mr. kokkotis panagiotis - h00177171_presentation

35
Comparative Analysis of Energy Storage Methods in Smart Grids with Distributed Energy Production. An Approach for Micro Grids to Medium Size Grids. Student: Kokkotis Panagiotis – H00177171 Supervisor: Prof. Dr. Psomopoulos Constantinos September 2015 1

Upload: panagiotis-kokkotis

Post on 19-Feb-2017

101 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Mr. Kokkotis Panagiotis - H00177171_presentation

1

Comparative Analysis of Energy Storage Methods in Smart Grids with Distributed Energy Production. An Approach for Micro Grids to Medium Size

Grids.

Student: Kokkotis Panagiotis – H00177171Supervisor: Prof. Dr. Psomopoulos Constantinos

September 2015

Page 2: Mr. Kokkotis Panagiotis - H00177171_presentation

2

Introduction

Page 3: Mr. Kokkotis Panagiotis - H00177171_presentation

3

Introduction

Makansi et al., 2002

Page 4: Mr. Kokkotis Panagiotis - H00177171_presentation

4

Introduction

Page 5: Mr. Kokkotis Panagiotis - H00177171_presentation

5

OutlineAnalysis of

ESSESS

ParametersElectric Power

Systems

ESS Comparison

Implementation on Tilos Island

Faults Issues

Discussion Conclusions

Page 6: Mr. Kokkotis Panagiotis - H00177171_presentation

6

Electric Power Systems (1/3)Generation• Lignite fired power plants• Natural gas power plants• Hydro plants• Nuclear plants• Diesel oil plants• RES

Transmission• Includes

• High Voltage Network• Couplings• Step Down Transformers

• Operates in HV. leading to lower losses

• P=I*V, thus increasing Voltage. Lowers current

Distribution• Includes

• Power lines• Step Down Transformers

• Losses are about 30% more than in Transmission

• Extensive Network• Aerial (cheaper. faster fault treatment)• Underground (when limited space.

aesthetics)

University of Idaho

Page 7: Mr. Kokkotis Panagiotis - H00177171_presentation

7

Electric Power Systems (2/3)Faults in Networks• Short Circuits• On Motors• On Generators• Phase opposition• Over voltage due to lighting strike• Switching surges• Overloads• Reversal of flow• Voltage Variation

Switchgear• Oil• Air• Gas (SF6)• Hybrid• Vacuum• Carbon Dioxide

Source: www.flir.com

Page 8: Mr. Kokkotis Panagiotis - H00177171_presentation

8

Electric Power Systems (3/3)Connection to MV must strictly follow these guidelines:• Voltage difference must be between ±10%

of the nominal• Frequency difference must be between

±0.5Hz of the nominal• Polar angle must be between ±10 o

Installations must be equipped with local or remote decouplers and switches

Page 9: Mr. Kokkotis Panagiotis - H00177171_presentation

9

Energy Storage Systems (1/5)

• Battery Energy Storage• Lead-Acid• Nickel• Sodium-sulfur• Lithium• Metal-air

• Flow Battery• Superconducting

Magnetic • Super Capacitor

Electrochemical energy

• Compressed Air• Liquid Air or Cryogenic• Hydro and Pumped Hydro• Flywheel

Mechanical energy

• HydrogenChemical energy

• Sensible Heat• Latent Heat• Thermochemical

Thermal energy

Page 10: Mr. Kokkotis Panagiotis - H00177171_presentation

10

Energy Storage Systems (2/5)

Page 11: Mr. Kokkotis Panagiotis - H00177171_presentation

11

Energy Storage Systems (3/5)

Source: ESA

Page 12: Mr. Kokkotis Panagiotis - H00177171_presentation

12

Energy Storage Systems (4/5) Power Rating (MW) Discharge

Duration (h)Self-Discharge

per daySuitable Storage

Duration

Energy Density (Wh/kg)

Energy Density (Wh/L)

Power Density (W/kg)

CAES 1-400 2-100 Small Hours-Months 30-60 3-6

Flywheel 0.002-20 s-15m 100% seconds-minutes 5-130 20-80 400-1600

Fuel Cell 0.000001-50 s-24+ Almost Zero Hours-Months 600-1200 500-3000 5-500

Lead-Acid 0.001-50 h 0.1-0.3% Minutes-Days 30-50 50-80 75-300

Li-ion 0.1-50 0.1-5 0.1-0.3% Minutes-Days 75-250 200-600 100-5000

Metal-Air 0.02-10 3-4 Very Small Hours-Months 110-3000 500-10000

NaS 0.05-34 5-8 ~20% Seconds-hours 150-240 150-240 150-230

Ni-Cd 0-46 s-h 0.2-0.6% Minutes-Days 50-75 60-150 150-230

NiMH 0.01-Several MW s-h 30-110 140-435 250-2000

PHES 100-5000 10-100 Very Small Hours-Months 0.5-15 0.5-1.5

SMES 0.01-10 s Almost Zero Hours-Months 0.5-5 0.2-2.5 500-2000

Sodium Nickel Chloride (Zebra) 0.001-1 min-8h ~15% Seconds-hours 100-140 150-280 130-245

SuperCaps 0.001-10 s 20-40% Seconds-hours 0.05-30 10000+ 50-5000+

TES 0.1-300 1-24+ 0.5-1% Minutes-Days 80-250 50-500 10-30

VRB 0.005-1.5 s-8h 10-75 15-33

ZnBr 0.025-1 s-4h Small Hours-Months 60-85 30-60 50-150

Page 13: Mr. Kokkotis Panagiotis - H00177171_presentation

13

Energy Storage Systems (5/5) Efficiency

(%)Durability

(years) Durability (Cycles) Capital cost ($/kW)

capital cost ($/kWh)

Tech Maturity (1-lower to 5-higher) Availability (%)

CAES 40-80 20-100 30000+ 400-800 2-50 5 65-96

Flywheel 80-99 15-20 1000000 250-350 1000-5000 4 99.9+

Fuel Cell 20-70 5-15 1000-10000 10000+ 6000-20000 2 90

Lead-Acid 70-92 5-15 500-1200 300-600 200-400 5 99.997

Li-ion 85-90 5-20 1000-10000 1200-4000 600-2500 4 97+

Metal-Air 40-60 100-300 100-250 10-60 1

NaS 75-90 15 2000-5000 1000-3000 300-500 4 99.98

Ni-Cd 60-70 5-20 1000-2500 500-1500 800-1500 4 99+

NiMH 60-66 3-15 200-1500 4 99+

PHES 70-87 40-100 12000-30000+ 600-2000 5-100 5 95+

SMES 85-99 20+ 100000+ 200-300 1000-10000 3 99.9+

Sodium Nickel Chloride (Zebra) ~90 8-14 2500-3000 150-300 100-200 4 99.9+

SuperCaps 97+ 20+ 1000000+ 100-300 300-2000 3 99.9+

TES 30-60 10-40 2000-14600 200-300 3-60 3-4 90

VRB 65-85 10-20 13000+ 600-1500 150-1000 3 96-99

ZnBr 75-80 5-20 ~2000 700-2500 150-1000 2 94

Compiled Data by the Author

Page 14: Mr. Kokkotis Panagiotis - H00177171_presentation

14

Case Study; Tilos Island (1/14)

Source: Google Maps Source: Wikipedia

Page 15: Mr. Kokkotis Panagiotis - H00177171_presentation

15

Case Study; Tilos Island (2/14)

Page 16: Mr. Kokkotis Panagiotis - H00177171_presentation

16

Case Study; Tilos Island (3/14)

Source: SEA Lab, TEI-P, 2015

Page 17: Mr. Kokkotis Panagiotis - H00177171_presentation

17

Case Study; Tilos Island (4/14)

Page 18: Mr. Kokkotis Panagiotis - H00177171_presentation

18

Case Study; Tilos Island (5/14)04

.04.

15

06.0

4.15

07

.04.

15

08.0

4.15

10

.04.

15

11.0

4.15

13

.04.

15

14.0

4.15

15

.04.

15

17.0

4.15

18

.04.

15

19.0

4.15

21

.04.

15

22.0

4.15

24

.04.

15

25.0

4.15

26

.04.

15

28.0

4.15

29

.04.

15

30.0

4.15

02

.05.

15

03.0

5.15

05

.05.

15

06.0

5.15

07

.05.

15

09.0

5.15

10

.05.

15

11.0

5.15

13

.05.

15

14.0

5.15

16

.05.

15

17.0

5.15

18

.05.

15

20.0

5.15

21

.05.

15

22.0

5.15

24

.05.

15

25.0

5.15

27

.05.

15

28.0

5.15

29

.05.

15

31.0

5.15

01

.06.

15

02.0

6.15

04

.06.

15

05.0

6.15

07

.06.

15

08.0

6.15

09

.06.

15

11.0

6.15

12

.06.

15

13.0

6.15

15

.06.

15

16.0

6.15

0

60

120

180

240

300

360

420

480

540

600

Load Measurements_Tilos (4/4/2015 to 17/6/2015)

Date

Load

Dem

and

(kW

)

Source: SEA Lab, TEI-P, 2015

Page 19: Mr. Kokkotis Panagiotis - H00177171_presentation

19

Case Study; Tilos Island (5/14)04

.04.

15

06.0

4.15

07

.04.

15

08.0

4.15

10

.04.

15

11.0

4.15

13

.04.

15

14.0

4.15

15

.04.

15

17.0

4.15

18

.04.

15

19.0

4.15

21

.04.

15

22.0

4.15

24

.04.

15

25.0

4.15

26

.04.

15

28.0

4.15

29

.04.

15

30.0

4.15

02

.05.

15

03.0

5.15

05

.05.

15

06.0

5.15

07

.05.

15

09.0

5.15

10

.05.

15

11.0

5.15

13

.05.

15

14.0

5.15

16

.05.

15

17.0

5.15

18

.05.

15

20.0

5.15

21

.05.

15

22.0

5.15

24

.05.

15

25.0

5.15

27

.05.

15

28.0

5.15

29

.05.

15

31.0

5.15

01

.06.

15

02.0

6.15

04

.06.

15

05.0

6.15

07

.06.

15

08.0

6.15

09

.06.

15

11.0

6.15

12

.06.

15

13.0

6.15

15

.06.

15

16.0

6.15

0

60

120

180

240

300

360

420

480

540

600

Load Measurements_Tilos (4/4/2015 to 17/6/2015)

Date

Load

Dem

and

(kW

)

Page 20: Mr. Kokkotis Panagiotis - H00177171_presentation

20

Case Study; Tilos Island (6/14)

0:00 2:24 4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:000

100200300400

16.04.15 (M1)

Time (HH:MM)

Pow

er (k

W)

0:00 2:24 4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:000

50

100

150

16.04.15 (M2)

Time (HH:MM)

Pow

er (k

W)

Page 21: Mr. Kokkotis Panagiotis - H00177171_presentation

21

Case Study; Tilos Island (6/14)

0:00 2:24 4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:000

100200300400

16.04.15 (M1)

Time (HH:MM)

Pow

er (k

W)

0:00 2:24 4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:000

50

100

150

16.04.15 (M2)

Time (HH:MM)

Pow

er (k

W)

Page 22: Mr. Kokkotis Panagiotis - H00177171_presentation

22

Case Study; Tilos Island (7/14)

11:48 11:51 11:54 11:57 12:00 12:02 12:05 12:08 12:110

50

100

150

200

250

300

350

Energy "lost"

Time (HH:MM:SS)

Pow

er (k

W)

Page 23: Mr. Kokkotis Panagiotis - H00177171_presentation

23

Case Study; Tilos Island (7/14)

Page 24: Mr. Kokkotis Panagiotis - H00177171_presentation

24

Case Study; Tilos Island (8/14)

Time kVAkW

kVAkW

87% 87%

11:50

M1

245.11 213.25

M2

99.25 86.34

12:00 0 0 0 0

12:10 353.47 307.52 132.75 115.49

Page 25: Mr. Kokkotis Panagiotis - H00177171_presentation

25

Case Study; Tilos Island (8/14)

lostPower before blackout+Power after blackoutE *Time

2

Therefore, for M1 we have:

M1 M1 M1lost lost lost

213.246 307.522 1198secE * E 260.384kW*0.33h E 85.93kWh2 3600sec/ h

And for M2, accordingly:

M2 M2lost lost

86.343 115.494 1198secE * E 33.3kWh2 3600sec/ h

Time kVAkW

kVAkW

87% 87%

11:50

M1

245.11 213.25

M2

99.25 86.34

12:00 0 0 0 0

12:10 353.47 307.52 132.75 115.49

Page 26: Mr. Kokkotis Panagiotis - H00177171_presentation

26

Case Study; Tilos Island (9/14)Load Needs during Measured Period

M1 (kWh) M2 (kWh)

16.04.2015 85.93 33.3

25-26.04.2015 245.55 66.7

30.04.15 (1) 68.69 27.69

30.04.15 (2) 88.06 31.67

12.05.15 171.35 70.02

24.05.15 479.62 184.83

29.05.15 1522.64 631.82

Maximum 1522.64 631.82

Average 380.26 149.43

Minimum 68.69 27.69

Average Time w/o Power: 80 min

Average Power Provided:• M1: 276.89 kW• M2: 110.52 kW• M1-M2: 166.37 kW

Energy that must be provided: 276.89 kW*1.33 h ≈ 370 kWh

Page 27: Mr. Kokkotis Panagiotis - H00177171_presentation

27

Case Study; Tilos Island (10/14)

Can provide 50kW for

35 min (30 kWh),

configurable to

160kW for 5 min

(13 kWh)

Source: Beacon Power, 2015

Page 28: Mr. Kokkotis Panagiotis - H00177171_presentation

28

Case Study; Tilos Island (11/14)

Can provide

60kW/300kWh

Source: Prudent Energy, 2015

Page 29: Mr. Kokkotis Panagiotis - H00177171_presentation

29

Case Study; Tilos Island (12/14)

Transformers 1 & 2 have the following characteristics:• One of 250kVA (1) and one of 160kVA (2)• 20kV Primary Voltage• 230V/400V Secondary Voltage• 24kV HV insulation level• No load losses of 300W and 210W respectively• Load losses of 2350W and 1700W respectively

Tran

sfor

mer

s

Source: Schneider Electric

Page 30: Mr. Kokkotis Panagiotis - H00177171_presentation

30

Case Study; Tilos Island (13/14)

Switchgear has the following characteristics:• Rated Voltage: 24 kV• Power Frequency withstand voltage 50Hz-1 min: 50 kV rms• Lightning impulse withstand voltage 1.2/50 μs: 125 kV peak• Short circuit breaking current (Peak/Ik max): 63-80/25-31.5 (kA)• Busbar rated current: 1600 A• Incoming/Outgoing rated current: 1600 A• Internal Arc Classification: 31.5 kA/1s

Switc

hgea

r

Source: Schneider Electric

Page 31: Mr. Kokkotis Panagiotis - H00177171_presentation

31

Case Study; Tilos Island (14/14)Ci

rcui

t Bre

aker

s

Circuit Breakers have the following characteristics:• Rated Voltage: 24 kV• Power Frequency withstand voltage 50 Hz - 1 min: 50 kV rms• Lightning impulse withstand voltage 1.2/50 μs: 125 kV peak• Rated Current: 2500 A• Short-time withstand Current: 31.5 kA/3s

Source: Schneider Electric

Page 32: Mr. Kokkotis Panagiotis - H00177171_presentation

32

Discussion• A smart grid is an intelligent electricity network that is balancing

all the variables associated with dynamic load control powered by an ever increasing variable of RES

• A bidirectional communication between the consumer and the producer makes the T&D network an active component

• For the balancing act to take place, small amounts of energy should be introduced throughout the network

• This energy may come from a variety of Energy Storage Systems, as analyzed in this dissertation

• A smart grid has to be versatile and fully support the weak and fragile network, that is why a Hybrid Energy Storage System is proposed for Tilos

Page 33: Mr. Kokkotis Panagiotis - H00177171_presentation

33

Conclusions• Each and every Energy Storage System has unique characteristics• One should follow a step-by-step guide when selecting an Energy

Storage System• Current infrastructure is a major issue and studying it before

implementing a HESS is a must• Load profiling the area in which the smart grid is about to be

installed is a major step towards reading the needs of the grid• Transformers, circuit breakers, switchgear and other electronic

devices play a vital role in the grid

Page 34: Mr. Kokkotis Panagiotis - H00177171_presentation

34

Future Work• Further studying of the core electronics• Electric Power Networks and HESS profile must be intertwined in

order to make a full report on ESS• Further studying of the current infrastructure in order to define

the ageing of the network in junction points• Current flow analysis and simulations might take place• Public attitude study towards implementation of smart metering

and possible change in habits

Page 35: Mr. Kokkotis Panagiotis - H00177171_presentation

35

Thank you for your attention !