multi-item auctions 1. many auctions involve sale of different types of items spectrum licenses in...

35
Multi-Item Auctions 1

Upload: terence-cooper

Post on 21-Dec-2015

218 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Multi-Item Auctions

1

Page 2: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Multi-Item Auctions Many auctions involve sale of different types of items

Spectrum licenses in different regions, seats for a concert or event, advertising spots in different locations, assets of a company being liquidated, pieces of a procurement contract.

Today’s class: Shubik & Shapley assignment model. Focus on simultaneous sale of multiple items Assume each bidder can win just one item. Define appropriate notion of efficiency. Auction design to achieve efficient allocation.

Next week: different applications.

2

Page 3: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Connection to Matching

Assignment model: goal is to allocate different indivisible items to people with different preferences, with each person getting at most one item.

This sounds like a matching problem… Before we tried to assign the items without payments. Now, we are assuming items can be priced.

We will see that auctions can function similarly to matching algorithms – they are mechanisms that “find” efficient allocations, ideally with good incentives.

3

Page 4: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Example: Cubicle Assignment

Problem: assign cubes to economics graduate students.

Efficient assignment without prices or money. Assign random numbers, choose in order of numbers. Assignment will be Pareto efficient for any random order of

students => may be many Pareto efficient assignments.

Suppose that students can trade offices for money Will the outcome of an office draw still be Pareto efficient? What does a Pareto efficient outcome look like? What sort of approach might lead to an efficient allocation?

4

Page 5: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Assignment Model

N individuals, K items. Each individual wants at most one item. Let vik denote individual i’s value for item k.

If i gets item k and pays pk, utility is vik – pk

An assignment is a matching of items to individuals, so that each individual gets at most one item.

Connection to matching: in matching model, each individual can rank-order items, now each person has a clear monetary value for each item, and cares about value minus price.

5

Page 6: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Pareto Efficiency

An assignment is Pareto dominated if it is possible to move to a new assignment and make cash payments between individuals so that everyone is better off.

An assignment is Pareto efficient if it is not Pareto dominated.

The total value (or surplus) of an assignment that gives item k(i) to each i is v1k(1) + v2k(2) + … + vNk(N).

What’s the relationship between efficiency & total value?

6

Page 7: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Example

Three bidders A, B, C. Two items: X and Y.

X Y

A 30 60

B 20 40

C 10 20

Is it efficient to assign (A,X) and (B,Y)? What is the Pareto efficient allocation?

7

Page 8: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Efficient Assignments

Theorem. An assignment is Pareto efficient if and only if it maximizes total value.

Proof. Suppose an assignment doesn’t achieve maximum value.

Then there is another assignment of items that will lead to strictly greater total value, and it will be possible to move to this assignment and find payments between individuals so that everyone is strictly better off.

Suppose an assignment does achieve maximum bidder value. Then any change in the assignment reduces the total value, so someone must lose from this change.

8

Page 9: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

How to Allocate Efficiently?

Suppose items are initially owned by a seller that has zero value for all of the items.

Suppose the seller wants to allocate the items efficiently. Seller might also care about selling for high prices, but we won’t

focus on revenue-maximization today.

Let’s consider different mechanisms the seller might use.

9

Page 10: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Ascending (Clock) Auction

Seller has a price clock for each item. Price of each item starts at $0. At each point, buyers demand at most a single item. Prices advance for goods in “excess demand” Auction ends when no items are in excess demand.

Assumptions At any given moment, each buyer bids for the item it wants

most at the current clock prices (“truthful bidding”). Prices rise continuously rather than “jumping” discretely.

10

Page 11: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Example

Three bidders A, B, C. Two items: X and Y.

X Y

A 30 60

B 20 40

C 10 20

Efficient assignment is (A,Y) and (B,X)

11

Page 12: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

X Y

A 30 60

B 20 40

C 10 20

Bidder Values

Ascending AuctionPrice

XPrice

Y A B C

0 0 Y Y Y

0 1 Y Y Y

0 2 Y Y Y

0 3 Y Y Y

Page 13: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

X Y

A 30 60

B 20 40

C 10 20

Bidder Values

Ascending AuctionPrice

XPrice

Y A B C

0 10 Y Y X/Y

0 11 Y Y X

0 12 … Y Y X

0 20 Y X/Y X

When pX=0, pY=10, C is indifferent. Excess demand for Y means pY continues to increase, with C now favoring X.

When pX=0, pY=20, B is indifferent. Now both prices must increase together.

Page 14: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

X Y

A 30 60

B 20 40

C 10 20

Bidder Values

Ascending AuctionPrice

XPrice

Y A B C

1 20 Y Y X

1 21 Y X/Y X

2 21 Y Y X

2 22 Y X/Y X

Prices rise together, maintaining pX = pY – 20.

Page 15: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

X Y

A 30 60

B 20 40

C 10 20

Bidder Values

Ascending AuctionPrice

XPrice

Y A B C

2… 22… Y X X

9 29 Y X X

10 29 Y Y --

10 30 Y X --

Auction ends at pX=10, pY=30

Page 16: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Ascending Auction

X Y

A 30 60

B 20 40

C 10 20

Bidder Values PX PY A B C

0 0 Y Y Y

0 5 Y Y Y

0 10 Y Y X

0 15 Y Y X

0 20 Y X X

1 20 Y Y X

1 21 Y X X

2 21 Y Y X

… … … … …

10 29 Y Y --

10 30 Y X --

Summary: Ascending Auction

With continuous price increases• When pX=0, pY=20, B is

indifferent between X,Y.• If pX increases, B chooses Y. • If pY increases, B chooses X.• So pX, pY increase together

with pY - pX = 20, until auction ends at pX=10, pY=30

Page 17: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Example Auction outcome: (B,X) and (A,Y) … efficient!

17

Auction ends at prices: pX=10, pY=30. A demands Y, B demands X, C demands nothing So demand = supply at final auction prices.

Are there other prices at which market clears?

X Y

A 30 60

B 20 40

C 10 20

Page 18: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Example: market-clearing prices

X Y

A 30 60

B 20 40

C 10 20

Market also clears at pX=10, pY=35. A demands Y B demands X C demands nothing.

More alternatives: pX=10, pY=40, or pX=20, pY=50.

Can we find all the market clearing prices?18

Page 19: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Example: market-clearing pricesX Y

A 30 60

B 20 40

C 10 20

There is only one assignment consistent with market clearing Why? To clear the market we need the following to happen

C demands nothing: if C demands an item, then A,B with higher values will demand items and there is excess demand.

A, B demand an item: or else demand < supply. B demands X: if B wants Y, then pY – pX < 20, and A also wants Y.

Therefore A must demand Y to get demand = supply.

19

Page 20: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Example: mkt-clearing pricesX Y

A 30 60

B 20 40

C 10 20

Find complete set of market clearing prices for X and Y. pX ≥ 10. (C prefers nothing to X)

pX ≤ 20. (B prefers X to nothing)

pY ≥ pX + 20 (B prefers X to Y)

pY ≤ pX + 30 (A prefers Y to X)

Range of mkt-clearing prices typical with discrete goods.20

Page 21: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Example: mkt-clearing prices

21px

py

10 20

10

20

30

40

50

Auction finds lowest market-clearing prices,pX = 10 and pY = 30

Page 22: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Example

Three bidders A, B, C. Two items: X and Y.

X Y

A 35 40

B 40 60

C 70 80

What is the efficient (value-maximizing) allocation?

22

Page 23: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Ascending Auction

X Y

A 35 40

B 40 60

C 70 80

Bidder Values

23

pX pY A B C

0 0 Y Y Y

0 5 X Y Y

0 10 X Y X

1 10 X Y Y

1 11 X Y X

2 11 X Y Y

2 12 X Y X

3 12 X Y Y

… … … … …

35 44 Y Y

35 45 Y X

With continuous price increases• When pX=0, pY=10, C is

indifferent between X,Y.• If pX increases, C chooses Y. • If pY increases, C chooses X.• So pX, pY increase together

with pY - pX = 10, until auction ends at pX=35, pY=45

Page 24: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Example: mkt-clearing pricesX Y

A 35 40

B 40 60

C 70 80

As above, we can argue that for market clearing, need A to demand nothing, B to demand Y, C to demand X.

Lowest market-clearing prices: pX =35, pY = 45.

Characterize the full set of market clearing prices Set pX ≥ 35 and pY ≤ 60.

Set pY ≥ pX + 10 and pY ≤ pX + 20 24

Page 25: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Example: mkt-clearing prices

25px

py

10 20

10

20

30

40

50

Auction finds lowest market-clearing prices.

30 40 50

60

Page 26: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

The Magic of the Market

Theorem. In the assignment market setting, a simultaneous ascending auction with truthful bidding will

Finish at the lowest market clearing prices! Result in an efficient (value-maximizing) assignment

Implication: auction works as an algorithm to find market clearing prices, i.e. to find a competitive equilibrium (which is efficient).

Proof. Will show this result in two steps.

26

Page 27: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Magic of market, cont.

Proof: auction ends at market clearing prices. At start, some items have zero demand (excess supply), some

have positive demand. Prices rise for items with demand > 1. Demand for an item with demand > 1 can fall as its price rises, or

increase as other prices rise. Demand for an item with demand 1 can increase but cannot fall

because the price of the item does not go up. If an item has demand = 0, its price must still be equal to zero. No bidder exits the market if there is an item with demand =0. At the end, no item has demand > 1. If N>K, then also no items

have demand = 0, so all have demand = 1. If N<K, then some there is demand = 1 for N items, and demand =0 for K-N items.

Note: proof is a little loose about possibility of ties ... a subtle issue. 27

Page 28: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Market Clearing Prices

Theorem. Suppose we find market clearing prices (so demand equals supply), and assign the goods as they are demanded. The assignment maximizes total value.

Proof Suppose market clearing prices are p1,…,pK

Suppose at those prices each bidder i demands item k(i) Pick some alternative assignment in which i gets item z(i)

We know that for each bidder i, vik(i) – pk(i) ≥ viz(i) – pz(i)

Sum these inequalities: i vik(i) - i pk(i) ≥ i viz(i) - i pz(i)

But i pk(i) = i pz(i) = p1+…+pK, so i vik(i) ≥ i viz(i).28

Page 29: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Example: how auction works

29px

py

10 20

10

20

30

40

50

X Y

A 30 60

B 20 40

C 10 20

To the right of this line C prefers nothing to X

(Y,Y,Y)

(Y,Y,X)

(Y,X,X)

Above this line, C prefers X to Y.

Above this line, B prefers X to Y.

(Y,X,-)

(Y,Y,Y)

(Y,Y,-)

Page 30: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Summary of Results

Assignment model: N bidders, K items Each bidder wants at most one item. Bidder i’s utility if pays pk for item k: vik – pk

The Key Results

1. There is an assignment that maximizes total value and is efficient; “typically” this assignment is unique.

2. There are always market clearing prices for the items, and (item-by-item) minimal market clearing prices.

3. These market clearing prices can be reached using an ascending auction – assuming truthful bidding.

30

Page 31: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Connection to Matching At the beginning we noted a possible connection to

matching theory b/c of the one-to-one assignment. Think of each bidder as forming a preference list that

factors in both item and money preferences (think of prices as being in discrete dollar increments) Example: first choice is to pay zero for item 1, second

choice is to pay $1 for item 1, third choice is to pay $0 for item 2, fourth choice is to pay $2 for item 1, etc..

Items prefer more money, but don’t care who offers it.

31

Page 32: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Deferred acceptance?

Each bidder submits a preference list

Seller runs deferred acceptance algorithm Bidders “propose” to the items. Items accept highest offer, reject others. Bidders continue down their preference list, “raising their

bids” as the algorithm proceeds. Algorithm will eventually terminate.

32

Page 33: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Auctions & Matching

Ascending auction(Kelso & Crawford, 1982)“Bids” made by computer.

1. Bidders offer most preferred remaining acceptable purchase.

2. Items hold best bid, reject others.

3. Rejected bidder strikes offer from his/her list.

4. Process continues until no new offers or rejections.

5. Implement last held allocation.

Matching algorithm(Gale & Shapley, 1962)Offers made by computer.

1. Men make offers to most preferred remaining acceptable woman.

2. Women hold best man, reject others.

3. Rejected man strikes the woman from his/her list.

4. Process continues until no new offers or rejections.

5. Implement last held allocation.

33

Page 34: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Deferred acceptance “auction” What we know from matching theory

DA algorithm will converge to a “stable” allocation. Bidder-offering DA gives stable allocation preferred by bidders,

and is strategy-proof for the bidders.

Stability: each bidder prefers the item they get, at the price they pay, to any other item at the price it receives. So at the final item prices, demand = supply!

Completing the auction/matching link A stable allocation is a competitive equilibrium Bidder-proposing DA gives the lowest mkt-clearing prices.

34

Page 35: Multi-Item Auctions 1. Many auctions involve sale of different types of items Spectrum licenses in different regions, seats for a concert or event, advertising

Summary Assignment model captures settings where bidders with

diverse preferences must be assigned to a diverse set of goods, and pricing is allowed.

Competitive equilibrium is a natural candidate for a “good” outcome, especially with lowest market-clearing prices.

A well-designed auction can elicit willingness-to-pay from bidders and identify market clearing prices. Simultaneous ascending auction Sealed bid assignment auction

There is a close connection to matching theory, and a version of the DA can work as an ascending auction.

35