motion detail preserving optical flow estimation

43
Motion Detail Preserving Optical Flow Estimation Li Xu 1 , Jiaya Jia 1 , Yasuyuki Matsushita 2 1 The Chinese University of Hong Kong 2 Microsoft Research Asia

Upload: taipa

Post on 24-Feb-2016

46 views

Category:

Documents


0 download

DESCRIPTION

Motion Detail Preserving Optical Flow Estimation. Li Xu 1 , Jiaya Jia 1 , Yasuyuki Matsushita 2 1 The Chinese University of Hong Kong 2 Microsoft Research Asia. Conventional Optical Flow. Middlebury Benchmark [Baker et al. 07] Dominant Scheme: Coarse-to-Fine Warping. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Motion Detail Preserving Optical Flow Estimation

Motion Detail Preserving Optical Flow Estimation

Li Xu1, Jiaya Jia1, Yasuyuki Matsushita2

1 The Chinese University of Hong Kong 2 Microsoft Research Asia

Page 2: Motion Detail Preserving Optical Flow Estimation

Conventional Optical Flow

• Middlebury Benchmark [Baker et al. 07]• Dominant Scheme: Coarse-to-Fine Warping

Page 3: Motion Detail Preserving Optical Flow Estimation

Large Displacement Optical Flow

• Region Matching [Brox et al. 09, 10]• Discrete Local Search [Steinbrucker et al. 09]

Page 4: Motion Detail Preserving Optical Flow Estimation

Both Large and Small Motion Exist

• Capture large motion• Preserve sub-pixel accuracy

Page 5: Motion Detail Preserving Optical Flow Estimation

Our Work

• Framework– Extended coarse-to-fine motion estimation for both

large and small displacement optical flow• Model– A new data term to selectively combine constraints

• Solver– Efficient numerical solver for discrete-continuous

optimization

Page 6: Motion Detail Preserving Optical Flow Estimation

Outline

• Framework– Extended coarse-to-fine motion estimation for both

large and small displacement optical flow• Model– A new data term to selectively combine constraints

• Solver– Efficient numerical solver for discrete-continuous

optimization

Page 7: Motion Detail Preserving Optical Flow Estimation

The Multi-scale Problem

Page 8: Motion Detail Preserving Optical Flow Estimation

The Multi-scale Problem

Ground truthGround truthGround truth

Page 9: Motion Detail Preserving Optical Flow Estimation

The Multi-scale Problem

Ground truthGround truthGround truth

Page 10: Motion Detail Preserving Optical Flow Estimation

Ground truth

…Estimate EstimateEstimate

Ground truthGround truth

Page 11: Motion Detail Preserving Optical Flow Estimation

The Multi-scale Problem

• Large discrepancy between initial values and optimal motion vectors

• Our solution – Improve flow initialization to reduce the reliance

on the initialization from coarser levels

Page 12: Motion Detail Preserving Optical Flow Estimation

Extended Flow Initialization

• Sparse feature matching for each level

Page 13: Motion Detail Preserving Optical Flow Estimation

Extended Flow Initialization

• Identify missing motion vectors

Page 14: Motion Detail Preserving Optical Flow Estimation

Extended Flow Initialization

• Identify missing motion vectors

Page 15: Motion Detail Preserving Optical Flow Estimation

Extended Flow Initialization

Page 16: Motion Detail Preserving Optical Flow Estimation

Extended Flow Initialization

Fuse

Page 17: Motion Detail Preserving Optical Flow Estimation

Outline

• Framework: extended initialization for coarse-to-fine motion estimation

• Model: selective data term • Efficient numerical solver

Page 18: Motion Detail Preserving Optical Flow Estimation

Data Constraints

• AverageI

xI

1 1(u, x) (u, x) (u, x)2 2DE D D

I 2 1(u, x) (x u) (x)I ID

I 2 1(u, x) (x u) (I I x)D • Gradient constancy

• Color constancy

I 2 1(u, x) (x u) (I I x)D

Page 19: Motion Detail Preserving Optical Flow Estimation

• Pixels moving out of shadow

Problems

pI 1 1p(u , ) 6.63D

• Color constancy is violated

I Ip1 1 p1 11 (u , ) (u , ) = 3.482

p pD D

• Average:

p1u : ground truth motion of p1

• Gradient constancy holdsp 1I 1 p(u , ) 0.32D

Page 20: Motion Detail Preserving Optical Flow Estimation

• Pixels undergoing rotational motion

Problems

• Color constancy holds

• Gradient constancy is violatedp2u : ground truth motion of p2

p 2I 2 p(u , ) 4.20D

• Average:

I Ip2 2 p2 21 (u , ) (u , ) = 2.242

p pD D

pI 2 2p(u , ) 0.29D

Page 21: Motion Detail Preserving Optical Flow Estimation

Our Proposal

• Selectively combine the constraints

where

I Ix

(u, ) (x) (u,x) (1 (x)) (u,x)DE D D 2(x) : {0,1}

I Ix

(u, ) (u,x(x) 1) ( ) (u,x)(x)DE D D

Page 22: Motion Detail Preserving Optical Flow Estimation

Comparisons

RubberWhale Urban22

2.5

3

3.5

4

4.5

5

colorgradientaverageours

AAE

Page 23: Motion Detail Preserving Optical Flow Estimation

Outline

• Framework: extended initialization for coarse to fine motion estimation

• Model: selective data term

• Efficient numerical solver

I Ix

(x) (u, x) (1 (x)) (u, x)D D

Page 24: Motion Detail Preserving Optical Flow Estimation

Energy Functions and Solver

• Total energy

• Probability of a particular state of the system

(u, )1(u, ) EP eZ

I Ix

(u, ) (x) (u, x) (1 (x)) (u, x) ( u, x)E D D S

(u, )1(u, ) EP eZ

(u, )1(u, ) EP eZ

Ix

I(x) (u, x) (1 (x)) (u, x)(u, ) ( u, x)E SD D

Page 25: Motion Detail Preserving Optical Flow Estimation

Mean Field Approximation

• Partition function

• Sum over all possible values of α

(u, )

{u} { 0,1}

EZ e

I Ix

( u,x) (u, x) ((x) (x)

{ 0,

1 ) (u, x)

{u 1}}

x

S D D

e e

(u, x)(u, x) II

x

1{ ( u,x) ln( )}

{u}

DDS e e

e

. . .

The effective potential Eeff (u) [Geiger & Girosi, 1989]

Page 26: Motion Detail Preserving Optical Flow Estimation

• Optimal condition (Euler-Lagrange equations)

• It decomposes to

II (u, x)(u, x)

x

1(u) ( u,x) ln( )DDeffE S e e

I I

I II I

(u,x) (u,x)

u I u I(u,x) (u,x)(u,x) (u,x)

u

(u, x) (u, x)

div( ( u,x)) 0

D D

D DD D

e eD De e e e

S

I I( (u,x) (u,x))

1(x)1 D De

u I u I u(x) (u, x) (1 (x)) (u, x) div( ( u,x)) 0D D S

I I

I II I

(u,x) (u,x)

(u,x) (u,u I u I

u

x)(u,x) (u,x)(u, x) (u, x)

div( ( u,x)) 0

D D

D DD D

e ee e e e

D D

S

( )x 1 ( )x

{

Page 27: Motion Detail Preserving Optical Flow Estimation

I I( (u,x) (u,x))

1(x)1 D De

u I u I u(x) (u, x) (1 (x)) (u, x) div( ( u,x)) 0D D S {

Page 28: Motion Detail Preserving Optical Flow Estimation

Algorithm Skeleton

• For each level

• Extended Flow Initialization (QPBO)• Continuous Minimization (Iterative reweight)– Update– Compute flow field (Variable Splitting)

I I( (u,x) (u,x))

1(x)1 D De

u I u I u(x) (u, x) (1 (x)) (u, x) div( ( u,x)) 0D D S {

Page 29: Motion Detail Preserving Optical Flow Estimation

Results

Averaging constraints Ours

Difference

Page 30: Motion Detail Preserving Optical Flow Estimation

Middlebury Dataset

EPE=0.74

Page 31: Motion Detail Preserving Optical Flow Estimation

Results from Different Steps

Coarse-to-fine

Extended coarse-to-fine

Page 32: Motion Detail Preserving Optical Flow Estimation

EPE=0.15 rank =1

EPE=0.24 rank =1

Page 33: Motion Detail Preserving Optical Flow Estimation

Large Displacement

Overlaid Input

Page 34: Motion Detail Preserving Optical Flow Estimation

Large Displacement

• Motion Estimates

Coarse-to-fine Our Result Warping Result

Page 35: Motion Detail Preserving Optical Flow Estimation

Comparison

• Motion Magnitude Maps

LDOP [Brox et al. 09 ] [Steinbrucker et al. 09] Ours

Page 36: Motion Detail Preserving Optical Flow Estimation

More Results

Overlaid Input

Page 37: Motion Detail Preserving Optical Flow Estimation

Conventional Coarse-to-fine Our Result

Page 38: Motion Detail Preserving Optical Flow Estimation

More Results

Overlaid Input

Page 39: Motion Detail Preserving Optical Flow Estimation

Coarse-to-fine Our Result

Page 40: Motion Detail Preserving Optical Flow Estimation

Conclusion

• Extended initialization (Framework)• Selective data term (Model)• Efficient numerical scheme (Solver)

• Limitations– Featureless motion details – Large occlusions

Page 41: Motion Detail Preserving Optical Flow Estimation

Thank you!

Page 42: Motion Detail Preserving Optical Flow Estimation

More Results

Overlaid Input

Page 43: Motion Detail Preserving Optical Flow Estimation

Coarse-to-fine Our Results