moving towards more energy efficient wood frame building enclosures

39
Implica(ons of the New NBC Sec(on 9.36 Moving Towards More Energy Efficient WoodFrame Building Enclosures Graham Finch, MASc, P.Eng Principal, Building Science Research Engineer RDH Building Engineering Ltd. Vancouver, BC RCIC 2013 Edmonton – April 30, 2013

Upload: rdh

Post on 02-Jul-2015

251 views

Category:

Engineering


3 download

TRANSCRIPT

Page 1: Moving Towards More Energy Efficient Wood Frame Building Enclosures

Implica(ons  of  the  New  NBC  Sec(on  9.36    

Moving  Towards  More  Energy  Efficient  Wood-­‐Frame  Building  Enclosures  

!   Graham  Finch,  MASc,  P.Eng  Principal,  Building  Science  Research  Engineer    RDH  Building  Engineering  Ltd.  Vancouver,  BC    

RCIC  2013  Edmonton  –  April  30,  2013  

Page 2: Moving Towards More Energy Efficient Wood Frame Building Enclosures

Presenta<on  Outline  

!   New  Building  Enclosure  Energy  Efficiency  Requirements  Under  New  2012  NBC  Sec(on  9.36  

!   Highly  Insulated  Wood-­‐frame  Enclosure  Assemblies  

!   Building  Enclosure  Design  Guide  for  Highly-­‐Insulated  Wood-­‐frame  Buildings  

Page 3: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   New  Sec(on  9.36  -­‐  Whole  Building  Energy  Efficiency  Requirements  for  Part  9  houses  

!   Reference  to  NECB  2011  for  other  buildings  (Part  3)  

!   Building  Enclosure  (Envelope),  HVAC,  Hot-­‐Water  Components  

!   Prescrip(ve,  Trade-­‐off  and  Energy  Modeling  Paths  for  Compliance  

!   Effec(ve  R-­‐values  vs  Nominal  R-­‐values  

New  NBC  Sec<on  9.36  Energy  Efficiency  Requirements    

2010  NBC  Updated  in  December  2012  –  New  Sec8on  9.36.  Energy  Efficiency  

Page 4: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   Nominal  R-­‐values  =  Rated  R-­‐values  of  insula(on  which  do  not  include  impacts  of  how  they  are  installed    !   For  example  R-­‐20  ba\  insula(on  or  

R-­‐10  foam  insula(on  !   Effec(ve  R-­‐values  or  Real  R-­‐values  =  

Calculated  R-­‐values  of  assemblies/details  which  include  impacts  of  installa(on  and  thermal  bridges  !   For  example  nominal  R-­‐20  ba\s  

within  steel  studs  16”  o.c.  becoming  ~R-­‐9  effec(ve,  or  in  wood  studs  ~R-­‐15  

Nominal  vs  Effec<ve  R-­‐values  

Page 5: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   Thermal  bridging  occurs  when  a  conduc(ve  material  (e.g.  aluminum,  steel,  concrete,  wood  etc.)  provides  a  path  for  heat  to  flow  around  insula(on  

!   The  bypassing  “bridging”  of  the  less  conduc(ve  material  significantly  reduces  its  effec(veness  as  an  insulator  

!   Examples:  !   Wood  framing  (studs,  plates)  in  insulated  wall  !   Steel  framing  in  insulated  wall  !   Conduc(ve  cladding  a\achments  through  insula(on  

(metal  girts,  clips,  anchors,  screws  etc)  !   Concrete  slab  edge  (balcony,  exposed  slab  edge)  

through  a  wall  !   Window  frames  and  windows  themselves  

Thermal  Bridging  

Page 6: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   Effec(ve  R-­‐values  account  for  thermal  bridges  and  represent  actual  heat  flow  through  enclosure  assemblies  and  details  !   Heat  flow  finds  the  path  of  least  resistance  !   Dispropor(onate  amount  of  heat  flow  

occurs  through  thermal  bridges  !   Ofen  adding  more/thicker  insula(on  can’t  

help  !   Required  for  almost  all  energy  and  building  

code  calcula(ons    !   Energy  code  compliance  has  historically  

focused  on  assembly  R-­‐values  –  however  more  importance  is  being  placed  on  details  and  interfaces  &  thermal  bridges  

!   Air(ghtness  also  as  important  

Why  Thermal  Bridging  is  Important    

Page 7: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   Increased  emphasis  on  con(nuous  insula(on,  higher  effec(ve  R-­‐values  

!  Minimum  R-­‐value  Tables  for  Above  &  Below  Grade  Enclosures  (Walls,  Roofs,  Floors)  –  dependent  on  whether  HRV  present  in  house  (minor  tradeoff  allowance)  

!  Maximum  U-­‐value  (minimum  R-­‐value)  &  Minimum  Energy  Ra(ng  (ER)  Tables  for  Windows,  Doors,  Skylights  

!   Prescrip(ve  air(ghtness  requirements  (no  blower  door  yet)  !   HVAC  duct  sealing/insula(on,  minimum  equipment  

efficiency  !   Domes(c  Hot  Water,  minimum  equipment  efficiency  !   Energy  modeling  op(on  &  Trade-­‐off  op(ons  

New  NBC  Sec<on  9.36  Energy  Efficiency  Requirements  

Page 8: Moving Towards More Energy Efficient Wood Frame Building Enclosures

New  NBC/NECB  Climate  Zone  Divisions  

•  >7000 HDD

•  6000 to 6999 HDD

•  5000 to 5999 HDD

•  4000 to 4999 HDD

•  3000 to 3999 HDD

•  < 3000 HDD

Page 9: Moving Towards More Energy Efficient Wood Frame Building Enclosures

Wall,  Roof  &  Window  Requirements  for  Alberta  (NBC  9.36)  

Climate  Zone  

Wall  -­‐  Above  Grade:  Minimum    R-­‐value  (IP)  

Roof  –  Flat/Cathedral:  Minimum  R-­‐value  (IP)  

Roof  –  AXc:  Minimum  R-­‐value  (IP)  

Window:  Max.  U-­‐value  (IP)  /  Min.  ER    

8   21.9   28.5   59.2   0.25  /  29  

7B   21.9   28.5   59.2   0.25  /  29  

7A   17.5   28.5   59.2   0.28  /  25  

6   17.5   26.5   49.2   0.28  /  25  

With

out  a

 HRV

 

Climate  Zone  

Wall  -­‐  Above  Grade:  Minimum    R-­‐value  (IP)  

Roof  –  Flat/Cathedral:  Minimum  R-­‐value  (IP)  

Roof  –  AXc:  Minimum  R-­‐value  (IP)  

Window:  Max.  U-­‐value  (IP)  /  Min.  ER    

8   17.5   28.5   59.2   0.25  /  29  

7B   17.5   28.5   59.2   0.25  /  29  

7A   16.9   28.5   49.2   0.28  /  25  

6   16.9   26.5   49.2   0.28  /  25  

With

 a  HRV

 

Page 10: Moving Towards More Energy Efficient Wood Frame Building Enclosures

Wall,  Roof  &  Windows  (NECB  2011/ASHRAE  90.1-­‐2010)  

Climate  Zone  

Wall  –  Above  Grade:  Minimum    R-­‐value  (IP)  

Roof  –  Flat  or  Sloped:  Minimum  R-­‐value  (IP)  

Window:  Max.  U-­‐value  (IP)    

8   31.0   40.0   0.28  

7B   27.0   35.0   0.39  

7A   27.0   35.0   0.39  

6   23.0   31.0   0.39  

NEC

B  2011  

ASHR

AE  90.1-­‐2010  –  

Reside

n<al  Building   Climate  

Zone  Wall  (Mass,  Wood,  Steel):  Min  R-­‐value  

Roof  (AXc,  Cathedral/Flat):  Min  R-­‐value  

Window  (Alum,  PVC/fiberglass):  Max.  U-­‐value  

8   19.2,  27.8,  27.0   47.6,  20.8   0.45,  0.35  

7B   14.1,  19.6,  23.8   37.0,  20.8   0.45,  0.35  

7A   14.1,  19.6,  23.8   37.0,  20.8   0.45,  0.35  

6   12.5,  19.6,  15.6   37.0,  20.8   0.55,  0.35  

*7A/7B  combined  in  ASHRAE  90.1  

Page 11: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   Some  guidance    (Table  A-­‐9.36.2.6.(1)A  provided  for  calcula(on  of  effec(ve  R-­‐values  of  some  assemblies  (to  help  transi(on  from  nominal  R-­‐values)  

!   Sufficient  for  most  wood-­‐frame  /ICF  wall  assemblies  

!   No  provisions  for  cladding  a\achment/  thermal  bridging  

Guidance:  Effec<ve  R-­‐values  within  NBC  9.36  

Page 12: Moving Towards More Energy Efficient Wood Frame Building Enclosures

Wall  Assembly  /  Insula<on  Rated  R-­‐value  

Effec<ve  Wall  R-­‐value  **  

Studs  at  16”,  25%  F.F.*  

Studs  at  24”,  22%  F.F.*  

2x4  w/  R-­‐12  baes   10.7   -­‐  

2x4  w/  R-­‐14  baes   11.5   -­‐  

2x6  w/  R-­‐19  baes   15.5   16.1  

2x6  w/  R-­‐22  baes   16.6   17.4  

2x6  w/  2pcf  sprayfoam  (R-­‐5/in,  R-­‐27.5)  

18.3   19.3  

2x6  w/  2pcf  sprayfoam  (R-­‐6/in,  R-­‐33)  

18.6   19.8  

*Studs at 16” o.c.=25% total Framing Factor (F.F.) and Studs at 24” o.c. =22% total framing factor. This includes typical framing arrangements of studs, sill and top plates, window headers, corners, built-up studs etc. ** All values calculated using three-dimensional thermal modeling calibrated to hot-box testing

Typical  Wood-­‐frame  Wall  Assemblies  –  Effec<ve  R-­‐values  

Page 13: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   Effec(ve  R-­‐value  targets  above    ~R-­‐17  essen(ally  means  that  standard  prac(ce  of  ba\  insula(on  in  2x6  stud  frame  wall  is  inadequate  

!   Shifs  code  minimum  baseline  wall  assembly  to:  !   Insulated/Foam  Sheathing  !   Sprayfoam?  !   Exterior/Split  Rigid  Insula(on  !  Double/Deep  Stud  !   Structurally  Insulated  Panels  (SIPs)    !   Insulated  Concrete  Forms  (ICFs)  

Beyond  2x6  Framed  Walls  

Page 14: Moving Towards More Energy Efficient Wood Frame Building Enclosures

Insula<on  Placement  &  Wall  Design  Considera<ons  

Interior  Insula(on  

Exterior  Insula(on  

Split    Insula(on  

Page 15: Moving Towards More Energy Efficient Wood Frame Building Enclosures

GeXng  to  Higher  R-­‐values  –  Insula<on  Placement  

Baseline    2x6  w/  R-­‐22  ba\s  =  R-­‐16  effec<ve    

Exterior  Insula(on  –  R-­‐20  to  R-­‐40+  effec<ve  •  Constraints:  cladding  a\achment,  wall  thickness  •  Good  for  wood/steel/concrete  

Deep/Double  Stud–  R-­‐20  to  R-­‐40+  effec<ve  •  Constraints  wall  

thickness  •  Good  for  wood,  

wasted  for  steel  

Split  Insula(on–    R-­‐20  to  R-­‐40+  effec<ve  •  Constraints:  cladding  

a\achment  •  Good  for  wood,  palatable  for  

steel  

Page 16: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   Insula(on  outboard  of  structure  and  control  layers  (air/vapor/water)  !   Thermal  mass  at  interior  where  useful  !   Excellent  performance  in  all  climate  zones  !   Cladding  A\achment  biggest  source  of  thermal  loss/bridging  !   Not  the  panacea,  can  s(ll  mess  it  up  

Exterior  Insulated  Walls  

Steel Stud Concrete Heavy Timber (CLT)

Page 17: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   Key  Considera(ons:  !   Cladding  A\achment  !  Wall  Thickness    

!   Heat  Control:  Exterior  Insula(on  

!   Air  Control:  Membrane  on  exterior  of  structure  

!   Vapor  Control:  Membrane  on  exterior  of  structure  

!  Water  Control:  Membrane  on  exterior  of  structure  (possibly  surface  of  insula(on)  

Exterior  Insula<on  Assemblies  

Page 18: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!  Many  Possible  Strategies  –  Wide  Range  of  Performance  

Cladding  Aeachment  through  Exterior  Insula<on  

Page 19: Moving Towards More Energy Efficient Wood Frame Building Enclosures

Minimizing  Thermal  Bridging  through  Exterior  Insula<on  

Longer cladding Fasteners directly through rigid insulation (up to 2” for light claddings)

Long screws through vertical strapping and rigid insulation creates truss (8”+) – short cladding fasteners into vertical strapping Rigid shear block type connection

through insulation, cladding to vertical strapping

Page 20: Moving Towards More Energy Efficient Wood Frame Building Enclosures

Key  Considera<ons  -­‐  Split  Insula<on  Assemblies  

!   Key  Considera(ons:  !   Exterior  insula(on  type  !   Cladding  a\achment  !   Sequencing  &  detailing  

!   Heat  Control:  Exterior  and  stud  space  Insula(on  

!   Air  Control:  House-­‐wrap  adhered/sheet/liquid  membrane  on  sheathing,  sealants/tapes  etc.  Ofen  vapor  permeable  

!   Vapor  Control:  Poly  or  VB  paint  at  interior,  plywood/OSB  sheathing    

!  Water  Control:  Rainscreen  cladding*,  WRB  membrane,  surface  of  insula(on  

Page 21: Moving Towards More Energy Efficient Wood Frame Building Enclosures

Split  Insula<on  Assemblies  –  Exterior  Insula<on  Selec<on  

!   Foam  insula(ons  (XPS,  EPS,  Polyiso,  ccSPF)  are  vapor  impermeable  !   Is  the  vapor  barrier  on  the  wrong  side?  !  Does  your  wall  have  two  vapor  barriers?  !  How  much  insula(on  should  be  put  outside    

of  the  sheathing?  –  More  the  be\er,  but  room?  !   Rigid  mineral  or  glass  fiber  insula(on  are    

vapor  permeable  which  can  address    these  concerns    

!   Vapor  permeability  of  WRB  and  air-­‐barrier  also  important  !   Risk  is  dependant  on  interior  condi(ons  (RH)  and  poten(al  for  

air-­‐leakage,  and  on  exterior  condi(ons  (rain/RH)  and  poten(al  for  water  leaks  

Page 22: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   Double  2x4/2x6  stud,  Single  Deep  2x10,  2x10,  I-­‐Joist  etc…  !   Common  wood-­‐frame  wall  assembly  in  many  passive  houses  !   Lends  itself  well  to  pre-­‐fabricated  wall/roof  assemblies  !   Interior  service  wall  –  greater  control  over  interior  air(ghtness  !   Higher  risk  for  damage  if  sheathing  gets  wet  (rainwater,  air  leakage,  

vapor  diffusion)    

Double/Deep  Stud  Insulated  

Page 23: Moving Towards More Energy Efficient Wood Frame Building Enclosures

Key  Considera<ons  –  Double  Stud/Deep  Stud  

!   Key  Considera(ons:  !   Air-­‐sealing  !   Rainwater  management/detailing  

!   Heat  Control:  Double  stud  cavity  fill  insula(on(s)  

!   Air  Control:  House-­‐wrap/membrane  on  sheathing,  poly,  air(ght  drywall  on  interior,  OSB/plywood  at  interior,  tapes,  sealants,  sprayfoam.  Air(ghtness  on  both  sides  of  cavity  recommended  

!   Vapor  Control:  Poly,  VB  paint  or  OSB/plywood  at  interior  

!  Water  Control:  Rainscreen  cladding*,  WRB  at  house-­‐wrap/membrane,  flashings  etc.  

Page 24: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   Energy-­‐Efficient  Building  Enclosure  Design  Guide  for  Wood-­‐frame  Mul(-­‐Unit  Residen(al  Buildings  in  Marine  to  Cold  Climates  

!   Builds  off  of  Previous  Building  Enclosure  Design  Guides  &  CMHC  Best  Prac(ce  Guides  

!   Focus  on  durable  and  highly  insulated  wood-­‐frame  assemblies  to  meet  current  and  upcoming  energy  codes  

!   Guidance  for  taller  and  alternate  wood-­‐frame  structures  (ie  post  &  beam,  CLT)  up  to  6  stories  

Building  Enclosure  Design  Guidance  

Page 25: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   Chapter  1:  Introduc(on  !  Context  

!   Chapter  2:  Building  and  Energy  Codes  across  North  America  !  Canadian  Building  and  Energy  

Code  Summaries  &  R-­‐value  requirements  

!  US  Building  and  Energy  Code  Summaries  &  R-­‐value  requirements  

!  Performance  Ra(ng  Systems  &  Green  Building  Programs  

What  is  in  the  Guide?  

Page 26: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   Chapter  3:  Moisture,  Air  and  Thermal  Control  !  Building  as  a  System  !  Climate  Zones  !   Interior  Climate,  HVAC  Interac(on  !  Cri(cal  Barriers  !  Control  of  Rainwater  Penetra(on  !  Control  of  Air  Flow  !  Controlling  Condensa(on  !  Construc(on  Moisture  !  Controlling  Heat  Flow  and  Insula(on  !  Whole  Building  Energy  Efficiency  !  Computer  Simula(on  Considera(ons  for  Wood-­‐frame  Enclosures  

What  is  in  the  Guide?  

Page 27: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   Chapter  4:  Energy  Efficient  Wall  and  Roof  Assemblies  !  Above  Grade  Wall  Assemblies    

•  Split  Insulated,  Double  Stud/Deep  Stud,  Exterior  Insulated  •  Infill  Walls  for  Concrete  Frame  

!  Below  Grade  Wall  Assemblies  •  Interior  and  Exterior  Insulated  

!  Roof  Assemblies  •  Steep  Slope  &  Low  Slope  

!   Chapter  5:  Detailing  !  2D  CAD  (colored)  and  3D  build-­‐sequences  for  various  typical  

enclosure  details  

!   Chapter  6:  Further  Reading  &  References  

What  is  in  the  Guide?  

Page 28: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   Air  Barrier  Systems  (Fundamentals,  Materials,  Performance,  tes(ng)    !   Sealed  Poly/Sheet  Membranes  !   Air(ght  drywall  ! Sprayfoam  !   Sealed-­‐Sheathing  Approaches  

›  Unsupported  sheet  membranes  ›  Supported  sheet  membranes  with  

ver(cal  strapping  ›  Sandwiched  membranes  behind  

exterior  insula(on  ›  Self-­‐Adhered  and  liquid  applied  

membranes  

Air  Flow  Control  –  Air  Barrier  Strategies  

Page 29: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   Control  of  Heat  Flow  !  Minimizing  Conduc(ve  

Losses,  Minimizing  Air  Leakage  

!  Placement  of  Insula(on  within  assemblies  

!  Wood  framing  factors  !   Types  of  insula(on,    

R-­‐values  and  typical  uses  !   Thermal  bridging  and  

effec(ve  R-­‐values  

Heat  Flow  Control  &  Insula<on  

Page 30: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!  Material  selec(on  &  guidance  

!   Control  Func(ons  !   Cri(cal  Barriers  !   Effec(ve  R-­‐value  Tables  

Energy  Efficient  Walls  –  Split  Insulated  

Wood  framing    

Nominal  stud-­‐space  insulation  [R-­‐value  (RSI)]    

Exterior  insulation  

None  [R-­‐value  (RSI)]  

R-­‐4    (1  inch)  [R-­‐value  (RSI)]  

R-­‐8    (2  inches)  [R-­‐value  (RSI)]  

R-­‐12    (3  inches)  [R-­‐value  (RSI)]  

R-­‐16    (4  inches)  [R-­‐value  (RSI)]  

R-­‐20    (5  inches)  [R-­‐value  (RSI)]  

R-­‐24    (6  inches)  [R-­‐value  (RSI)]  

2x4   R-­‐12  (2.1)  

10.7    (1.9)  

15.0  (2.6)  

18.8  (3.3)  

22.5  (4.0)  

26.2  (4.6)  

29.7  (5.2)  

33.2  (5.8)  

R-­‐14  (2.5)  

11.5  (2.0)  

15.8  (2.8)  

19.6  (3.4)  

23.2  (4.1)  

27.0  (4.8)  

30.5  (5.4)  

34.0  (6.0)  

2x6   R-­‐19  (3.3)  

15.5  (2.7)  

19.8  (3.5)  

23.7  (4.2)  

27.3  (4.8)  

31.0  (5.5)  

34.5  (6.1)  

38.0  (6.7)  

R-­‐22  (3.9)  

16.6  (2.9)  

21.0  (3.7)  

24.8  (4.4)  

28.5  (5.0)  

32.2  (5.7)  

35.7  (6.3)  

39.2  (6.9)  

 

Page 31: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!  Material  selec(on  &  guidance  

!   Control  Func(ons  !   Cri(cal  Barriers  !   Effec(ve  R-­‐value  Tables  

Energy  Efficient  Walls  –  Double  Stud/Deep  Stud  

Wood  framing      

Nominal  fill  insulation  [R-­‐value/inch  (RSI/cm)]  

Gap  width  between  stud  walls  No  gap  [R-­‐value  (RSI)]  

1-­‐inch    [R-­‐value  (RSI)]  

2-­‐inches    [R-­‐value  (RSI)]  

3-­‐inches    [R-­‐value  (RSI)]  

4-­‐inches    [R-­‐value  (RSI)]  

5-­‐inches    [R-­‐value  (RSI)]  

6-­‐inches  [R-­‐value  (RSI)]  

Double-­‐stud  2x4  

R-­‐3.4/inch  (0.24/cm)  

19.1  (3.4)  

22.9  (4.0)  

26.5  (4.7)  

30.0  (5.3)  

33.4  (5.9)  

36.9  (6.5)  

40.3  (7.1)  

R-­‐4.0/inch  (0.28/cm)  

20.5  (3.6)  

25.1  (4.4)  

29.4  (5.2)  

33.4  (5.9)  

37.4  (6.6)  

41.5  (7.3)  

45.4  (8.0)  

 

Page 32: Moving Towards More Energy Efficient Wood Frame Building Enclosures

Pitched-­‐Roof,  Exterior  Insulated  Assembly  

!  Materials  &  Control  Func(ons  

!   Cri(cal  Barriers  !   Effec(ve  R-­‐values  

Page 33: Moving Towards More Energy Efficient Wood Frame Building Enclosures

Low-­‐Slope  Conven<onal  Roof  Assembly  

!  Materials  &  Control  Func(ons  

!   Cri(cal  Barriers  !   Effec(ve  R-­‐values  

(Accoun(ng  for  tapered  insula(on  packages)  

Page 34: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   2D  CAD  details  (colored)  provided  for  typical  details  for  each  wall  assembly  type  (split  insulated,  double  stud,  exterior  insulated)  plus  some  for  infill  walls  

!   3D  sequence  details  provided  for  window  interfacing  (split  insulated,  double  stud,  exterior  insulated)  

Detailing  

Page 35: Moving Towards More Energy Efficient Wood Frame Building Enclosures

Detailing  –  Colored  2D  Details  

Page 36: Moving Towards More Energy Efficient Wood Frame Building Enclosures

Detailing  –  Wall  to  Roof  Interfaces  

Page 37: Moving Towards More Energy Efficient Wood Frame Building Enclosures

Detailing  –  2D  Window  Details  

Page 38: Moving Towards More Energy Efficient Wood Frame Building Enclosures

Detailing  –  3D  Window  Installa<on  Sequences  

Page 39: Moving Towards More Energy Efficient Wood Frame Building Enclosures

!   Graham  Finch,  MASc,  P.Eng  [email protected]  604-­‐873-­‐1181  

!   Building  Enclosure  Design  Guide  Available  from  FP  Innova(ons:  h\p://www.fpinnova(ons.ca/ResearchProgram/AdvancedBuildingSystem/designing-­‐energy-­‐efficient-­‐building-­‐enclosures.pdf    

Discussion