multi‐objective optimization of a parallel manipulator for the ......prosthetic arm, biomechanics,...

15
Original Article Latin American Journal of Solids and Structures, 2018, 15ሺ3ሻ, e26 Multi‐objective optimization of a parallel manipulator for the design of a prosthetic arm using genetic algorithms Abstract This paper presents a synthesis of a spherical parallel manipulator for a shoulder of a seven‐degrees‐of‐freedom prosthetic human arm using a multi‐objective optimization. Three design objectives are considered, namely the workspace, the dexterity, and the actuators torques. The parallel manipulator is modelled considering 13 design parameters in an optimiza‐ tion procedure. Due to the non‐linearity of the design problem, genetic algo‐ rithms are implemented. The outcomes show that a suitable performance of the manipulator is achieved using the proposed optimization. Keywords Prosthetic arm, Biomechanics, Multi‐objective optimization, Genetic algo‐ rithms. 1 INTRODUCTION The success of a prosthetic human arm design can be evaluated mainly in terms of the functionality of the design and its cost. For these reasons the design of the mechanism that performs the movement of the prosthesis is an issue that impacts greatly in the final product. Upper limb disarticulation is one of the cases with less inci‐ dences, therefore the people with this disability have fewer options of prostheses available ሺDillingham et al., 2002ሻ. One of the most advanced prosthetic arm can be found in ሺJohannes et al., 2011ሻ that is a prosthetic arm with 2 DOF at the shoulder, a humeral rotator, elbow and three DOF at wrist. This device can be used for different levels of amputation. In ሺResnik et al., 2014ሻ the Deka arm is presented, which is a prosthetic arm with 6 DOF at the arm and 4 at hand and a weight of 4.45 kg. He et al. ሺ2014ሻ presented a prosthetic arm with 7 DOF that uses underactuated mechanisms and weighs 4.45 kg. Most of these solutions are based on serial kinematic chain configurations. In this work, a parallel configuration is addressed for a novel design. Main advantages of parallel manipulators are that the payload is shared between the actuators, the actuators are located in the base so that the inertia is reduced and parallel manipulators exhibit stiff behavior. Disadvantages of the parallel manipulators are the small workspace and limited dexterity as compared to the serial manipulators ሺCeccarelli, 2004ሻ. For the design of a prosthetic arm, design criteria can be considered in workspace, stiffness, and dexterity among others that are used also in design procedures of manipulators. Many authors have investigated the optimization of mechanisms using different techniques. In ሺBoudreau and Turkkan, 1996ሻ the forward kinematics of three different planar parallel manipulators are solved using a genetic algorithm ሺGAሻ. The optimization of two different parallel planar manipulators is achieved as well using a genetic José‐Alfredo Leal‐Naranjo a,b* Marco Ceccarelli b Christopher‐René Torres‐San‐Miguel a Luis‐Antonio Aguilar‐Perez a Guillermo Urriolagoitia‐Sosa a Guillermo Urriolagoitia‐Calderón a a Instituto Politécnico Nacional, Sección de estu‐ dios de posgrado de la Escuela Superior de Inge‐ niería Mecánica y Eléctrica Unidad Zacatenco, Mexico City, Mexico. E‐mails: lealna‐ [email protected], [email protected], lagui‐ [email protected], [email protected], ur‐ [email protected] b LARM: Laboratorio di Robotica e Meccatronica, DiCEM, Universitá di Cassino e del Lazio Meridio‐ nale, Cassino, Italy. E‐mails: [email protected] *Corresponding author http://dx.doi.org/10.1590/1679-78254044 Received: May 19, 2017 In Revised Form: November 26, 2017 Accepted: November 26, 2017 Available online: February 05, 2018

Upload: others

Post on 14-Jul-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Multi‐objective optimization of a parallel manipulator for the ......Prosthetic arm, Biomechanics, Multi‐objective optimization, Genetic algo‐ rithms. 1 INTRODUCTION The success

Original Article

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e26

Multi‐objectiveoptimizationofaparallelmanipulatorforthedesignofaprostheticarmusinggeneticalgorithms

AbstractThis paper presents a synthesis of a spherical parallelmanipulator for ashoulder of a seven‐degrees‐of‐freedom prosthetic human arm using amulti‐objective optimization. Three design objectives are considered,namelytheworkspace,thedexterity,andtheactuatorstorques.Theparallelmanipulatorismodelledconsidering13designparametersinanoptimiza‐tionprocedure.Duetothenon‐linearityofthedesignproblem,geneticalgo‐rithmsareimplemented.Theoutcomesshowthatasuitableperformanceofthemanipulatorisachievedusingtheproposedoptimization.

KeywordsProsthetic arm, Biomechanics,Multi‐objective optimization, Genetic algo‐rithms.

1INTRODUCTION

Thesuccessofaprosthetichumanarmdesigncanbeevaluatedmainly in termsof the functionalityof thedesignanditscost.Forthesereasonsthedesignofthemechanismthatperformsthemovementoftheprosthesisisanissuethatimpactsgreatlyinthefinalproduct.Upperlimbdisarticulationisoneofthecaseswithlessinci‐dences,thereforethepeoplewiththisdisabilityhavefeweroptionsofprosthesesavailable Dillinghametal.,2002 .Oneofthemostadvancedprostheticarmcanbefoundin Johannesetal.,2011 thatisaprostheticarmwith2DOFattheshoulder,ahumeralrotator,elbowandthreeDOFatwrist.Thisdevicecanbeusedfordifferentlevelsofamputation.In Resniketal.,2014 theDekaarmispresented,whichisaprostheticarmwith6DOFatthearmand4athandandaweightof4.45kg.Heetal. 2014 presentedaprostheticarmwith7DOFthatusesunderactuatedmechanismsandweighs4.45kg.Mostofthesesolutionsarebasedonserialkinematicchainconfigurations.Inthiswork,aparallelconfigurationisaddressedforanoveldesign.

Mainadvantagesofparallelmanipulatorsarethatthepayloadissharedbetweentheactuators,theactuatorsarelocatedinthebasesothattheinertiaisreducedandparallelmanipulatorsexhibitstiffbehavior.DisadvantagesoftheparallelmanipulatorsarethesmallworkspaceandlimiteddexterityascomparedtotheserialmanipulatorsCeccarelli,2004 .

For thedesignofaprostheticarm,designcriteriacanbeconsidered inworkspace,stiffness,anddexterityamongothersthatareusedalsoindesignproceduresofmanipulators.

Manyauthorshaveinvestigatedtheoptimizationofmechanismsusingdifferenttechniques.In BoudreauandTurkkan,1996 theforwardkinematicsofthreedifferentplanarparallelmanipulatorsaresolvedusingageneticalgorithm GA .Theoptimizationoftwodifferentparallelplanarmanipulatorsisachievedaswellusingagenetic

José‐AlfredoLeal‐Naranjoa,b*MarcoCeccarellibChristopher‐RenéTorres‐San‐MiguelaLuis‐AntonioAguilar‐PerezaGuillermoUrriolagoitia‐SosaaGuillermoUrriolagoitia‐Calderóna

aInstitutoPolitécnicoNacional,Seccióndeestu‐diosdeposgradodelaEscuelaSuperiordeInge‐nieríaMecánicayEléctricaUnidadZacatenco,MexicoCity,Mexico.E‐mails:lealna‐[email protected],[email protected],lagui‐[email protected],[email protected],ur‐[email protected]:LaboratoriodiRoboticaeMeccatronica,DiCEM,UniversitádiCassinoedelLazioMeridio‐nale,Cassino,Italy.E‐mails:[email protected]

*Correspondingauthor

http://dx.doi.org/10.1590/1679-78254044

Received:May19,2017InRevisedForm:November26,2017Accepted:November26,2017Availableonline:February05,2018

Page 2: Multi‐objective optimization of a parallel manipulator for the ......Prosthetic arm, Biomechanics, Multi‐objective optimization, Genetic algo‐ rithms. 1 INTRODUCTION The success

José‐AlfredoLeal‐Naranjoetal.Multi‐objectiveoptimizationofaparallelmanipulatorforthedesignofaprostheticarmusinggeneticalgorithms

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e26 2/15

algorithmin BoudrearandGosselin,1999 wheretheobjectivefunctionisformulatedtogetaworkspaceascloseaspossibletoapredefinedone.InCabreraetal. 2002 thepathsynthesisofafour‐barmechanismisworkedoutusinggeneticalgorithms.CeccarelliandLanni 2004 workedouttheoptimizationoftheworkspaceandthedi‐mensionsofgeneralthreerevolutejointsmanipulatorusingsequentialquadraticprogramming.In Hernandezetal.,2015 theoptimizationofacable‐basedparallelmanipulatorisworkedoutusingevolutionaryalgorithms.Theworkspaceofasphericalparallelmechanismforlaparoscopicsurgeryisoptimizedusingageneticalgorithmin LiandPayandeh,2002 .In Castejónetal.,2010 amulti‐objectiveoptimizationwasperformedinordertodesignaroboticarmforservicetasks. InZhenetal. 2010 theoptimizationof thestiffnessanddexterityofasixDOFsparallelmanipulatorispresentedusinggeneticalgorithmsandneuralnetwork.Chakeretal. 2012 performedthesynthesisofasphericalmanipulatorforsurgeriesbyoptimizingtheworkspaceanddexterityofthemechanismusingGA.In Essombaetal.,2016 itispresentedthesynthesisofasphericalmanipulatorusedasaprobeholderconsidering amulti‐objective optimization and GA. The synthesis of a 3‐RRR spherical parallelmanipulator isworkedoutin Wu,2012 usingamulti‐objectiveoptimizationconsideringasobjectivefunctionthedynamicdex‐terityandtheisotropy.InRamanaetal. 2016 itisworkedouttheoptimizationofa3DOFparallelmanipulatorusingasobjectivesthedexterity,workspaceandstiffness.

Anarisingprobleminthedesignofaparallelmechanismcomesfromthefactthattheirperformanceishighlydependentontheirgeometricparametersandconfigurationsaswellasthedifferentperformancemeasures work‐space,dexterity,etc aremutuallydependent Wu,2012 .Inthiswork,thesynthesisofaparallelsphericalmanip‐ulatoriscarriedoutusingamulti‐objectiveoptimizationcombinedwithGA.Theproposedsphericalmanipulatorisusedasamechanismtoreplicatetheshouldermovementinaprosthetichumanarm.Theshoulderofthepros‐theticarmisanalyzedasoneofthemostcomplexpartoftheprostheticdevicesinceitrequiresagreatmobilityandvolumerestrictions.Threeobjectivefunctionsaretakenintoaccountintheproposedoptimization.Forthefirstobjective,thespecifiedtrajectorymustbeinsidetheavailableworkspace;thesecondobjectiveisthemaximizationofthemechanismaccuracy measuredbythedexterity ;whilethethirdobjectiveistheminimizationofthetorquesmeasuredherebythemaximumvalues ofthethreeactuators.Thisisdonesinceareductioninthetorquecouldyieldtoareductionintheactuatorsandthusreductioninweightandpowerconsumption.Withtheobtainedre‐sults,aparallelmanipulatorisdesignedandasetofdynamicsimulationsareperformedtovalidatetheresultsoftheoptimizationandtocharacterizethedesignsolution.

2Geneticalgorithmsandmulti‐objectiveoptimization

Geneticalgorithms GA ,developedinHolland 1992 ,areheuristicmethodsthatconsistinoptimizationpro‐ceduresasinspiredinnaturalevolution.InGA,aninitialrandompopulationneedstobecreated.Thecharacteristicsofeachsolutionareusedinequivalentchromosomes.Eachsolutionisevaluatedandclassifiedaccordingtohowwellitsatisfiestheobjectivefunctionandthenitisassignedaprobabilityofreproduction.Thefittestindividualsaremorelikelytobereproduced selection ,andthustheyinheritthosecharacteristics.Thecombination crosso‐ver oftheparentgenesyieldstoaconsecutivegeneration replacement .Mutationcanoccurinthechromosomesofsomeindividuals.Itisprojectedthatsomeindividualsofthisnewgenerationwillhaveinheritedthebestchar‐acteristicsoftheirparentsandwillbeabettersolutiontotheproblem.Thisnewpopulationgoesthroughthesameprocessandthiscycleisrepeateduntilallthememberssharethesamegeneticinformation.Thislastgenerationisthebestsolutiontotheoptimizationproblem Fogel,1994 .Ageneticalgorithmisstoppedwhenthepopulationconvergestoanoptimalsolutionorwhenamaximumnumberofgenerationsisreached,Figure1.

Geneticalgorithmsrequireobjectiveandfitnessfunctions.Theobjectivefunctiondefinestheoptimalcondi‐tionandthefitnessfunctionassesseshowwellaspecificsolutionsatisfiestheobjectivefunctionandassignsarealvaluetothatsolution Coelloetal.,2007 .

Page 3: Multi‐objective optimization of a parallel manipulator for the ......Prosthetic arm, Biomechanics, Multi‐objective optimization, Genetic algo‐ rithms. 1 INTRODUCTION The success

José‐AlfredoLeal‐Naranjoetal.Multi‐objectiveoptimizationofaparallelmanipulatorforthedesignofaprostheticarmusinggeneticalgorithms

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e26 3/15

Figure1:Aflowchartofageneticalgorithmoptimization.

Formerly,theinformationoftheindividualswasencodedinbitstringscalledBinary‐coded,butnowadaystheindividualsarecodedusingrealnumbers DebandKumar,1995 .Real‐codedGAusuallyachievesbetterresultsthanBinary‐codedGA Davis,1991 .

Theselectionprocessconsistsintakingtwoparentstocreateoffspring.Theobjectiveistoprovidetothefitterindividualsagreaterchanceofreproductionexpectingthattheiroffspringwillhavehigherfitness.Typicaltypesofselectionschemearetheproportionateselectionandtheordinal‐basedselection.Intheproportionatebasedselec‐tion,theindividualsarepickedupbasedontheirfitnessvaluesthatarerelativetothefitnessoftheotherindivid‐uals.Theordinal‐basedselectionselectsindividualsbyconsideringtheirrankwithinthepopulation SivanandamandDeepa,2007 .

Thecrossovercombinestwodifferentindividualstogeneratenewoffspring.Manycrossovermethodsexist,andthemostcommonissingle‐pointcrossover Blumetal.,2012 .Inthiswork,alinearcrossoverisused.Twoparentsareselectedasp1andp2andthreeoffspringsaregeneratedas0.5p1 0.5p2,1.5p1‐0.5p2,‐0.5p1 1.5p2respectively Herreraetal.,1998 .Then,thethreeoffspringareevaluatedandthebesttwoareselectedforthenextgeneration.

Mutationconsistsinarandommodificationofageneduringreproduction Cabreraetal.,2002 .Ingeneral,themutationpreventsconvergencetoalocaloptimum LiandPayandeh,2002 .Themutationoperatorisappliedwithasmallprobability Wangetal.,2004 .Inthiswork,anon‐uniformmutationisused Michalewicz,1996 .

Multi‐objectiveoptimizationcommonlyinvolvesmultipleconflictingobjectivesthatmustbeconsideredsim‐ultaneouslyandthereisasetofmathematicallyequallygoodsolutions Miettinen,2008 .ThesesetofsolutionsareknownasnondominatedorParetooptimalset.ThesetofsolutionsformstheParetooptimalfront.Thecharac‐teristicofaParetooptimalsolutionis thatanychange inthevaluesof thesolutionwillnot improveanyof theobjectivefunctions.

Theconceptofdominanceordominationisusedinmostoftheoptimizationalgorithms.IfthereareNobjectivefunctions,asolutionx 1 dominatesanothersolutionx 2 ifthetwofollowingconditionsaretrue Deb,2014 :1. The solution x(1) is no worse than x(2) in all objectives. 2. The solution x(1) is better than x(2) in at least one objective.

Asolutionx 1 isPareto‐optimalifisnondominatedwithrespecttothesearchspace orfeasibleregion Coello,2015 .

Manyevolutionaryalgorithmshavebeenproposedovertheyearstosolvemulti‐objectiveoptimizationprob‐lems.Inthiswork, it isusedacontrolledelitistnon‐dominatedsortingGA CENSGA DebandGoel,2001 .ThealgorithmofCENSGAisbasedinNSGA‐II Debetal.,2002 ,butthereisadifferenceintheselectionapproachthatimprovestheconvergencetotheParetofront.

Page 4: Multi‐objective optimization of a parallel manipulator for the ......Prosthetic arm, Biomechanics, Multi‐objective optimization, Genetic algo‐ rithms. 1 INTRODUCTION The success

José‐AlfredoLeal‐Naranjoetal.Multi‐objectiveoptimizationofaparallelmanipulatorforthedesignofaprostheticarmusinggeneticalgorithms

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e26 4/15

TheCENSGAalgorithmworksasfollows.First,arandomPtpopulationofsizeNisformed.Fromthispopula‐tion,QoffspringsarecreatedusingthecommonGAoperators crossover,mutation .Then,acombinedRtpopula‐tion PtÈQt ofsize2Nis formed.ThepopulationRt issortedaccordingtonon‐dominationanddifferentnon‐dominatedfrontsarecreated.Thefirstnon‐dominatedfrontisformedonlybyelementsnon‐dominatedwithre‐specttoRt.Thesecondnon‐dominatedfrontisformedbyelementsdominatedbyjustonesolution.AlltheelementsofRtareassignedafrontinasimilarfashion Elarbietal.,2017 .ThecrowdingdistanceiscalculatedforeveryelementofRt Tanetal.,2006 .ThenNelementsareselectedfromRttoformthenextgenerationPt 1.Themaxi‐mumnumberofelementsselectedfromi‐thnon‐dominatedfrontisdefinedbyageometricdistribution

11

1i

i K

rn N r

r--

=-

1

whereristhereductionratio r 1 andKisthenumberofnon‐dominatedfronts.nidenotesthemaximumallowablenumberofindividualstakenfromthei‐thfront.Ifniislargerthanthenum‐

berofelementsinthei‐thfront,thenalltheelementsofthisfrontarechosenandtheremainingslotsareaddedtoni 1.Butifniissmallerthanthenumberofelementsinthefront,nitheelementsarechosenusingacrowdedbinarytournamentselection.Thecrowdedbinarytournamenttakestwoelementsandreturnstheonewiththebiggercrowdingdistance.GAoperatorsareappliedtothenewpopulationofPt 1toformQt 1andarecombinedtoformRt 1andthedescribedprocessisrepeatedforaspecificnumberofgenerations.TheresultofthisprocessistheParetofront,thismeansasetofoptimalsolutions.CENSGAalgorithmissummarizedinFigure2.

Figure2:AflowdiagramoftheCENSGAalgorithm.

3Kinematicdesignanditsanalysis

Theprostheticdeviceconsideredinthisworkisbasedinthedesignin Leal‐Naranjoetal.,2016 ,Figure3 a .Thisdevicehassevendegreesoffreedom,withthreeDOFsthatareintheshoulder,oneintheelbowandthreeinthewrist.Theshoulderofthisprototypeisdrivenbya3DOFparallelsphericalmanipulator,Figure3 b .Themech‐anismoftheelbowisa4barmechanism.Thewristmechanismisalsoaparallelsphericalmanipulator.Theweightofthisprototypeis1250gincludingthehand.Themainissueofprostheticarmsisthefunctionalityandweightofthedevice.Animprovementintheprosthetickinematicdesigncouldpotentiallyyieldinimprovementsinthefunc‐tionalityandalsointheweightduetolowerpowerrequirements.

Page 5: Multi‐objective optimization of a parallel manipulator for the ......Prosthetic arm, Biomechanics, Multi‐objective optimization, Genetic algo‐ rithms. 1 INTRODUCTION The success

José‐AlfredoLeal‐Naranjoetal.Multi‐objectiveoptimizationofaparallelmanipulatorforthedesignofaprostheticarmusinggeneticalgorithms

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e26 5/15

Figure3:3Dprintedprototype:a aprosthetichumanarm;b shouldermechanism.

TheshoulderoftheprosthesisismodelledasathreeDOFssphericalmanipulator,Figure4 a .Themanipula‐torconsistsofthreelegswiththreerevolutejointseach,whoseaxesconvergeatonepointthat isthecenterofrotation.Theaxesoftheserevolutejointsaredefinedbytheunitvectorsui,viandwi.Thelinksai attachedtothe

lowerplatform arecharacterizedbytheangle 1_i ,whichrepresentstheanglebetweenthejointsofthelink.The

linksbi attachedtothemobileplatform arecharacterizedbytheangle 2_i ,whichrepresenttheanglebetween

thejointsofthelink,Figure4 b .

Figure4:Asphericalparallelmanipulatorfortheshoulderjoint:a aCADdesign;b aschemewithdesignparameters.

Themobileandthefixedplatformsarecommonlytriangularpyramidsdefinedbyi and

i ,withanequilat‐

eraltriangleasabase.Duetotheshapeofthebaseofthepyramids,theattachmentpoints vertexesofthebase arespacedevery120°butinthisworkinsteadofregularpyramids,theattachmentpointsinthefixedandmobileplatformsareconsideredasaparameterthatcantakeanyvalue.Thismeansthatthebaseisascalenetriangleandtheattachmentpointsaredefinedbytheangle

i ireferstothei‐thleg;i 1,2,3 whichisconsideredasanother

parameterofthemechanism,Figure5.Anglei istheanglebetweentheYaxisandtheaxisoftheattachment

point.

Page 6: Multi‐objective optimization of a parallel manipulator for the ......Prosthetic arm, Biomechanics, Multi‐objective optimization, Genetic algo‐ rithms. 1 INTRODUCTION The success

José‐AlfredoLeal‐Naranjoetal.Multi‐objectiveoptimizationofaparallelmanipulatorforthedesignofaprostheticarmusinggeneticalgorithms

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e26 6/15

Figure5:Distributionoftheattachmentpointsatthefixedandmobileplatforms.

Forthisparallelmanipulator,theinversekinematicanalysisisprettystraightforwardincomparisontothedirectkinematic.Theinverseanalysisisasfollows.Vectoruiisdefinedas

( ) ( / 2)[0 1 0] , 1,2,3 Ti z i xu R R id g p= - = 2

whereRa b representsarotationof“b”degreesaroundthe“a”axis.Unitvectorviisgivenby

( ) ( ) ( )v 1_ 0 1 02

T

i z i x y i z iR R R Rp

d g q aæ ö÷ç é ù= - ÷ç ê ú÷ ë ûç ÷è ø

3

unitvectorwiisafunctionoftheorientationofthemobileplatform,thusthisvectorisdefinedas

w Q w 'i i= 4

wherewi'istheinitialorientationofthevectorswhenthemanipulatorisinitshomeconfigurationandisgivenby

( ) ( ) ( )w ' 0 sin cosi

T

i zR d b bé ù= ê úë ûandQistheorientationmatrixofthemobileplatform.

Forthesecondlinkthisrelationfollows

( )v w 2_cosi i ia=⋅ 5

substitutingwiandviinEquation5,andmakingalgebraicsimplificationsityieldsto

2 0AX BX C+ + = 6

Where

( ) ( ) ( ) ( )_ 1 3 4 5 7 2_cosy zi x i i iA w a a w a a w a a= - + + - + - 7

( ) ( ) ( )_ 2 6 82 2 2y zi x i iB w a w a w a= + + 8

( ) ( ) ( ) ( )_ 1 3 4 5 7 2_cosy zi x i i iC w a a w a a w a a= + + + + - 9

( )tan /2iX q= 10

( ) ( )1 1_sin cosi ia a d=- 11

( ) ( ) ( )2 1_sin sin cosi i ia a d g=- 12

( ) ( ) ( )3 1_cos sin sini i ia a d g=- 13

Page 7: Multi‐objective optimization of a parallel manipulator for the ......Prosthetic arm, Biomechanics, Multi‐objective optimization, Genetic algo‐ rithms. 1 INTRODUCTION The success

José‐AlfredoLeal‐Naranjoetal.Multi‐objectiveoptimizationofaparallelmanipulatorforthedesignofaprostheticarmusinggeneticalgorithms

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e26 7/15

( ) ( ) ( )4 1_cos cos sini i ia a d g= 14

( ) ( )5 1_sin sini ia a d=- 15

( ) ( ) ( )6 1_sin cos cosi i ia a d g= 16

( ) ( )7 1_cos cosi ia a g=- 17

( ) ( )8 1_sin sini ia a g= 18

Equation6isaquadraticequationthatprovidestheangleoftheinputlinksofthesphericalmanipulator.Itcanbeseenfromequation6thatforeachleg,twosolutionsexist.Thus,foreverypositionintheworkspaceofthismanipulatorcanbedesignedforeightpossibleassemblysolutions,Figure6.

Figure6:Representationofthetwopossiblesolutionsforeachlegofthemechanism.

4Modellinganddesignoptimizationprocedure

Oneoftheaimsoftheoptimizationofthisparallelmanipulatoristomaximizetheworkspaceinawaythattheprostheticarmshouldbeable todescribeahumeralextensionmovementof20degreesandahumeral flexionmovementof90degrees,Figure7 a .

Figure7:Motionrequirements:a Flexion‐Extensionmovementofthehumerus;b referenceframes.

Tofulfillthisrequirement,itisnecessarythemanipulatorwilltobeabletoperformarotationfrom‐20°to90°aroundtheaxisX”,whichisperpendiculartothesagittalplaneofthebody,Figure7 b .TheaxisX”,wheretherotationoccurs,notnecessarilycoincideswiththehomepositionofthemanipulator.Forthisreason,itwasconsid‐eredthatthemanipulatorisrotatedanangleϕ1aroundtheZaxisfromitsreferenceposition,andthemanipulator

Page 8: Multi‐objective optimization of a parallel manipulator for the ......Prosthetic arm, Biomechanics, Multi‐objective optimization, Genetic algo‐ rithms. 1 INTRODUCTION The success

José‐AlfredoLeal‐Naranjoetal.Multi‐objectiveoptimizationofaparallelmanipulatorforthedesignofaprostheticarmusinggeneticalgorithms

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e26 8/15

rotates doingtheflexion‐extension aroundtheX”axiswhichisrotatedfromX’anangleϕ2,sotheorientationoftheend‐effectorisgivenby

( ) ( )Q 1Z xR Rj e¢¢= 19

with

( )( ) ( ) ( )( ) ( )( )( ) ( )( ) ( ) ( )

( ) ( ) ( )''

1 cos cos 1 cos sin

1 cos 1 cos cos sin

sin sin cos

x x x y y

x x y y y x

y x

k k k k k

R k k k k k

k k

e e e ee e e e

e e e

é ù- + -ê úê ú= - - + -ê úê ú-ê úë û

20

wherekx ‐sin ϕ2 ,ky cos ϕ2 andεisavariablewithvaluesfrom‐20°to90°.Therequiredmovementdescribesanarcof110°.Thisarcwasdiscretizedinsegmentsof5°.Theobjective

functionwiththeworkspacecanbedefinedas

Q 1

1 . 6 ( ),

0 .6

if X inEq isrealg h h

if X inEq isnotreal

ìïï= å = íïïî 21

whereg1isevaluatedinthementionedarc.Thus,duetotheadopteddiscretization,themaximumvalueforthisfunctionis23.Forsimplicity,thisfunctionismultipliedby‐1anditistriedtobeminimized.

Thesecondobjectiveoftheoptimizationisrelatedtothekinematicaccuracyofthemanipulator.ThekinematicaccuracyisassociatedwiththeconditioningnumberoftheJacobianmatrix alsorelatedtodexterity .Thedexterityisdefinedas GosselinandAngeles,1987

K J J K 1 1 1 q x x qk k- -= - - £ < ¥ 22

with

( )( )( )

v w

J v w

v w

1 1

2 2

3 3

T

Tx

T

é ùê úê úê úê úê úê úê úë û

´

= ´

´

23

( )K v u w v u w v u w1 1 1 2 2 2 3 3 3q diag= ´ ´⋅ ⋅ ⋅´ 24

where||||denotestheEuclideannormofitsmatrixargumentand denotesthevectorproduct orcrossproduct .Thevalueofk 1correspondstoaconfigurationwithgoodkinematicaccuracy,anddoesnothaveanupper

limit.Thesecondobjectivefunctionisexpressedas

2g k= 25

Thethirdobjectiveisrelatedtothetorquethatisrequiredtoperformtheflexion‐extensionmovement.Duetothelowaccelerationsthatarerequiredduringthemovementandthelowmassoftheprostheticdevice,theinertialeffectscanbeignoredandastaticanalysiscanbeperformedforeachpositioninthedefinedtrajectorywithlimitedcomputationalcosts.

Usingthevirtualworkapproach,theend‐effectoroutputforces forcesandtorques isgivenby Tsai,1999 TF J 26

thus,themotortorquesiscalculatedas

1TJ F

27

whereJisthejacobiananditsgivenby

1q xJ K J 28

Page 9: Multi‐objective optimization of a parallel manipulator for the ......Prosthetic arm, Biomechanics, Multi‐objective optimization, Genetic algo‐ rithms. 1 INTRODUCTION The success

José‐AlfredoLeal‐Naranjoetal.Multi‐objectiveoptimizationofaparallelmanipulatorforthedesignofaprostheticarmusinggeneticalgorithms

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e26 9/15

andFarethetorquesduetotheweightoftheprostheticdevice 15N ,thehand 5N andtheloadcarried 5N andconsideringitscorrespondingleverarm.

ByusingEquation 27 ,thetorquethatisrequiredfortheactuatorscanbeevaluatedasthethirdobjectivefunctionintheform

3 g M ax T orque= 29

whereMaxTorqueisthemaximumvalueofthetorqueofthemotorsintheprescribedtrajectorytobeminimized.Sincetheinversekinematicofthismanipulatorithaseightdifferentsolutions twodifferentsolutionsforeach

leg ,soitisnecessarytostablishanequationtolimitthemechanismtobeconstrainedduringtheentireoptimiza‐tionprocessforthesamebranch.Furthermore,fromFigure4itcanbeseenthatinordertochangefromonebranchtoanotheritcanonlybepossibleifthelinksofalegarealigned,thusthemechanismpassesthroughasingularposition.Toconstrainthemechanisminthesamebranch,thesignofthecosinebetweentheplaneformedbytheunitvectorsvianduiandtheunitvectorwineedstoremainconstant.Suchaconditioncanbeexpressedas

( )v u w( )i i isign ´ ⋅ 30

Inordertoassurethatthepositionofthemotorsisnotoverlapped,arestrictionbetween1 ,

2 and3 are

stablishedas:

1 1 2 40h d d= - ³ 31

2 2 3 40h d d= - ³ 32

3 1 3 40h d d= - ³ 33

Aminimumangleof40degreesbetweentheattachmentpointswasstablishedinordertobepossibletofittheactuators.

Thedesignparametersareϕ1,ϕ2,γ,β,α1_1,α1_2,α1_3,α2_1,α2_2,α2_3,δ1,δ2andδ3.Theoptimizationproblemisdefinedas

1 2 3 , , m in g g g 34

1 2 3 4 0 , 40 , 4 0 sub ject to h h h 35

CENSGAalgorithmwasappliedusingarandompopulationof100individualsandareductionratioof0.5.Themaximumnumberofiterationswas200.Forthegeneticoperators,itwasusedalinearcrossoverandanon‐uniformmutationwithamutationprobabilityof0.5%.

5Results

Afterfinishingtheoptimization,theParetofrontfortheeight‐differentassemblysolutionswasobtained.Thefunctiong2 Maximumtorqueofthemotors wasplottedvsg1 amplitudeofthedefinedtrajectory ,Series1 inFigure8.g2vsg3 dexterity ,Series2inFigure8.Series1and2areinthesameplotwithtwoverticalaxesinordertovisualizethethreeobjectivevaluesofapossiblesolution.Fortheg2vsg3plot,onlysolutionsthatcompletelysatisfythemotionwereplotted g1 24 inordertoreducethedataplottedandasthemaininterest isonlyinsolutionsthatwouldsatisfythestablishedtrajectory.Thescaleinalltheplotswasthesameinordertosimplifythecomparison.InFigure8athevaluesoftheobjectivefunctionsforthesolutionsofthefirstpossibleassemblyareplotted.Itcanbeseenthatforthisconfigurationonethemostsuitablesolutionhasanobjectivevalueofg1 24,g2 3.5andg3 1.4.Thereareothersolutionsthatrequirealowertorquebutthevalueofthedexterityincreasestog1 24,g2 3.3andg3 2.9;orsomeothersolutionswithabetterdexteritybutthetorqueincreasestog1 24,g2 3.9andg3 1.2.Figure8bshowsobjectivefunctionsforthesecondconfiguration.Inthisconfiguration,themostsuitablesolutionhasanobjectivevalueofg1 24,g2 5.9andg3 2.5,soclearlyisnotabetteroneascomparedwiththatforconfiguration1.

Page 10: Multi‐objective optimization of a parallel manipulator for the ......Prosthetic arm, Biomechanics, Multi‐objective optimization, Genetic algo‐ rithms. 1 INTRODUCTION The success

José‐AlfredoLeal‐Naranjoetal.Multi‐objectiveoptimizationofaparallelmanipulatorforthedesignofaprostheticarmusinggeneticalgorithms

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e26 10/15

Figure8:Valuesofthethreeobjectivefunctionsforthedifferentsolutions:a Assemblysolution1;b Assemblysolu‐tion2;c Assemblysolution3;d Assemblysolution4;e Assemblysolution5;f Assemblysolution6;g Assemblyso‐

lution7;h Assemblysolution8.

Page 11: Multi‐objective optimization of a parallel manipulator for the ......Prosthetic arm, Biomechanics, Multi‐objective optimization, Genetic algo‐ rithms. 1 INTRODUCTION The success

José‐AlfredoLeal‐Naranjoetal.Multi‐objectiveoptimizationofaparallelmanipulatorforthedesignofaprostheticarmusinggeneticalgorithms

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e26 11/15

Forconfiguration3 Figure8c ,thesolutionwiththesmallesttorquehasvaluesofg1 24,g2 3.2andg3 4.9andasthedexteritydecreases,thetorqueincreasessoitisnotbetterasthesolutionofconfiguration1.InFigure8ditcanbeseenthatthemostsuitablesolutionhasthevaluesoftheobjectivefunctiong1 24,g2 3.4andg3 1.4.Thissolutionisslightlybetterthanconfiguration1.Forconfiguration5and6and8 Figure8e,Figure8fandFigure8h ,thereisnosolutionintheusedscale,soitcanbeconcludedthatthereisnotabettersolutionthantheoneproposedintheotherconfiguration.InFigure8gitcanbeseenasetofsuitablesolutionsliketheonewithvaluesforobjectivefunctiong1 24,g2 3.18andg3 2.5.andg1 24,g2 3.5andg3 1.2.

Aftercomparingthesolutions,itwaschosentheonewithobjectivefunctiong1 24,g2 3.18andg3 2.5de‐spiteithasaslightlyworstdexteritythanthesolutionofconfiguration1becauseitistheonewiththelowesttorque,andalowertorquerepresentssmalleractuatorsandloweroverallweight.ThevalueoftheparametersassociatedtothissolutionareshowninTable1.

Table1:Parametersusedforthesynthesisofthemechanism.

Parameter Value ° Parameter Value ° ϕ1 48 α2_1 76ϕ2 224 α2_2 52Γ 77 α2_3 53Β 76 δ1 0α1_1 39 δ2 76α1_2 39 δ3 200α1_3 47

Withthecalculatedvalues,aCADdesignof themanipulatorwasdone.Twodynamicsimulationwereper‐

formedinordertoevaluatetheperformanceofthemanipulator.Thefirstsimulationaimedtoperformaflexion‐extensionmovementwitha loadof5Natthe locationofthehand,Figure9.Themovementbeginswith20°ofextensionandfinishesat90°offlexion.Thetimerequiredtoperformthemovementwasstablishedtobe2s.ThematerialoftheprostheticdevicewasABSexceptforthelinksoftheparallelmanipulatorthatweremodelasalu‐minum.

Figure9:Representationofthemovementperformedduringthedynamicsimulation.

Theresultsofthesimulationshowthatduringthemovement,theactuatorsperformsmoothmovements.Themanipulatordoesnotapproachanysingularity,andthisisbecausetheoptimizationofthedexterity.Themaximumtorquethattheactuatorsrequireis2.98Nm,Figure10.

Page 12: Multi‐objective optimization of a parallel manipulator for the ......Prosthetic arm, Biomechanics, Multi‐objective optimization, Genetic algo‐ rithms. 1 INTRODUCTION The success

José‐AlfredoLeal‐Naranjoetal.Multi‐objectiveoptimizationofaparallelmanipulatorforthedesignofaprostheticarmusinggeneticalgorithms

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e26 12/15

Figure10:Resultsofthehumeralflexion‐extensionsimulation:a angulardisplacementoftheactuators;b torqueof

theactuators.

Thesecondsimulationconsistedinthesamemovementasinthepreviousanalysisbutwiththeelbowinaflexedposition,Figure11.

Figure11:Representationofthemovementperformedduringtheseconddynamicsimulation.

Theresultsshowthatthemaximumrequiredtorquetoperformthismovementis2.9Nm,Figure12.

Figure12:Resultsofthehumeralflexion‐extensionsimulation:a angulardisplacementoftheactuators;b torqueof

theactuators.

Athirdsimulationwasperformedinordertocomparewiththepreviousdesign.Thecharacteristicsofthesimulationarethesameassimulationonebutthepayloadwasincreasedto10Nandshowedthatwhenthepayloadisincreasedto1kg,themaximumrequiredtorqueis4Nm.

6Conclusions

Inthiswork,amulti‐objectiveoptimizationisusedtodesignofasphericalparallelmanipulatorastheshoulderofaprostheticdevice.Theresultsshowthattherequiredtorquetoperformthedefinedmovementwasreducedin

Page 13: Multi‐objective optimization of a parallel manipulator for the ......Prosthetic arm, Biomechanics, Multi‐objective optimization, Genetic algo‐ rithms. 1 INTRODUCTION The success

José‐AlfredoLeal‐Naranjoetal.Multi‐objectiveoptimizationofaparallelmanipulatorforthedesignofaprostheticarmusinggeneticalgorithms

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e26 13/15

comparisonwiththepreviousdesign 4Nmvs6Nm .Incomparisontothepreviousconfigurationofthemecha‐nismused,therangeofmotionwasincreasedandanimprovementinthecontrollabilityofthemechanismwasachievedintermsofthedexterity.Fromtheresults,itisevidentthattheoptimizationofthethreeobjectivesneedstobecarriedout inasimultaneouswaybecausetheyaredependenttoeachotherandan improvement inonecharacteristiccouldyieldtoanundesiredrepercussionoftheothers.

Acknowledge

ThefirstauthoracknowledgesConsejoNacionaldeCienciayTecnología CONACyT forsupportinghisPhDstudyandresearchwithaperiodofstudyin2016atLARMinCassinowithinadoublePhDdegreeprogram.

References

Blum,C.,Chiong,R.,Clerc,M.,Jong,K.D.,Michalewicz,Z.,Neri,F.andWeise,T. 2012 .Evolutionaryoptimization.VariantsofEvolutionaryAlgorithmsforReal‐WorldApplications,SpringerBerlinHeidelberg:1‐29.

Boudrear,R.andGosselin,C. 1999 .Thesysthesisofplanarparallelmanipulatorswithageneticalgorithm,Journalofmecanicaldesign121:533‐537.

Boudreau,R.andTurkkan,N. 1996 .Solvingtheforwardkinematicsofparallelmanipulatorswithageneticalgo‐rithm,Journalofroboticsystems13:111‐125.

Cabrera,J.A.,Simon,A.andPrado,M. 2002 .Optimalsynthesisofmechanismswithgeneticalgorithms,Mechanismandmachinetheory37:1165‐1177.

Castejón,C.,Carbone,G.,Prada,J.C.G.andCeccarelli,M. 2010 .Amulti‐objectiveoptimizationofaroboticarmforservicetasks,Strojniškivestnik‐JournalofMechanicalEngineering56:316‐329.

Ceccarelli,M. 2004 .Fundamentalsofmechanicsofroboticmanipulation,SpringerScience&BusinessMedia.

Ceccarelli,M.andLanni,C. 2004 .Amulti‐objectiveoptimumdesignofgeneral3Rmanipulatorsforprescribedworspacelimits,Mechanismandmachinetheory39:113‐132.

Coello,C.A.C. 2015 .Multi‐objectiveevolutionaryalgorithmsinreal‐worldapplications:Somerecentresultsandcurrentchalenges.AdvancesinEvolutionaryandDeterministicMethodsforDesign,OptimizationandControlinEngineeringandSciences,SpringerInternationalPublishing:3‐18.

Coello,C.A.C.,Lamont,G.B.andVeldhuizen,D.A.V. 2007 .Evolutionaryalgorithmsforsolvingmulti‐objectiveproblems,Springer.

Chaker,A.,Mlika,A.,Laribi,M.A.,Romdhane,L.andZeghloul,S. 2012 .Synthesisofsphericalparallelmanipulatorfordexterousmedicaltask,Front.Mech.Eng.7 2 :150‐162.

Davis,L. 1991 .Handbookofgeneticalgorithms.

Deb,K. 2014 .Multi‐objectiveoptimization.Searchmethodologies,SpringerUS:403‐449.

Deb,K.andGoel,T. 2001 .Controlledelitistnon‐dominatedsortinggeneticalgorithmsforbetterconvergence.EvolutionaryMulti‐CriterionOptimization.EMO2001.LectureNotesinComputerScience,vol1993.,Springer,Ber‐lin,Heidelberg:67‐81.

Deb,K.andKumar,A. 1995 .Real‐codedgeneticalgorithmswithsimulatedbinarycrossover:studiesonmulti‐modalandmultiobjectiveproblems,Complexsystems9:431‐454.

Page 14: Multi‐objective optimization of a parallel manipulator for the ......Prosthetic arm, Biomechanics, Multi‐objective optimization, Genetic algo‐ rithms. 1 INTRODUCTION The success

José‐AlfredoLeal‐Naranjoetal.Multi‐objectiveoptimizationofaparallelmanipulatorforthedesignofaprostheticarmusinggeneticalgorithms

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e26 14/15

Deb,K.,Prapat,A.,Agarwal,S.andMeyarivan,T. 2002 .Afastelitistmultiobjectivegeneticalgorithm:NSGA‐II,IEEETransactionsonevolutionarycomputation6 2 :182‐197.

Dillingham,T.R.,Pezzin,L.E.andMacKenzie,E.J. 2002 .Limbamputationandlimbdeficiency:epidemiologyandrecenttrendsintheUnitedStates,SouthMedJ95 8 :875‐883.

Elarbi,M.,Bechikh,S.,Said,L.B.andDatta,R. 2017 .Multi‐objectiveoptimization:Classicalandevolutionaryap‐proaches.Recentadvancesinevolutionarymulti‐objectiveoptimization.SpringerInternationalPublishing:1‐30.

Essomba,T.,Laribit,M.,Zeghloul,S.andPoisson,G. 2016 .Optimalsynthesisofasphericalparallelmechanismformedicalapplication,Robotica34 3 :671‐686.

Fogel,D. 1994 .Anintroductiontosimulatedevolutionaryoptimization,IEEETransactionsonneuralnetworks5 1 :3‐14.

Gosselin,C.andAngeles,J. 1987 .Theoptimumkinematicdesignofasphericalthreedegreeoffreedomparallelmanipulator,Journalofmechanism,transmissions,andautomationindesign111:202‐207.

He,L.,Xiong,C.andZhang,K. 2014 .MechatronicDesignofanUpperLimbProsthesiswithaHand. IntelligentRoboticsandApplications:7thInternationalConference,ICIRA2014,Guangzhou,China,December17‐20,2014,Proceedings,PartI.X.Zhang,H.Liu,Z.ChenandN.Wang.Cham,SpringerInternationalPublishing:56‐66.

Hernandez,E.E.,Valdez,S.I.,Ceccarelli,M.,Hernandez,A.andBotello,S. 2015 .Designoptimizationofacable‐basedparalleltrackingsystembyusingevolutionaryalgorithms,Robotica33 3 :599‐610.

Herrera,F.,Lozano,M.andVerdegay,J.L. 1998 .Tacklingreal‐codedgeneticalgorithms:Operatorsandtoolsforbehaviouralanalysis,ArtificialIntelligenceReview12 4 :265‐319.

Holland,J. 1992 .Adaptationinnaturalandartificialsystems,MITUniversitypress.

Johannes,M.S.,Bigelow,J.D.,Burck,J.M.,Harshbarger,S.D.,Kozlowski,M.V.andVanDoren,T. 2011 .Anoverviewofthedevelopmentalprocessforthemodularprostheticlimb,JohnsHopkinsAPLTechnicalDigest30 3 :207‐216.

Leal‐Naranjo,J.A.,Ceccarelli,M.andTorres‐SanMiguel,C.R. 2016 .MechanicalDesignofaProstheticHumanArmanditsDynamicSimulation.InternationalConferenceonRoboticsinAlpe‐AdriaDanubeRegion,Springer:482‐490.

Li,T.andPayandeh,S. 2002 .Designofsphericalparallelmechanismsforapplicationto laparoscopicsurgery,Robotica20 2 :133‐138.

Michalewicz,Z. 1996 .GeneticAlgorithms DataStructures EvolutionPrograms.Springer‐VerlagBerlinHei‐delberg.

Miettinen,K. 2008 .Introductiontomultiobjectiveoptimization:Noninteractiveapproaches.MultiobjectiveOpti‐mization.Interactiveandevolutionaryapproaches,Springer‐VerlagBerlinHeidelberg:1‐26.

Ramana,B.,Ramachandra,R.andRamji,K. 2016 .Designoptimizationof3PRSparallelmanipulatorusingglobalperfomanceindices,JorunalofMechanicalScienceandTechnology30 9 :4325‐4335.

Resnik,L.,Klinger,S.L.andEtter,K. 2014 .TheDEKAArm:itsfeatures,functionality,andevolutionduringtheVeteransAffairsStudytooptimizetheDEKAArm,ProsthetOrthotInt38 6 :492‐504.

Sivanandam,S.andDeepa,S. 2007 .Introductiontogeneticalgorithms,SpringerScience&BusinessMedia.

Page 15: Multi‐objective optimization of a parallel manipulator for the ......Prosthetic arm, Biomechanics, Multi‐objective optimization, Genetic algo‐ rithms. 1 INTRODUCTION The success

José‐AlfredoLeal‐Naranjoetal.Multi‐objectiveoptimizationofaparallelmanipulatorforthedesignofaprostheticarmusinggeneticalgorithms

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e26 15/15

Tan,K.C.,Khor,E.F.andLee,T.H. 2006 .Multiobjectiveevolutionaryalgorithmsandapplications,SpringerSci‐ence&BusinessMedia.

Tsai,L.‐W. 1999 .Robotanalysis:themechanicsofserialandparallelmanipulators,JohnWiley&Sons.

Wang,Z.,Wong,Y.andRahman,M. 2004 .Optimisationofmulti‐passmillingusinggeneticalgorithmandgeneticsimulatedannealing,TheInternationalJournalofAdvancedManufacturingTechnology24 9‐10 :727‐732.

Wu,G. 2012 .Multiobjectiveoptimumdesignofa3‐RRRsphericalparallemanipulatorwithkinematicanddy‐namicdexterities,Modeling,IdentificationandControl33 3 :111‐122.

Zhen,G.,Dan,Z.andYunjian,G. 2010 .Designoptimizationofaspatialsixdegree‐of‐freedomparallelmanipulatorbasedonartificialintelligenceapproaches,RoboticsandComputer‐IntegratedManufacturing26:180‐189.