mos capacitances, propagation delay

26
EE141 – Fall 2005 Lecture 6 MOS Capacitances, MOS Capacitances, Propagation Delay Propagation Delay EE141 2 Important! Check course home page periodically for announcements Homework 2 is due TODAY by 5pm In 240 Cory Homework 3 will be posted TODAY Due Thursday Sep 22 by 5pm

Upload: others

Post on 20-Feb-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

1

EE141 – Fall 2005Lecture 6

MOS Capacitances,MOS Capacitances,Propagation DelayPropagation Delay

EE141 2

Important!

Check course home page periodically for announcements

Homework 2 is due TODAY by 5pm• In 240 Cory

Homework 3 will be posted TODAY• Due Thursday Sep 22 by 5pm

2

EE141 3

Today’s Lecture

The MOS transistor characteristics for transient analysis

Propagation delay

EE141 4

Review

MOS Transistor ModelMOS Transistor Model

CMOS Inverter VTCCMOS Inverter VTC

3

EE141 5

Important to Remember!

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5x 10

-4

VDS (V)

I D(A

)

VelocitySaturation

VDS = VGT

VDSAT = VGT

Saturation

Linear

VDS = VDSAT

LinearRelationship

QuadraticRelationship

EE141 6

A Unified Model for Manual Analysis

B

D

G

ID

S

( )DSGTD VVVVL

WkI ⋅+⋅

−⋅⋅⋅= λ1

2'

2min

min

for VGT ≤ 0: ID = 0

with Vmin = min (VGT, VDS, VDSAT)

for VGT ≥ 0:

define VGT = VGS – VT

4

EE141 7

VDSp

IDp

VGSp = -2.5

VGSp = -1VDSp

IDnVin= 0

Vin= 1.5

Vout

IDnVin= 0

Vin= 1.5

Vout

IDn

PMOS Load Lines

Vin = VDD + VGSpIDn = -IDp

Vout = VDD + VDSp

Vin = VDD + VGSpIDn = -IDpVout = VDD + VDSp

Coordinate transform: IDp (VDSp) → IDn (Vout)

EE141 8

IDn

Vout

Vin = 2.5

Vin = 2

Vin = 1.5

Vin = 0

Vin = 0.5

Vin = 1

NMOS

Vin = 0

Vin = 0.5

Vin = 1Vin = 1.5

Vin = 2

Vin = 2.5

Vin = 1Vin = 1.5

PMOS

CMOS Inverter Load Characteristics

5

EE141 9

CMOS Inverter VTC

Vin0.5 1 1.5 2 2.5

NMOS resPMOS off

NMOS satPMOS sat

NMOS offPMOS res

NMOS satPMOS res

NMOS resPMOS sat0.5

1

1.5

2

2.5

Vout

EE141 10

Inverter Gain

0 0.5 1 1.5 2 2.5-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Vin (V)

gain

pn

DSATppDSATnn

MD

VkVkVI

gλλ −

⋅+⋅⋅−=

)(1

)()2(1

pnDSATnTnM VVVrg

λλ −⋅−−+

6

EE141 11

Gain as a function of VDD

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5

Vin (V)

Vou

t(V)

Vin (V)

V out

(V)

0 0.05 0.1 0.15 0.20

0.05

0.1

0.15

0.2

Vin (V)

Vou

t (V)

Vin (V)V o

ut(V

)

Gain = -1

EE141 12

Impact of Process Variations

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5

Vin (V)

V out(V

)

Good PMOSBad NMOS

Good NMOSBad PMOS

Nominal

“Good” means:• tox• L• W• Vth

7

EE141 13

Outline

Dynamic Operation of Dynamic Operation of MOS TransistorMOS Transistor• MOS Capacitances• Propagation Delay

EE141 14

DS

G

B

CGDCGS

CSB CDBCGB

MOS Capacitances

8

EE141 15

The Gate Capacitance

WLt

Cox

oxgate

ε=

tox

n+ n+

Cross section

L

Gate oxidetox

n+ n+

Cross section

L

Gate oxide

xd xd

L d

Polysilicon gate

Top view

Gate-bulkoverlap

Source

n+

Drain

n+W

xd xd

L d

Polysilicon gate

Top view

Gate-bulkoverlap

Source

n+

Drain

n+W

EE141 16

Gate Capacitance

S D

G

CGC

S D

G

CGCS D

G

CGC

Cut-off Resistive Saturation

Most important regions in digital design: saturation and cut-offTextbook: page 109

CGCB CGCS CGCD

9

EE141 17

Cgate as a function of VGS(with VDS = 0)

Cgate as a function of the degree of saturation

Gate Capacitance

0 1VDS / (VGS – VT)

CGC

CGCS

CGCD

WLCox2WLCox

2

3WLCox

WLCox

2WLCox

VGS

CGC

CGCS=CGCDCGCB

EE141 18

Measuring the Gate Cap

VGS

I

-1.5 -1 -0.5 0

3

4

5

6

7

8

9

10x 10 -16

2

G a t e C a p a c i t a n c e ( F )

0.5 1 1.5 2-2

Cap

acita

nce

(F)

VGS (V)

10

EE141 19

Diffusion Capacitance

Bottom

Side wall

Side wallChannel

Source

Channel-stop implant

Substrate

W

NA+

NA

LS

ND

xj

Cdiff = Cbottom + Csw

= Cj · AREA + Cjsw · PERIMETER= Cj·LSW + Cjsw(2LS + W)

EE141 20

Junction Capacitance

mD

jj V

CC

)1( 0

0

φ−= m = 0.5: abrupt junction

m = 0.33: linear junction

11

EE141 21

Linearizing the Junction Cap

Replace non-linear capacitance bylarge-signal equivalent linear capacitancewhich displaces equal charge over voltage swing of interest

0

)()(jeq

lowhigh

lowjhighj

D

jeq CK

VVVQvQ

VQ

C ⋅=−

−=

∆=

[ ]mlow

mhigh

lowhigh

m

eq VVmVV

K −− −−−−⋅−

−= 1

01

00 )()(

)1()(φφφ

EE141 22

CGDCGS

CSB CDBCGB

Cgate = CGB + CGS + CGD

Capacitive Device Model

= CGCS + CGSO = CGCD + CGDO

= CGCB= Cdiff

G

S D

B

= Cdiff

12

EE141 23

Capacitances in 0.25µm CMOS Process

Textbook: page 112

EE141 24

.MODEL Parameters MOS1

.MODEL Modname NMOS/PMOS <VT0=VT0…>

13

EE141 25

Polysilicon

InOut

Metal1

VDD

GND

PMOS

NMOS

Two Inverters

1.2µm=2λ

EE141 26

VDD

Two Inverters (modern view)

14

EE141 27

FanoutVoutVin

CL

SimplifiedModel

M3

M4

M1

M 2

Cw Cg3Cdb1

Cg4

Vout2

Cdb2

VDDVDD

VinVout

Cgd12

Computing the Capacitances

EE141 28

The CMOS Inverter: Cin

Cgdn,p

Cgsp

Cgsn

S

G D

S

VoutVinCinCL

15

EE141 29

Miller Effect

VoutVin

ZL

ZF

Ai1

A VoutVin

i1

Z1 Z2 ZL

i1 =Vin (1-A)

ZF

i1 =Vin

Z1

EE141 30

Miller Effect

ZF

A AZ1 Z2

Z1 =ZF

1−A

Z2 =ZF

1A

1−

C1 = CF·(1−A) C1 = CF·(1−1/A)

16

EE141 31

CMOS Inverter Example: Cin

Cgd

Cgsp

Cgsn

CinA = -1

Cgs = Cgsn + Cgsp

Cgd = Cgdn + Cgdp

Cin = Cgs + Cgd (1-A)

+∆V -∆V

EE141 32

Vin

M1

Cgd1Vout

∆V

∆V

Vin

M1

Vout ∆V

∆V

2Cgd1

The Miller Effect

“A capacitor experiencing identical but opposite voltage swingat both terminals can be replaced by a capacitor to ground,whose value is two times the original value”

2Cgd1

17

EE141 33

FanoutVoutVin

CL

SimplifiedModel

M3

M4

M1

M 2

Cw Cg3Cdb1

Cg4

Vout2

Cdb2

VDDVDD

VinVout

Cgd12

Computing the Capacitances

EE141 34

Computing the Capacitances

18

EE141 35

Outline

Dynamic Operation of Dynamic Operation of MOS TransistorMOS Transistor• MOS Capacitances• Propagation Delay

EE141 36

CMOS Inverter Propagation Delay: Approach 1

V out

Iavg

V DD

V in = V DD

CL

avg

swingLpHL I

VCt

2⋅=

DDn

LpHL Vk

Ct⋅

~

19

EE141 37

CMOS Inverter Propagation Delay: Approach 2

V out

R n

V DD

V in = V DD

CL

)( LonpHL CRft ⋅=

Lon CR ⋅= 69.0

0.360.5

1

RonCL t

Voutln(0.5)

VDD

EE141 38

MOS Transistor as a SwitchTraversed path

ID

VDS

VDDVDD /2

VGS = VDD

Rmid

R0

∫∫ ⋅−

=⋅−

===

2

1

2

1

2

1 )()(1)(1))((

1212

t

t D

DSt

ton

t

ttoneq dttItV

ttdttR

tttRavgR

( ))()(21

21 tRtRR ononeq +⋅≈

VGS ≥ VT

S DRon

20

EE141 39

The Transistor as a Switch

VGS ≥ VT

S DRon

( ) ( )

⋅+⋅

+⋅+⋅

⋅=21

212

1

DDDSAT

DD

DDDSAT

DDeq VI

VVI

VRλλ

⋅⋅−⋅≈ DD

DSAT

DDeq V

IVR λ

651

43

ID

VDS

VDDVDD /2

VGS = VDD

Rmid

R0

( )021 RRR mideq +⋅=

EE141 40

0 0.5 1 1.5 2 2.5

x 10-10

-0.5

0

0.5

1

1.5

2

2.5

3

t (sec)

Vou

t(V)

tp = 0.69 CL·(Reqn+Reqp)/2?

tpLH

tpHL

Transient Response

21

EE141 41

Design for Performance

Keep capacitances small

Increase transistor sizes• watch out for self-loading!

Increase VDD (?)

EE141 42

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.41

1.5

2

2.5

3

3.5

4

4.5

5

5.5

VDD

(V)

t p(nor

mal

ized

)

Delay as a function of VDD

)2(')(52.0

4369.0

DSATnTnDDDSATnnn

DDL

DSATn

DDLpHL VVVVkLW

VCI

VCt−−⋅⋅⋅

⋅=

⋅=

Req

22

EE141 43

2 4 6 8 10 12 142

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8x 10

-11

S

t p(sec

)

Device Sizing

(fixed load)

Self-loading effect:Intrinsic capacitancesdominate

EE141 44

1 1.5 2 2.5 3 3.5 4 4.5 53

3.5

4

4.5

5x 10

-11

β

t p(sec

)

NMOS/PMOS Ratio

tpLH tpHL

tp β = Wp/Wn

23

EE141 45

t pH

L(ns

ec)

0.35

0.3

0.25

0.2

0.15

trise (nsec)10.80.60.40.20

tp = tstep(i) + η·tstep(i-1)

Impact of Rise Time on Delay

EE141 46

Threshold Variations

Sub-threshold Conduction

Parasitic Resistances

The Sub-Micron MOS Transistor

24

EE141 47

VT

L

Long-channel threshold

Threshold as a function ofchannel length (for low VDS)

VDS

VT

Threshold Variations

Low VDS threshold

Drain induced barrier lowering (DIBL) (for low L)

EE141 48

Sub-Threshold Conduction

Typical values for S:60 – 100 mV/decade

The Slope Factor

ox

DnkTqV

D CCneII

GS

+=1 ,~ 0

S is ∆VGS for ID2 /ID1 =10

0 0.5 1 1.5 2 2.510

-12

10-10

10-8

10-6

10-4

10-2

VT

Linear

Exponential

Quadratic

VGS (V)

I D(A

)

25

EE141 49

VDS from 0 to 0.5V

−=

−kT

qVnkT

qV

D

DSGS

eeII 10

Sub-Threshold ID vs. VGS

ID

VGS

EE141 50

Sub-Threshold ID vs. VDS

( )DSkT

qVnkT

qV

D VeeIIDSGS

⋅+

−=

−λ110

VGS from 0 to 0.3V

ID

VDS

26

EE141 51

Next Lecture

Optimizing for Performance

Power dissipation in CMOS inverters