multistability in the lactose utilization network of escherichia coli

21
Multistability in the lactose utilization network of Escherichia coli Advisors: Tang Leihan & Namiko Mitarai Group two members: He Xiaojuan Bi Hongjie Wang Peng Wang Jinshui Li Xiang Li Mengyao Zheng Muhua Jiang Chongming

Upload: bin

Post on 24-Feb-2016

57 views

Category:

Documents


1 download

DESCRIPTION

Multistability in the lactose utilization network of Escherichia coli. Advisors: Tang Leihan & Namiko Mitarai Group two members: He Xiaojuan Bi Hongjie Wang Peng Wang Jinshui Li Xiang Li Mengyao Zheng Muhua Jiang Chongming. our photo & introduction. O utline. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Multistability  in the lactose utilization network of Escherichia coli

Multistability in the lactose utilization network of Escherichia coli

Advisors: Tang Leihan & Namiko Mitarai

Group two members:

He Xiaojuan Bi Hongjie Wang Peng

Wang Jinshui Li Xiang Li Mengyao

Zheng Muhua Jiang Chongming

Page 2: Multistability  in the lactose utilization network of Escherichia coli

our photo & introduction

Page 3: Multistability  in the lactose utilization network of Escherichia coli

Outline

Backgrounds The lactose utilization network Deterministic model Deterministic model & Noise Stochastic model The lactose utilization network + lactose metabolism

Page 4: Multistability  in the lactose utilization network of Escherichia coli

Backgrounds:

Regulatory network: regulatory system that consists of a collection of nodes, pairs of which are connected by links.

Feedback loops: a cyclic chain of links in a regulatory network. Positive feedback loops: self-activation or double negative

feedback. Multistability: the capacity to achieve multiple internal states

in response to a single set of external inputs. Biological switch: cell fate, cell-cycle oscillations.

Page 5: Multistability  in the lactose utilization network of Escherichia coli

The lactose utilization networkTwo external inputs: Glucose & TMG(thio-methylgalactoside)TMG: a non-metabolizable lactose analogue.

Red lines: regulatory interactions.Black arrows: protein creation through transcription and translation.Dotted arrows: uptake process

Operon: promoter + expressible genes

Page 6: Multistability  in the lactose utilization network of Escherichia coli

The lactose utilization network and reportor system

GFP: green fluorescent protein, expressed at the lac promoter. HcRed: red fluorescent protein,expressed at the gat promoter.

LacY catalyses the uptake of TMG, which induces further expression of LacY, resulting in a positive feedback.

Bi-stability !!!Two transcriptional regulators:LacI: a repressor.CRP: an activator.

Page 7: Multistability  in the lactose utilization network of Escherichia coli

Experimental results:

b. Behavior of a large cell population c. The phase diagram describing the state of the lactose utilization network in wild-type cells

Page 8: Multistability  in the lactose utilization network of Escherichia coli

Deterministic model

ρ: dissociation constant of LacI from its main DNA-binding site.

ρ=1+RT/R0 : describes how tightly LacI is able to regulate the expression of the lac operon.

Page 9: Multistability  in the lactose utilization network of Escherichia coli

Our results

Page 10: Multistability  in the lactose utilization network of Escherichia coli

Theoretical phase diagram

Page 11: Multistability  in the lactose utilization network of Escherichia coli

Model analysis

Page 12: Multistability  in the lactose utilization network of Escherichia coli

Model analysis & Add noise

Page 13: Multistability  in the lactose utilization network of Escherichia coli

Stochastic model & Gillespie algorithm

Page 14: Multistability  in the lactose utilization network of Escherichia coli

Stochastic model & Gillespie algorithm

Page 15: Multistability  in the lactose utilization network of Escherichia coli

The lactose utilization network + lactose metabolism

2

0

)(1

1

wwR

R

T

(S2)

(S3)

(S4)

(S5)

Lactose

Lactose (x)

Allolactose (w)

LacI

Plac

LacZ (z)

LacY (y)

Page 16: Multistability  in the lactose utilization network of Escherichia coli

The lactose utilization network + lactose metabolism

τ ydydt

= αw2 +1w2 + ρ

− y

simplified model: Lactose

Lactose (x)

Allolactose (w)

LacI

Plac

LacZ (z)

LacY (y)

Page 17: Multistability  in the lactose utilization network of Escherichia coli

The lactose utilization network + lactose metabolism

steady state:

)1()(1

2

2

wwwx

2

2 1wwy

]1)11)[(()1( 2222

wwww

Analyze the third equation, and let: 22 )1()( wwf ]1)11)[(()( 22

wwwwg

;0)(,)1(4)( '2' wfwwwf

;0)(),()11(2]1)11)[((3)( '2222' wgwwwwwg

We find:

Page 18: Multistability  in the lactose utilization network of Escherichia coli

The lactose utilization network + lactose metabolism

phase diagram

Page 19: Multistability  in the lactose utilization network of Escherichia coli

Conclusion

Page 20: Multistability  in the lactose utilization network of Escherichia coli

References:

Ertugrul M. Ozbudak, Mukund Thattai, Han N. Lim,Boris I. Shraiman & Alexander van Oudenaarden. 2004. Multistability in the lactose utilization network of Escherichia coli.

Kim Sneppen, Sandeep Krishna, and Szabolcs Semsey. 2010. Simplified models of biological networks.

Danlel T. Gillespie. 1977. Exact stochastic simulation of coupled chemical reactions.

Michael B. Elowitz et al. 2002. Stochastic gene expression in a single cell. Jerome T. Mettetal, Dale Muzzey, Juan M. Pedraza, Ertugrul M. Ozbudak, and

Alexander van Oudenaarden. Predicting stochastic gene expression dynamics in single cells.

Page 21: Multistability  in the lactose utilization network of Escherichia coli

Thanks for your listening!