multi-tier topologies in future wireless broadband networks ieee 802.16 presentation submission...

8
Multi-tier Topologies in Future Wireless Broadband Networks IEEE 802.16 Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16-10/0004 Date Submitted: 2010-01-10 Source: Kerstin Johnsson, Shilpa Talwar, Nageen Himayat, S. Yeh E-mail: [email protected] Intel Corporation Venue: San Diego, CA, USA Base Contribution: None Purpose: For discussion in the Project Planning Adhoc Notice: This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its subgroups. It represents only the views of the participants listed in the “Source(s)” field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16. Patent Policy: The contributor is familiar with the IEEE-SA Patent Policy and Procedures: <http://standards.ieee.org/guides/bylaws/sect6-7 . html#6> and <http://standards.ieee.org/guides/opman/sect6.html#6.3>. Further information is located at <http://standards.ieee.org/board/pat/pat-material.html> and <http://standards.ieee.org/board/pat >.

Upload: chloe-fisher

Post on 27-Mar-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Multi-tier Topologies in Future Wireless Broadband Networks IEEE 802.16 Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16-10/0004

Multi-tier Topologies in Future Wireless Broadband Networks

IEEE 802.16 Presentation Submission Template (Rev. 9) Document Number:

IEEE C802.16-10/0004Date Submitted:

2010-01-10Source:

Kerstin Johnsson, Shilpa Talwar, Nageen Himayat, S. Yeh E-mail: [email protected] Intel Corporation

Venue:San Diego, CA, USA

Base Contribution:None

Purpose:For discussion in the Project Planning Adhoc

Notice:This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its subgroups. It represents only the views of the participants listed in the “Source(s)” field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein.

Release:The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and

accepts that this contribution may be made public by IEEE 802.16.

Patent Policy:The contributor is familiar with the IEEE-SA Patent Policy and Procedures:

<http://standards.ieee.org/guides/bylaws/sect6-7.html#6> and <http://standards.ieee.org/guides/opman/sect6.html#6.3>.Further information is located at <http://standards.ieee.org/board/pat/pat-material.html> and <http://standards.ieee.org/board/pat >.

Page 3: Multi-tier Topologies in Future Wireless Broadband Networks IEEE 802.16 Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16-10/0004

Multi-tier NetworksSpectrum Utilization

• Overlay multiple tiers of cells, macro/pico/femto, potentially sharing common spectrum

• Client can be viewed as center of additional tier (see client co-op)• Tiers can be heterogeneous (WiFi)

Macro-BSFemto-AP

(Indoor coverage & offload macro-BS)

Pico-BS(Areal capacity)

Relay

WiFi-AP(Offload macro-BS)

Coverage Hole

Client CooperationWired backhaul

Wireless backhaul

Page 4: Multi-tier Topologies in Future Wireless Broadband Networks IEEE 802.16 Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16-10/0004

Advantages of Multi-tier Networks• Significant gains in Areal Capacity through aggressive spectrum

reuse and use of unlicensed bands• Cost structure of smaller cells (Pico & Femto) is more favorable• Indoor coverage is improved through low cost femto-cell

Significant savings in Cost per Bit from Multi-tier Networks

Source: Johansson at al, ‘A Methodology for Estimating Cost and Performance of Heterogeneous Wireless Access Networks’, PIMRC’07.

Small Cell Scenario

Areal capacity gain* from spectral efficiency improvement

and increase spatial reuse

Sparse FAP deployment

Dense FAP deployment

Public Private Public Private

FAP Tx Power

0 dBm 34 34 152 152

10 dBm 36 38 144 154

20 dBm 35 39 135 152

*Areal capacity gain = (System Capacity with Femto-APs deployed) / (System Capacity without Femto-APs)

Page 5: Multi-tier Topologies in Future Wireless Broadband Networks IEEE 802.16 Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16-10/0004

• Need to protect control & data signals from inter-tier interference

• Femto-cells cause significant INT to macro-users and other femto-cells

• Power control improves interference only slightly

• Macro and femto on diff carriers prevents INT, but lowers throughput and significantly decreases trunking efficiency and RRM flexibility

• Simple FFR on macro & femto reduces INT; but more sophisticated FFR and/or Femto-Free Zones (FFZ) required to fully protect macro-users

Challenge: Inter-tier Interference

Tx Scheme Max FAP Tx Pwr

Outdoor Outage (%)

Indoor Outage (%)

50% Outdoor rate (Mbps)

50% Indoor rate (Mbps)

No FAP 25 31.8 0.06 0.05

Co-channel (10MHz)

-10dBm 38.2 8.6 0.06 6.4

0dBm 61.9 2.2 0 14.3

Tx Scheme Outdoor Outage (%)

Indoor Outage (%)

50% Outdoor rate

(Mbps)

50% Indoor rate (Mbps)

FFR + NO FAP on 10 MHz 3.0 17.0 0.07 0.03

FFR Macro on 5 MHz, Femto on diff 5 MHz 3.0 0.2 0.06 10.7

FFR + FFZ + 0dBm FAP power on 10 MHz 3.0 0.5 0.06 11.3

Interference reduction for Control Signals remains unresolved

Page 6: Multi-tier Topologies in Future Wireless Broadband Networks IEEE 802.16 Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16-10/0004

Challenge: Mobility

– Handovers across small cells can be highly inefficient– Intelligent handover mechanisms required to determine when intra-

or inter-tier handover is beneficial• Example 1: If a macro-user moves into the coverage area of a high data rate

femto-cell, the first instinct is to handover. However, the benefit/cost of handover depends on the user’s mobility.

• Example 2: Although a femto-user may have better channel quality to the macro-ABS, it may benefit from remaining associated to the femto-ABS if the femto load is significantly less.

handoffhandoff handoff

handoffhandoff

handoffhandoff

Page 7: Multi-tier Topologies in Future Wireless Broadband Networks IEEE 802.16 Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16-10/0004

Challenge: Network Management

Scalability is key feature in multi-tier networks• Self-organization and management across tiers will be crucial to

maintaining low OPEX and quick network response

May facilitate network management to merge network elements • Need to consider new network elements

• Example: what is the optimum middle ground between consumer owned & deployed private femto-AP (low cost) versus operator owned & deployed public pico-BS?

Page 8: Multi-tier Topologies in Future Wireless Broadband Networks IEEE 802.16 Presentation Submission Template (Rev. 9) Document Number: IEEE C802.16-10/0004

Summary & Recommendations

• Multi-tier networks promise significant improvements in total

network, average user, and indoor user throughput

• However, to realize these gains, next generation 802.16 standard

should develop protocols to control interference across network

tiers, perform handover intelligently, and manage network elements

efficiently.