear Regression

    33/45

    The error sum of squares and crossproducts matrix is

    -

    114.31302415 99.335143683E =

    99.335143683 108.5094298

    and the hypothesis sum of squares and crossproductsmatrix for this null hypothesis is

    -

    21.872015222 20.255407498H =

    20.255407498 18.758286731

  • 8/3/2019 Multivariate Linear Regression

    34/45

    so the calculated value of the Wilks lambda statistic is

    -

    - -

    2 nE

    =E + H

    114.31302415 99.335143683

    99.335143683 108.5094298=

    114.31302415 99.335143683 21.872015222 20.255407498+

    99.335143683 108.5094298 20.255407498 18.758286731

    2536.570299=

    3030.0590= 0.837135598

    55

  • 8/3/2019 Multivariate Linear Regression

    35/45

    The transformation to a Chi-square distributedstatistic (which is actually valid only when n r and n

    m are both large) is

    -

    -

    1

    1- n - r - 1 - m- r + q + 1 ln

    2

    1= - 6 - 2 - 1 - 2 - 2 + 1 + 1 ln 0.837135598

    2

    = 0.15440838

    at E = 0.01 and m(r - q) = 1 degrees of freedom, thecritical value is 9.210351 - we have a strong non-rejection. Also, the approximate p-value of this chi-square test is 0.925701 - note that this is an extremely

    gross approximation (since n r = 4 and n m = 4).

  • 8/3/2019 Multivariate Linear Regression

    36/45

    OPTIONS LINESIZE = 72 NODATE PAGENO = 1;

    DATA stuff;

    INPUT z1 z2 y1 y2;

    LABEL z1='Palatability Rating'z2='Texture Rating'

    y1='Overall Quality Rating'

    y2='Purchase Intent';

    CARDS;

    65 71 63 67

    72 77 70 70

    77 73 72 70

    68 78 75 72

    81 76 89 88

    73 87 76 77

    ;

    PROC GLMDATA=stuff;

    MODEL y1 y2 = z1 z2/;

    MANOVA H=z1 z2/PRINTE PRINTH;

    TITLE4 'Using PROCGLM for Multivariate Linear Regression';

    RUN;

    SAS code for a Multivariate Linear Regression Analysis:

  • 8/3/2019 Multivariate Linear Regression

    37/45

    Dependent Variable: y1 Overall Quality Rating

    SumofSource DF Squares Mean Square F Value Pr >F

    Model 2 256.5203092 128.2601546 3.37 0.1711

    Error 3 114.3130241 38.1043414

    CorrectedTotal 5 370.8333333

    R-Square Coeff Var Root MSE y1 Mean

    0.691740 8.322973 6.172871 74.16667

    Source DF Type I SS Mean Square F Value Pr >F

    z1 1 234.6482940 234.6482940 6.16 0.0891

    z2 1 21.8720152 21.8720152 0.57 0.5037

    Source DF Type III SS Mean Square F Value Pr >F

    z1 1 214.9618676 214.9618676 5.64 0.0980

    z2 1 21.8720152 21.8720152 0.57 0.5037

    Dependent Variable: y1 Overall Quality Rating

    Standard

    Parameter Esti mate Error t Value Pr > |t|

    Intercept -37.50120546 48.82448511 -0.77 0.4984

    z1 1.13458373 0.47768661 2.38 0.0980

    z2 0.37949941 0.50090335 0.76 0.5037

    SAS output for a Multivariate Linear Regression Analysis:

  • 8/3/2019 Multivariate Linear Regression

    38/45

    Dependent Variable: y2 Purchase Intent

    SumofSource DF Squares Mean Square F Value Pr >F

    Model 2 181.4905702 90.7452851 2.51 0.2289

    Error 3 108.5094298 36.1698099

    CorrectedTotal 5 290.0000000

    R-Square Coeff Var Root MSE y2 Mean

    0.625830 8.127208 6.014134 74.00000

    Source DF Type I SS Mean Square F Value Pr >F

    z1 1 162.7322835 162.7322835 4.50 0.1241

    z2 1 18.7582867 18.7582867 0.52 0.5235

    Source DF Type III SS Mean Square F Value Pr >F

    z1 1 147.8282325 147.8282325 4.09 0.1364

    z2 1 18.7582867 18.7582867 0.52 0.5235

    Dependent Variable: y2 Purchase Intent

    Standard

    Parameter Esti mate Error t Value Pr > |t|

    Intercept -21.43229335 47.56894895 -0.45 0.6829

    z1 0.94088063 0.46540276 2.02 0.1364

    z2 0.35144979 0.48802247 0.72 0.5235

    SAS output for a Multivariate Linear Regression Analysis:

  • 8/3/2019 Multivariate Linear Regression

    39/45

    The GLMProcedure

    Multivariate Analysisof Variance

    E = Error SSCP Matrix

    y1 y2

    y1 114.31302415 99.335143683

    y2 99.335143683 108.5094298

    Partial Correlation Coefficients from the Error SSCP Matrix / Prob > |r|

    DF = 3 y1 y2

    y1 1.000000 0.891911

    0.1081

    y2 0.891911 1.000000

    0.1081

    SAS output for a Multivariate Linear Regression Analysis:

  • 8/3/2019 Multivariate Linear Regression

    40/45

    The GLMProcedure

    Multivariate Analysisof Variance

    H = Type III SSCP Matrix for z1

    y1 y2

    y1 214.96186763 178.26225891

    y2 178.26225891 147.82823253

    Characteristic Roots and Vectorsof: E Inverse * H, where

    H = Type III SSCP Matrix for z1

    E = Error SSCP MatrixCharacteristic Characteristic Vector V'EV=1

    Root Percent y1 y2

    1.89573606 100.00 0.10970859 -0.01905206

    0.00000000 0.00 -0.17533407 0.21143084

    MANOVATest Criteria and Exact FStatistics

    for the Hypothesisof NoOverall z1 Effect

    H = Type III SSCP Matrix for z1E = Error SSCP Matrix

    S=1 M=0 N=0

    Statistic Value F Value NumDF Den DF Pr >F

    Wilks' Lambda 0.34533534 1.90 2 2 0.3453

    Pillai'sTrace 0.65466466 1.90 2 2 0.3453

    Hotelling-Lawley Trace 1.89573606 1.90 2 2 0.3453

    Roy'sGreatest Root 1.89573606 1.90 2 2 0.3453

    SAS output for a Multivariate Linear Regression Analysis:

  • 8/3/2019 Multivariate Linear Regression

    41/45

    The GLMProcedure

    Multivariate Analysisof Variance

    H = Type III SSCP Matrix for z2

    y1 y2

    y1 21.872015222 20.255407498

    y2 20.255407498 18.758286731

    Characteristic Roots and Vectorsof: E Inverse * H, where

    H = Type III SSCP Matrix for z2

    E = Error SSCP MatrixCharacteristic Characteristic Vector V'EV=1

    Root Percent y1 y2

    0.19454961 100.00 0.06903935 0.02729059

    0.00000000 0.00 -0.19496558 0.21052601

    MANOVATest Criteria and Exact FStatistics

    for the Hypothesisof NoOverall z2 Effect

    H = Type III SSCP Matrix for z2E = Error SSCP Matrix

    S=1 M=0 N=0

    Statistic Value F Value NumDF Den DF Pr >F

    Wilks' Lambda 0.83713560 0.19 2 2 0.8371

    Pillai'sTrace 0.16286440 0.19 2 2 0.8371

    Hotelling-Lawley Trace 0.19454961 0.19 2 2 0.8371

    Roy'sGreatest Root 0.19454961 0.19 2 2 0.8371

    SAS output for a Multivariate Linear Regression Analysis:

  • 8/3/2019 Multivariate Linear Regression

    42/45

    We can also build confidence intervals for the

    predicted mean value of Y0 associated with z0 - if the

    model

    and

    = Z + Y

    -1' '0 m 0 0 0

    ' 'z ~ N z ,z ZZ z

    has normal errors, then

    ~ ~

    n-r-1n ~ W

    independent

    so

    '

    -10 0 0 0

    2

    -1 -1' ' ' '

    0 0 0 0

    ' ' ' 'z - z z - zn

    T = n - r - 1

    z ZZ z z ZZ z

  • 8/3/2019 Multivariate Linear Regression

    43/45

    e

    -1'-1

    ' '

    0 0 0 0 0 0 m,n-r-m

    m n - r - 1n' ' ' 'z - z z - z z ZZ z F

    n - r - 1 n - r - m

    Thus the 100(1 E)% confidence interval for the

    predicted mean value of Y0 associated with z0 (Fz0)

    is given by~ ~

    and the 100(1 E)% simultaneous confidence intervals

    for the mean value of Yi associated with z0 (z0 F(i) ) are

    ~ ~

    ~

    ~~

    s -1' ' '

    0 m,n-r-m 0 0 iiim n - r - 1 nz F z ZZ z

    n - r -m n - r - 1

    i = 1,,m

    ~

  • 8/3/2019 Multivariate Linear Regression

    44/45

    Finally, we can build prediction intervals for thepredicted value of Y0 associated with z0 here the

    prediction error

    and

    = Z + Y

    -1' '0 m 0 0 0

    ' 'z ~ N z ,z ZZ z

    has normal errors, then

    ~ ~

    n-r-1n ~ W

    independent

    so

    '

    -10 0 0 0

    2

    -1 -1' ' ' '

    0 0 0 0

    ' ' ' 'z - z z - zn

    T = n - r - 1

    z ZZ z z ZZ z

  • 8/3/2019 Multivariate Linear Regression

    45/45

    e

    -1'-1

    ' '

    0 0 0 0 0 0 m,n-r-m

    m n - r - 1n' 'Y - z Y - z 1 + z ZZ z F

    n - r - 1 n - r - m

    the prediction intervals the 100(1 E)% predictioninterval associated with z0 is given by

    and the 100(1 E)% simultaneous prediction intervalswith z0 are

    ~

    ~

    s

    -1

    ' ' '0 m,n-r-m 0 0 iii

    m n - r - 1nz F 1 + z ZZ z

    n - r -m n - r - 1

    i = 1,,m