mth 254 – mr. simonds’ class - portland community...

10
MTH 254 – Mr. Simonds’ class Rectangular Double Integrals: Sections 12.1 - 12.3 | 1 Suppose that we wanted to determine the volume of the solid shown in Figure 1. The lateral sides of this solid are formed by the planes 0 x = , 0 y = , and 6 x y + = . The bottom of the solid lies on the xyplane and the top of the solid lies along the surface 3 25 z xy y = + In MTH 252, we estimated the area of planar regions by superimposing rectangles over the region and adding up the areas of these rectangles. We can estimate the volume of our solid in a similar way; we can superimpose rectangular parallelepipeds over the solid and add up the volumes of these boxes. In Figure 2, the yaxis of the region the solid projects onto the xyplane has been subdivided into 3 intervals of equal width. Over each of these intervals a rectangle has been formed between the boundaries 0 x = and 6 x y = using the values of x at the midpoint, * j y , to determine the position in which to draw the line segments determined by 0 x = and 6 x y = . This is summarized in Table 1. Table 1 k interval * k y rectangular borders ( x borders come from 0 x = and * 6 k x y = ) 1 [ ] 0, 2 1 0, 2, 0, 5 y y x x = = = = 2 [ ] 2, 4 3 2, 4, 0, 3 y y x x = = = = 3 [ ] 4, 6 5 4, 6, 0, 1 y y x x = = = = Each of the rectangular regions in Table 1 has been further partitioned into 2 rectangles of equal length – this partition happening parallel to the xaxis. Rectangular parallelepipeds are now formed using the 6 rectangles in Figure 2 as bases. The tops of the boxes are portions of the planes ( ) * * , i j z f x y = where ( ) * * , i j x y is the midpoint of rectangle ij and ( ) , 3 25 f xy xy y = + . The tops and bases of the boxes are shown in Figure 3 and a facsimile of the 6 boxes is shown in Figure 4. The top of the actual solid is shaded in Figure 5. Notice how each of the rectangular parallelepipeds has some volume that lies outside the actual solid while part of the actual solid does not lie inside any of the rectangular parallelepipeds. The more balanced these two discrepancies, the better our estimate. Figure 2 Figure 3 Figure 5 Figure 4 Figure 1

Upload: others

Post on 25-Jul-2020

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MTH 254 – Mr. Simonds’ class - Portland Community Collegespot.pcc.edu/~ssimonds/mth_254/lecture_notes_and_group_work/we… · In Figure 2, the y‐axis of the region the solid

MTH 254 – Mr. Simonds’ class

R e c t a n g u l a r D o u b l e I n t e g r a l s : S e c t i o n s 1 2 . 1 - 1 2 . 3 | 1

Suppose that we wanted to determine the volume of the solid shown  in Figure 1.  The  lateral  sides  of  this  solid  are  formed  by  the  planes  0x = ,  0y = ,  and 

6x y+ = .  The bottom of the solid lies on the xy‐plane and the top of the solid lies 

along the surface  3 25z x y y= − +   In MTH 252, we estimated the area of planar regions by superimposing rectangles over the region and adding up the areas of these rectangles.  We can estimate the volume  of  our  solid  in  a  similar  way;  we  can  superimpose  rectangular parallelepipeds over the solid and add up the volumes of these boxes.  In  Figure 2,  the  y‐axis of  the  region  the  solid projects onto  the  xy‐plane has been  subdivided  into  3 intervals  of  equal  width.    Over  each  of  these  intervals  a  rectangle  has  been  formed  between  the 

boundaries  0x =  and  6x y= −  using the values of  x  at the midpoint,  *jy , to determine the position 

in which to draw the line segments determined by  0x =  and  6x y= − .  This is summarized in Table 1.   Table 1 

k  interval  *ky  

rectangular borders  

( x  borders come from  0x =  and  *6 kx y= − ) 

1  [ ]0,2   1  0, 2, 0, 5y y x x= = = =  

2  [ ]2,4   3  2, 4, 0, 3y y x x= = = =  

3  [ ]4,6   5  4, 6, 0, 1y y x x= = = =  

  Each of the rectangular regions in Table 1 has been further partitioned into 2 rectangles of equal length – this partition happening parallel to the x‐axis.  Rectangular parallelepipeds are now formed using the 6 rectangles in Figure 2 as bases.  The tops of the 

boxes are portions of  the planes  ( )* *,i jz f x y=  where  ( )* *,i jx y   is  the midpoint of  rectangleij  and 

( ), 3 25f x y x y y= − + .  The tops and bases of the boxes are shown in Figure 3 and a facsimile of the 

6 boxes is shown in Figure 4.  The top of the actual solid is shaded in Figure 5.  Notice how each of the rectangular parallelepipeds has some volume that  lies outside the actual solid while part of the actual solid  does  not  lie  inside  any  of  the  rectangular  parallelepipeds.    The  more  balanced  these  two discrepancies, the better our estimate.          

Figure 2

Figure 3 Figure 5 Figure 4

Figure 1

Page 2: MTH 254 – Mr. Simonds’ class - Portland Community Collegespot.pcc.edu/~ssimonds/mth_254/lecture_notes_and_group_work/we… · In Figure 2, the y‐axis of the region the solid

MTH 254 – Mr. Simonds’ class

2 | R e c t a n g u l a r D o u b l e I n t e g r a l s : S e c t i o n s 1 2 . 1 - 1 2 . 3

Let’s go ahead and use this scheme to estimate the volume of the solid.  Let’s use Figure 6 and Table 2 to help us come up with our estimate.  Table 2 

,i j   x‐interval  y‐interval  ( )* *,i jx y   ( )* *,i jf x y   ijAΔ  

1,1           

2,1            

1,2            

2,2            

1,3            

2,3            

                      

Figure 6

Page 3: MTH 254 – Mr. Simonds’ class - Portland Community Collegespot.pcc.edu/~ssimonds/mth_254/lecture_notes_and_group_work/we… · In Figure 2, the y‐axis of the region the solid

MTH 254 – Mr. Simonds’ class

R e c t a n g u l a r D o u b l e I n t e g r a l s : S e c t i o n s 1 2 . 1 - 1 2 . 3 | 3

Let’s use  Figure 7  to help us  set up  a double  integral of  form  ( ),R

f x y dxdy∫∫   that  finds  the  exact 

volume of our solid.  Let’s evaluate the integral by hand.    In  this  form,  the  y‐limits  of  integration  are  points  on  the  y‐axis  and  the  x‐limits  of  integration  are 

boundary curves of form  ( )x L y=  and  ( )x R y= . 

                                       

Figure 7

Page 4: MTH 254 – Mr. Simonds’ class - Portland Community Collegespot.pcc.edu/~ssimonds/mth_254/lecture_notes_and_group_work/we… · In Figure 2, the y‐axis of the region the solid

MTH 254 – Mr. Simonds’ class

4 | R e c t a n g u l a r D o u b l e I n t e g r a l s : S e c t i o n s 1 2 . 1 - 1 2 . 3

Let’s use  Figure 8  to help us  set up  a double  integral of  form  ( ),R

f x y dydx∫∫   that  finds  the  exact 

volume of our solid.  Let’s evaluate the integral on our calculators.    In  this  form,  the  x‐limits  of  integration  are  points  on  the  x‐axis  and  the  y‐limits  of  integration  are 

boundary curves of form  ( )y B x=  and  ( )y T x= . 

                                  

Figure 8

Page 5: MTH 254 – Mr. Simonds’ class - Portland Community Collegespot.pcc.edu/~ssimonds/mth_254/lecture_notes_and_group_work/we… · In Figure 2, the y‐axis of the region the solid

MTH 254 – Mr. Simonds’ class

R e c t a n g u l a r D o u b l e I n t e g r a l s : S e c t i o n s 1 2 . 1 - 1 2 . 3 | 5

Consider  ( )2 5 2

3 2

xy e y dy dx−

−∫ ∫ . Let’s  illustrate  the  region of  integration on Figure 9, paying close 

attention to what are axis limits and what are boundary curve limits.   Let’s calculate the value of the integral by hand.  Let’s illustrate on Figure 10 what it is, exactly, that we just calculated.                                          

Figure 9

Figure 10

Page 6: MTH 254 – Mr. Simonds’ class - Portland Community Collegespot.pcc.edu/~ssimonds/mth_254/lecture_notes_and_group_work/we… · In Figure 2, the y‐axis of the region the solid

MTH 254 – Mr. Simonds’ class

6 | R e c t a n g u l a r D o u b l e I n t e g r a l s : S e c t i o n s 1 2 . 1 - 1 2 . 3

Let’s use our calculator to find the exact value of 26 36 2

6 0

xx y dy dx

−∫ ∫ .  Let’s clearly label the region of 

integration on Figure 11.                    

 Let’s use our calculator to find the exact value of 26 36 2

6 0

xx y dy dx

−∫ ∫  after first reversing the order of 

integration.  Let’s clearly label the region of integration on Figure 12. 

Figure 12

Prep Work

Figure 11

Page 7: MTH 254 – Mr. Simonds’ class - Portland Community Collegespot.pcc.edu/~ssimonds/mth_254/lecture_notes_and_group_work/we… · In Figure 2, the y‐axis of the region the solid

MTH 254 – Mr. Simonds’ class

R e c t a n g u l a r D o u b l e I n t e g r a l s : S e c t i o n s 1 2 . 1 - 1 2 . 3 | 7

The  curves  xy 2=  and 2

2xy =  are  shown  in  figures 14 and 

15.   In Figure 13, these curves have been  laterally extended up to the plane  2=z .  We are going to set up both of the double integrals  that  calculate  this  volume.    We  are  also  going  to evaluate each double integral (and hopefully get the same value both times! ☺)                  

Figure 14

Figure 13

Figure 14

Page 8: MTH 254 – Mr. Simonds’ class - Portland Community Collegespot.pcc.edu/~ssimonds/mth_254/lecture_notes_and_group_work/we… · In Figure 2, the y‐axis of the region the solid

MTH 254 – Mr. Simonds’ class

8 | R e c t a n g u l a r D o u b l e I n t e g r a l s : S e c t i o n s 1 2 . 1 - 1 2 . 3

On  this page we are going  to  find both double  integrals  that calculate  the  volume  of  the  tetrahedron  formed  in  the  first octant by the plane in Figure 15.  We will then use technology to calculate each double integral and confirm that we get the same value twice.  ☺              

Figure 16

The Tetrahedron in question

Figure 15

Figure 17

Page 9: MTH 254 – Mr. Simonds’ class - Portland Community Collegespot.pcc.edu/~ssimonds/mth_254/lecture_notes_and_group_work/we… · In Figure 2, the y‐axis of the region the solid

MTH 254 – Mr. Simonds’ class

R e c t a n g u l a r D o u b l e I n t e g r a l s : S e c t i o n s 1 2 . 1 - 1 2 . 3 | 9

The  top  of  the  solid  outlined  in  Figure  118  is  the plane  xz = .  The curved boundary in the xy‐plane is 

the function  ( )lny x= .  We are going to set up both 

double  integrals  that  calculate  the  volume  of  the solid.    We  are  (mercifully)  going  to  evaluate  the double integrals using technology.  ☺                     

Figure 18

Figure 19

Figure 20

Page 10: MTH 254 – Mr. Simonds’ class - Portland Community Collegespot.pcc.edu/~ssimonds/mth_254/lecture_notes_and_group_work/we… · In Figure 2, the y‐axis of the region the solid

MTH 254 – Mr. Simonds’ class

10 | R e c t a n g u l a r D o u b l e I n t e g r a l s : S e c t i o n s 1 2 . 1 - 1 2 . 3

Finally, we are going to calculate 24 2

0 /2

y

xe dy dx−∫ ∫  after first reversing the order of integration. 

                                           

Figure 21

Figure 22