msc math complex variables

Upload: nadia-f-mohammad-al-roshdee

Post on 02-Jun-2018

268 views

Category:

Documents


3 download

TRANSCRIPT

  • 8/10/2019 MSc Math Complex Variables

    1/30

    Mathematical PhysicsMSc courseDr. Ali Abdulateef Kareem

  • 8/10/2019 MSc Math Complex Variables

    2/30

    In the early days of modern mathematics, people were puzzled by

    equations like this one:

    For this reason, mathematicians dubbed an imaginary number. We

    abbreviate this by writing i in its place, that is:

    Now have solutions in terms of complex numbers, i.e

    2 1 0x

    1

    1i

    x i

    Which have no solution in the real number system

    It is useful to note that

    2

    2 4 2

    2

    3 2

    1 3

    2 3

    1, , 1

    1 1 1, 1,

    i i i i

    ii i i i

    ii

    i

    i i

    i i

    i

  • 8/10/2019 MSc Math Complex Variables

    3/30

    Functions of a complex variable provide us some powerfuland widely useful tools in in theoretical physics.

    Some important physical quantities are complex variables(the wave-function )

    Evaluating definite integrals.

    Integral transforms

    , i kx t x t A e

    representing a wave travelling in the positivexdirection,

    recall that: cos sinix

    e ix x

  • 8/10/2019 MSc Math Complex Variables

    4/30

    The familiar numbers, such as 1, 1/3, 2, and which arerepresented by points on a line, will be referred to as real numbers.

    A complex number is an expression of the form

    z x iy

    where xandyare real numbers. The number xis called the real part

    of zand is writtenRex z

    The numbery, despite the fact that it is also a real number, is called

    the imaginary part of zand is written

    Imy z

    If x= 0, then z= iy is a pure imaginary number.

    Two complex numbers are equal if and only if their real parts are

    equal and their imaginary parts are equal.

  • 8/10/2019 MSc Math Complex Variables

    5/30

    A complex number (The sum of real and an imaginary umber) can beplotted on a plane with two perpendicular coordinate axes

    The horizontal x-axis, called the real axis

    The vertical y-axis, called the imaginary axis.

    Each complex number z = x + iy corresponds to the point P(x, y)in the xy-plane.

    r is the absolute value or modulus of z, then, is just the distancefrom the point P(x, y) to the origin.

    2 2z r x y

    *

    2 2

    ( )( )zz x iy x iy

    x y

    Note that :

    x

    yP(x, y)

    z r

    Re

    Im

    O

    ,z z

    z x iy

  • 8/10/2019 MSc Math Complex Variables

    6/30

    There is a further interest and significance if we make use the usualpolar coordinates in the xy-plane for representation the complex

    numbers which gives

    x

    yP(x, y)

    z r

    Re

    Im

    O

    cos , sinx r y r

    siny r

    cosx r

    2 2

    1tan , if 0, tan

    r x y

    y yx

    x x

    2 2 2 2sin , cos

    y x

    x y x y

    z x iy cos sinz r i or r cis

  • 8/10/2019 MSc Math Complex Variables

    7/30

    From the complex number we have2 4z i

    4 24 16 20, sin , cos

    20 20z r

    2 4z i

    2 4z i The complex conjugate of

    orz z 2 4z i

    Then 20, 20z z

    Therefore, =z z

    In other words in the diagram, the

    complex conjugate is the mirror image

    of z in the real axis

  • 8/10/2019 MSc Math Complex Variables

    8/30

    1 2 1 2

    1 2 1 2

    1 1

    2 2

    2

    . .

    (a)

    (b)

    (c)

    (d)

    (e)

    (f)

    z z z z

    z z z z

    z z

    z z

    z z

    z z

    z z z

  • 8/10/2019 MSc Math Complex Variables

    9/30

    Example:Find the polar representation 1z i

    Solution:

    cos sinz r i

  • 8/10/2019 MSc Math Complex Variables

    10/30

    Addition and Subtraction of Complex Numbers

    The complex numbers satisfy the commutative and associativelaws

    (10 4i) (5 2i)

    = (10 5) + [4 (2)]i

    = 5 2i

    (4 6i) + (3 + 7i)

    = [4 + (3)] + [6 + 7]i

    = 1 + i

    1 2 1 1 2 2

    1 2 1 2 1 2

    z z x iy x iy

    z z x x i y y

    1 1 1 2 2 2If and are two complex numbersthen

    z x iy z x iy

    1 2 2 1

    1 2 3 1 2 3

    z z z z

    z z z z z z

    Examples

  • 8/10/2019 MSc Math Complex Variables

    11/30

    Multiplication of Complex Numbers

    The product of and is defined as

    1 2 1 1 2 2

    1 2 1 2 1 2 2 1

    ( )( )

    = ( ) ( ).

    z z x iy x iy

    x x y y i x y x y

    Division of Complex NumbersThe division of and is defined as1z

    2 2 1 12 2 2

    1 1 1 1 1 1 1

    x iy x iyz x iy

    z x iy x iy x iy

    2

    2 1 2 1 2 1 2 1

    2 2 2

    1 1

    x x x iy iy x i y y

    x i y

    2 1 2 1 2 1 2 12 2

    1 1

    x x y y y x x y i

    x y

    2 1 2 1 2 1 2 1

    2 2 2 2

    1 1 1 1

    x x y y y x x yi

    x y x y

    Denominatorconjugate

    2z

  • 8/10/2019 MSc Math Complex Variables

    12/30

    4(a)

    2 3

    i

    i

    4 2 3 5 14 5 14

    2 3 2 3 13 13 13

    i i ii

    i i

    1 2 2(b)

    3 4 5

    i i

    i i

    1 2 3 4 2 5

    3 4 3 4 5 5

    5 10 5 10 2

    25 25 5

    i i i i

    i i i i

    i i

    H.W.30 193

    2 1

    i i

    i

    Express each of the following complex numbers in polar form.

    ( ) 2 2 3 , ( ) 5 5 , ( ) 6 2 , ( ) 3a i b i c i d i

  • 8/10/2019 MSc Math Complex Variables

    13/30

    We know that

    find

    1 1 1 1 2 2 2 2andcos sin cos sinz r i z r i 1

    1 2

    2

    andz

    z z

    z

    1 1 11

    2 2 2 2

    cos sin

    cos sin

    r iz

    z r i

    2 2

    2 2

    cos sin

    cos sin

    i

    i

    1 2 1 2 1 2 1 212 2

    2 2 2

    cos cos sin sin sin cos cos sin

    cos sin

    ir

    r

    1 1 1 2 1 22 2

    cos sinz r

    iz r

    1 2 1 1 1 2 2 2cos sin cos sinz z r i r i 1 2 1 2 1 2 1 2 1 2cos cos sin sin sin cos cos sinr r i

    1 2 1 2 1 2 1 2cos sinz z r r i

  • 8/10/2019 MSc Math Complex Variables

    14/30

    Find the product of4(cos50 sin 50 ) and 2(cos10 sin10 ).i i

    4(cos50 isin50) 2(cos10 isin10 )

    4 2 cos(50 10) isin(50 10)

    8(cos60 isin60)

    8 1

    2 i

    3

    2

    4 4i 3

    Find the division of 16(cos70 sin 70 ) 16= cos(70 40 ) sin(70 40 )4(cos40 sin 40 ) 44cos30 sin30

    3 14 2 3 2

    2 2

    i ii

    i

    i i

  • 8/10/2019 MSc Math Complex Variables

    15/30

    We know 1 2 1 2 1 2 1 2cos sinz z r r i

    If we have a set of n complex numbers, a generalization of the

    above equation leads to:

    1 2 1 2 1 2 1 2cos sinn n n nz z z r r r i

    putting

    1 2 1 2

    1 and givesn n

    r r r

    cos sin cos sinnnz i n i n

    1 1cos sin cos sin .nn n

    z r i r n i n

    DeMoivres

    theorem

    n

    i nie e The results is equivalent to the statement

    In general

  • 8/10/2019 MSc Math Complex Variables

    16/30

    First, find trigonometric notation for (

    1

    i) using

    Theorem 1 2 cos225 sin 225i i

    5

    5

    5

    1 2 cos 225 sin 225

    using De Moiver's theorem we get

    cos( ) sin( )

    4 2 cos112

    2 5 225 5 22

    5 sin1125

    2 24 2

    5

    2 2

    4 4

    i i

    i

    i

    i

    i

    52 , 225

    4r

    cos sinz r i

  • 8/10/2019 MSc Math Complex Variables

    17/30

    2 3 4

    12! 3! 4!

    x x x xe x Substitute ixforx.

    2 3 4 5 61

    2! 3! 4! 5! 6!

    ix ix ix ix ix ixe ix

    2 2 3 3 4 4 5 5 6 6

    12! 3! 4! 5! 6!

    ix i x i x i x i x i xe ix

    2 3 4 5 6

    12! 3! 4! 5! 6!

    ix x ix x ix xe ix

    2 4 6 3 5

    12! 4! 6! 3! 5!

    xi x x x x xe i x

    Factor out the iterms.

  • 8/10/2019 MSc Math Complex Variables

    18/30

    2 4 6 3 5

    12! 4! 6! 3! 5!

    ix x x x x xe i x

    This is the series for

    cosine.

    This is the series

    for sine.

    cos sinz r i or r cis

    cos sinix

    e ix x Eulers Formula

    Using EulerMs formula, the polar form of a complex number canbe rewritten as :

    (cos sin )

    i

    z r i x y

    z r e

  • 8/10/2019 MSc Math Complex Variables

    19/30

    Show that

    (a) (b)

    cos 2

    i ie e

    sin

    2

    i ie e

    i

    Solution

    we have cos sin and cos sini ie i e i

    (a) Adding (1) and (2)

    2cos or cos2

    i ii i e ee e

    (a) subtracting (2) and (1)

    2 sin or sin2

    i i

    i i e ee e ii

    H.W: Prove

    (a) (b)33 1

    sin sin sin 3 ,4 4

    41 1 3

    sin cos 4 cos 2 .8 2 8

  • 8/10/2019 MSc Math Complex Variables

    20/30

    If , then to each value of wthere correspondsone value of z. Conversely, to a given there correspond

    precisely n distinct values of w. Each of these values is called annth rootof z, and we write

    ( 1, 2, )nz w n 0z

    nw z

    Hence this symbol is multivalued, namely, n-valued. The n

    values of can be obtained as follows.n z

    andcos sin cos sinz r i w R i Then the equation becomes, by De Moivresformulanw z

    cos sin nnw R i cos sin cos sinnR n i n z r i

    We write zand win polar form

  • 8/10/2019 MSc Math Complex Variables

    21/30

    i.e. cos sin cos sinnR n i n r i

    Form the Equating of these equations, The modulus

    n nR r R r

    and the arguments

    thu2

    2 , s k

    n kn n

    where kis an integer. For we get ndistinct values

    of w. Further integers of kwould give values already obtained. For

    instance,

    0, 1, 2, ..., 1k n

    gives 2 / 2k n k n

    Re

    Im

    4

  • 8/10/2019 MSc Math Complex Variables

    22/30

    hence the wcorresponding to k = 0, etc. Consequently,

    for , has the n distinct values

    n z

    0z

    2 2cos sinn n

    k kz r i

    n n

    where . These n values lie on a circle of radius

    with center at the origin and constitute the vertices of

    polygon of n sides.

    0, 1, 2, ..., 1k n n r

  • 8/10/2019 MSc Math Complex Variables

    23/30

    Find the square roots of

    Trigonometric notation:

    For k= 0, root is

    For k= 1, root is

    1 3i

    1 3 2 cos60 sin 60i i

    11

    2260 360 60 360

    2 cos60 sin 60 2 cos sin2 2 2 2

    2 cos 30 180 sin 30 180

    i k i k

    k i k

    2 cos30 isin30

    2 cos210 isin210

    2 2cos sinn n

    k kz r i

    n n

  • 8/10/2019 MSc Math Complex Variables

    24/30

    Find all fourth roots of Write the roots inrectangular form.

    Write in trigonometric form.

    Here r= 16 and = 120. The fourth roots of this number haveabsolute value

    8 8 3.i

    8 8 3 16 cis 120i

    4

    16 2.120 360

    30 904 4

    kk

    0 30 90 30

    1 30 90 120

    2 30 90 210

    3 30 90

    0

    1

    2

    3 300

    k

    k

    k

    k

    There are four fourth roots, let k= 0, 1, 2 and 3.

  • 8/10/2019 MSc Math Complex Variables

    25/30

    Using these angles, the fourth roots are:

    2 cis 30 , 2 cis 120 ,

    2 cis 210 , 2 cis 300

    written in rectangular form

    3

    1 3

    3

    1 3

    i

    i

    i

    i

    The graphs of the roots areall on a circle that has center

    at the origin and radius 2.

    13

  • 8/10/2019 MSc Math Complex Variables

    26/30

    Find each of the indicated roots and locate themgraphically.

    1 41 3

    1 , ( ) 2 3 2a i b i

    Find the square roots of 15 8i

  • 8/10/2019 MSc Math Complex Variables

    27/30

    When dealing with integrals that have complex numbers wetreat the imaginary number ias a constant

    Example: The integral 1 i xe dx

    Let 1

    then 11

    u i x

    dudu i dx dx

    i

    Making the substitution yields

    11

    .1 1 1

    i xuu e ee du

    i i i

    Removing the complex denominator by multiplying it by the conjugate

    gives

    111 1

    1 1 2

    i xi xe i i

    ei i

    the constant will be a complex number as well thus 1 2c c ic 1 1

    1 2

    1

    2

    i x i xi

    e dx e c ic

  • 8/10/2019 MSc Math Complex Variables

    28/30

    Some real-valued integrals can be solved using complex-valued

    integrals.Integration such as and canbe solved using integration by parts.

    Using the integral we can solve integration easily

    cosxe x dx sinxe x dx 1 i x

    e dx

    rearrangement of the integral and its value 1 i xe dx 1 1 212

    i xie c ic

    cos sin

    cos sin

    x ix

    x

    x x

    e e dx

    e x i x dx

    e x dx i e x dx

    Firstly, rearranging and applying Euler's Formula gives 1 i xe dx

  • 8/10/2019 MSc Math Complex Variables

    29/30

    Rearranging the value of the integral yields 1 1 21

    2

    i xie c ic

    11 21

    2 2i xi e c ic

    1 2

    1 2

    1 2

    1 2

    1 2

    1

    1cos sin

    2 2

    1cos sin cos sin2 2

    1 1cos sin cos sin

    2 2

    1 1 1 1cos sin cos sin

    2 2 2 21 1

    cos sin sin cos2 2

    1 1cos sin

    2

    x

    x x

    x x

    x x x x

    x x

    x

    ie x i x c ic

    ie x i x e x i x c ic

    e x i x e i x x c ic

    e x i e x i e x e x c ic

    e x x c i e x x ic

    e x x c i

    2sin cos

    2

    xe x x c

  • 8/10/2019 MSc Math Complex Variables

    30/30

    Since the integral and its value

    rearranged, are equivalent, it means that the real parts areequal to each other, as well as the imaginary parts

    cos sinx x

    e x dx i e x dx

    Therefore

    1cos cos sin

    21

    sin sin cos2

    x x

    x x

    e x dx e x x c

    e x dx e x x c

    cos sinx xe x dx i e x dx 1 2

    1 1cos sin sin cos

    2 2

    x xe x x c i e x x c