monthlycovariabilityof amazonian(convec5ve(cloud ... · subsetinto#wetvs.#dry#seasons# •...

16
Monthly Covariability of Amazonian Convec5ve Cloud Proper5es and Radia5ve Diurnal Cycle J. Brant Dodson and Patrick C. Taylor NASA Postdoctoral Program, NASA Langley Research Center CERES Science Team MeeAng 28 April 2016 1

Upload: others

Post on 30-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MonthlyCovariabilityof Amazonian(Convec5ve(Cloud ... · subsetinto#wetvs.#dry#seasons# • For#wetseason#only,#MERRA# disagrees#with#ERATIand#NNRon# both#Aming#and#amplitude#of# longwave#and#shortwave#diurnal#

Monthly  Covariability  of  Amazonian  Convec5ve  Cloud  Proper5es  and  Radia5ve  

Diurnal  Cycle J.  Brant  Dodson  and  Patrick  C.  Taylor  

NASA  Postdoctoral  Program,  NASA  Langley  Research  Center  

 CERES  Science  Team  MeeAng  

28  April  2016  

1  

Page 2: MonthlyCovariabilityof Amazonian(Convec5ve(Cloud ... · subsetinto#wetvs.#dry#seasons# • For#wetseason#only,#MERRA# disagrees#with#ERATIand#NNRon# both#Aming#and#amplitude#of# longwave#and#shortwave#diurnal#

Introduc5on

•  Variability  in  the  diurnal  cycle  of  the  TOA  radiaAve  flux  contributes  to  the  long  term  mean  imbalance  

•  However,  recent  research  indicates  that  in  convecAvely  acAve  regions,  there  is  enough  variability  on  monthly  Ame  scales  to  contribute  to  the  total  interannual  variability  of  TOA  flux  balance  by  up  to  7  W  m-­‐2  (80%)    [Taylor  2014]  

•  In  order  to  simulate  TOA  flux  realisAcally,  we  must  understand  the  causes  for  monthly  variability  in  the  TOA  flux  diurnal  cycle  

•  Diurnal  cycle  in  cloud  properAes  strongly  influence  diurnal  cycle  in  TOA  flux  

2  

Page 3: MonthlyCovariabilityof Amazonian(Convec5ve(Cloud ... · subsetinto#wetvs.#dry#seasons# • For#wetseason#only,#MERRA# disagrees#with#ERATIand#NNRon# both#Aming#and#amplitude#of# longwave#and#shortwave#diurnal#

•  CERES  observaAons  show  that  both  clear  sky  and  cloud  diurnal  cycles  influence  the  OLR  diurnal  cycle  

•  Clear  sky  follows  diurnal  cycle  of  surface  heaAng  

•  Cloud  effect  follows  the  convecAve  diurnal  cycle,  and  shi]s  the  OLR  diurnal  cycle  earlier  in  the  day  

•  Albedo  diurnal  cycle  is  mainly  controlled  by  diurnal  cycle  in  solar  incidence  angle  

•  Clouds  decrease  (increase)  morning  (a]ernoon)  albedo  

LONGDC  

rad.  ano

m.  (W/m

2 )  

hour  (LST)  

rad.  ano

m.  

SHORTDC  

hour  (LST)  

OLRDC’  OLRCDC’  LWCFDC’  

αDC’  αCDC’  αLDC’  

Amazonian  radia5ve  diurnal  cycle

3  

Page 4: MonthlyCovariabilityof Amazonian(Convec5ve(Cloud ... · subsetinto#wetvs.#dry#seasons# • For#wetseason#only,#MERRA# disagrees#with#ERATIand#NNRon# both#Aming#and#amplitude#of# longwave#and#shortwave#diurnal#

Diurnal  cycle  sensi5vity  to  reanalysis  atmospheric  state

• Previous  efforts  use  mulAple  atmospheric  state  variables  to  characterize  monthly  variability  in  the  convecAve  environment  

• Common  examples:  500  hPa  verAcal  velocity,  CAPE,  upper  tropospheric  humidity,  lower  tropospheric  stability,  etc.    

4  

Page 5: MonthlyCovariabilityof Amazonian(Convec5ve(Cloud ... · subsetinto#wetvs.#dry#seasons# • For#wetseason#only,#MERRA# disagrees#with#ERATIand#NNRon# both#Aming#and#amplitude#of# longwave#and#shortwave#diurnal#

a ) b )

c ) d )

e ) f )

Diurnal  cycle  sensi5vity  to  reanalysis  atmospheric  state

•  The  monthly  anomalies  in  diurnal  cycle  of  TOA  flux  variables  (3  hr  resoluAon)  are  regressed  against  anomalies  of  atmospheric  state  variables    

•  Increased  CAPE  shi]s  the  Ame  of  maximum  OLR  earlier  in  the  day,  and  increases  a]ernoon  albedo  while  lowering  morning  albedo  

•  For  OLR,  both  the  cloud  radiaAve  effect  and  the  clear  sky  effect  control  the  diurnal  cycle  sensiAvity,  but  the  cloud  effect  is  probably  the  larger  effect  

•  For  albedo,  the  cloud  effect  is  by  far  the  primary  driver  of  the  albedo  diurnal  cycle  sensiAvity  

•  Reanalysis  results  for  ERA-­‐Interim,  MERRA,  and  NCEP/NCAR  Reanalysis  disagree  on  the  magnitude  of  the  longwave  sensiAviAes,  and  the  shape  of  the  albedo  curves  in  the  late  a]ernoon  

OLRDC’  OLRCDC’  LWCFDC’  

αDC’  αCDC’  αLDC’  

LONGDC’/CAPE’  (MERRA)  

LONGDC’/CAPE’  (ERA-­‐I)  

LONGDC’/  CAPE’  (NNR)  

SHORTDC’/  CAPE’  (MERRA)  

SHORTDC’/CAPE’  (ERA-­‐I)  

SHORTDC’/  CAPE’  (NNR)  

slope

 (W/m

2 )  

slope

 (W/m

2 )  

slope

 (W/m

2 )  

slope

 (%)  

slope

 (%)  

slope

 (%)  

hour  (LST)   hour  (LST)  

hour  (LST)   hour  (LST)  

hour  (LST)   hour  (LST)  

[from  Dodson  and  Taylor  2016]  

5  longwave  Ames  of  maximum   shortwave  Ame  of  minimum  

Page 6: MonthlyCovariabilityof Amazonian(Convec5ve(Cloud ... · subsetinto#wetvs.#dry#seasons# • For#wetseason#only,#MERRA# disagrees#with#ERATIand#NNRon# both#Aming#and#amplitude#of# longwave#and#shortwave#diurnal#

Alterna5ves  to  conven5onal  atmospheric  state  variables

•  Satellite  observaAons  of  clouds  can  be  used  as  an  alternaAve  to  reanalysis  informaAon  of  the  convecAve  environment  

• CloudSat  offers  observaAons  about  several  different  aspects  of  convecAon  that  may  be  useful  for  characterizing  monthly  convecAve  acAvity  

6  

Page 7: MonthlyCovariabilityof Amazonian(Convec5ve(Cloud ... · subsetinto#wetvs.#dry#seasons# • For#wetseason#only,#MERRA# disagrees#with#ERATIand#NNRon# both#Aming#and#amplitude#of# longwave#and#shortwave#diurnal#

CloudSat  Data  –  Iden5fying  convec5on

•  CloudSat  can  be  used  to  idenAfy  deep  convecAve  cores  (DCCs)  and  associated  anvil  clouds  

•  DCCs  are  idenAfied  by  height  and  reflecAvity  criteria,  on  a  single  verAcal  profile  basis    

•  Anvils  are  idenAfied  as  middle-­‐  to  high  clouds  that  are  conAguously  ahached  with  a  DCC  

DCC   Anvil  

Cloud  Mask  

Cloud  Type  

Radar  ReflecAvity  

distance  along  track  (km)  

height  (km)  

height  (km)  

height  (km)  

0   2500  

0  

24  

0  

24  

0  

24  

7  

Page 8: MonthlyCovariabilityof Amazonian(Convec5ve(Cloud ... · subsetinto#wetvs.#dry#seasons# • For#wetseason#only,#MERRA# disagrees#with#ERATIand#NNRon# both#Aming#and#amplitude#of# longwave#and#shortwave#diurnal#

Diurnal  cycle  sensi5vity  to  CloudSat  convec5ve  frequency

•  The  most  simple  is  cloud  occurrence  frequency,  for  all  clouds  (COF),  DCCs  (DOF),  and  anvils  (AOF)  

•  The  longwave  sensiAvity  to  COF’  monthly  variability  closely  resembles  the  sensiAvity  to  CAPE’  in  both  Aming  and  amplitude  

•  The  results  for  COF’,  DOF’,  and  AOF’  closely  resemble  each  other  

•  The  shortwave  results  differ  from  the  CAPE’  results  

LONGDC’/DOF’  

LONGDC’/COF’  

LONGDC’/AOF’  

SHORTDC’/DOF’  

SHORTDC’/COF’  

SHORTDC’/AOF’  

slope

 (W/m

2 )  

slope

 (W/m

2 )  

slope

 (W/m

2 )  

slope

 (%)  

slope

 (%)  

slope

 (%)  

hour  (LST)  

hour  (LST)  

hour  (LST)  

hour  (LST)  

hour  (LST)  

hour  (LST)  

OLRDC’  OLRCDC’  LWCFDC’  

αDC’  αCDC’  αLDC’  

8  

Page 9: MonthlyCovariabilityof Amazonian(Convec5ve(Cloud ... · subsetinto#wetvs.#dry#seasons# • For#wetseason#only,#MERRA# disagrees#with#ERATIand#NNRon# both#Aming#and#amplitude#of# longwave#and#shortwave#diurnal#

Diurnal  cycle  sensi5vity  to  CloudSat  convec5ve  intensity  and  top  height

•  The  DCC  upper  cloud  reflecAvity  anomaly  (DRA)  is  a  proxy  for  the  updra]  intensity  

•  The  longwave  and  shortwave  sensiAviAes  to  DRA’  are  the  opposite  of  the  sensiAvity  to  cloud  frequency  

•  The  cloud  top  heights  for  DCCs  (DTH)  and  anvils  (ATH)  are  o]en  used  as  proxies  for  convecAve  intensity  

•  The  DTH’  and  ATH’-­‐based  results  also  have  the  opposite  sign  to  cloud  frequency,  as  well  as  smaller  magnitude  for  longwave  

•  Different  metrics  for  convecAve  intensity  give  different  answers  

LONGDC’/DTH’  

LONGDC’/DRA’  

LONGDC’/ATH’  

SHORTDC’/DTH’  

SHORTDC’/DRA’  

SHORTDC’/ATH’  

slope

 (W/m

2 )  

slope

 (W/m

2 )  

slope

 (W/m

2 )  

slope

 (%)  

slope

 (%)  

slope

 (%)  

hour  (LST)  

hour  (LST)  

hour  (LST)  

hour  (LST)  

hour  (LST)  

hour  (LST)  

OLRDC’  OLRCDC’  LWCFDC’  

αDC’  αCDC’  αLDC’  

9  

Page 10: MonthlyCovariabilityof Amazonian(Convec5ve(Cloud ... · subsetinto#wetvs.#dry#seasons# • For#wetseason#only,#MERRA# disagrees#with#ERATIand#NNRon# both#Aming#and#amplitude#of# longwave#and#shortwave#diurnal#

Diurnal  cycle  sensi5vity  to  CERES  longwave  TOA  flux

•  We  can  use  CERES  observaAons  to  support  or  refute  the  CloudSat  results  

•  OLR  and  LWCF  are  commonly  used  as  proxies  for  convecAve  intensity  

•  The  LWCF’  sensiAvity  results  are  very  similar  to  the  COF’  sensiAvity  results  

•  Both  OLR’  and  OLRC’  results  are  similar  to  LWCF’  results  a]er  accounAng  for  negaAve  sign  

•  The  CERES  results  support  the  conclusion  that  convecAve  frequency  most  strongly  controls  diurnal  cycle  variability,  and  other  convecAve  variables  have  minor  secondary  roles  

LONGDC’/OLRC’  

LONGDC’/OLR’  

LONGDC’/LWCF’  

SHORTDC’/OLRC’  

SHORTDC’/OLR’  

SHORTDC’/LWCF’  

slope

 (W/m

2 )  

slope

 (W/m

2 )  

slope

 (W/m

2 )  

slope

 (%)  

slope

 (%)  

slope

 (%)  

hour  (LST)  

hour  (LST)  

hour  (LST)  

hour  (LST)  

hour  (LST)  

hour  (LST)  

OLRDC’  OLRCDC’  LWCFDC’  

αDC’  αCDC’  αLDC’  

10  

Page 11: MonthlyCovariabilityof Amazonian(Convec5ve(Cloud ... · subsetinto#wetvs.#dry#seasons# • For#wetseason#only,#MERRA# disagrees#with#ERATIand#NNRon# both#Aming#and#amplitude#of# longwave#and#shortwave#diurnal#

Conclusions

•  The  CloudSat  sensiAvity  results  depend  strongly  on  which  index  of  convecAve  acAvity  is  used  

• CERES  results  support  the  conclusion  that  convecAve  frequency  is  the  primary  influence  on  the  radiaAve  diurnal  cycle  variability,  and  other  convecAve  variables  are  of  secondary  importance  

11  

Page 12: MonthlyCovariabilityof Amazonian(Convec5ve(Cloud ... · subsetinto#wetvs.#dry#seasons# • For#wetseason#only,#MERRA# disagrees#with#ERATIand#NNRon# both#Aming#and#amplitude#of# longwave#and#shortwave#diurnal#

fin

12  

Page 13: MonthlyCovariabilityof Amazonian(Convec5ve(Cloud ... · subsetinto#wetvs.#dry#seasons# • For#wetseason#only,#MERRA# disagrees#with#ERATIand#NNRon# both#Aming#and#amplitude#of# longwave#and#shortwave#diurnal#

13  

Page 14: MonthlyCovariabilityof Amazonian(Convec5ve(Cloud ... · subsetinto#wetvs.#dry#seasons# • For#wetseason#only,#MERRA# disagrees#with#ERATIand#NNRon# both#Aming#and#amplitude#of# longwave#and#shortwave#diurnal#

[EXTRA]  Data  Sources

•  CERES  •  observes  diurnal  cycle  of  TOA  flux  •  diurnal  cycle  enhanced  by  geostaAonary  observaAons  

•  Reanalysis  •  three  used  for  comparison  

•  ERA-­‐Interim  •  MERRA  •  NCEP/NCAR  Reanalysis  (NNR)  

•  used  to  esAmate  monthly  variability  of  CAPE,  upper  tropospheric  humidity,  lower  tropospheric  stability,  etc.    

•  CloudSat  •  used  to  observe  convecAve  anvils,  upper  convecAve  cores  

14  

Page 15: MonthlyCovariabilityof Amazonian(Convec5ve(Cloud ... · subsetinto#wetvs.#dry#seasons# • For#wetseason#only,#MERRA# disagrees#with#ERATIand#NNRon# both#Aming#and#amplitude#of# longwave#and#shortwave#diurnal#

[EXTRA]  Diurnal  cycle  sensi5vity  to  reanalysis  atmospheric  state

a ) b )

c ) d )

e ) f )

•  Disagreements  between  reanalyses  become  larger  when  the  data  are  subset  into  wet  vs.  dry  seasons  

•  For  wet  season  only,  MERRA  disagrees  with  ERA-­‐I  and  NNR  on  both  Aming  and  amplitude  of  longwave  and  shortwave  diurnal  cycle  sensiAviAes  to  CAPE’  

•  ERA-­‐I  and  NNR  disagree  on  amplitude  of  longwave  sensiAvity  

•  Other  disagreements  arise  from  using  other  ASVs  not  shown  

•  MERRA  is  not  the  sole  problem  

•  These  disagreements  suggest  an  alternaAve  data  source  represenAng  the  atmospheric  state  is  necessary  to  improve  robustness  of  conclusions  

15  

Page 16: MonthlyCovariabilityof Amazonian(Convec5ve(Cloud ... · subsetinto#wetvs.#dry#seasons# • For#wetseason#only,#MERRA# disagrees#with#ERATIand#NNRon# both#Aming#and#amplitude#of# longwave#and#shortwave#diurnal#

Diurnal  cycle  sensi5vity  to  CloudSat  atmospheric  state

•  Ice  water  path  (IWP)  is  another  proxy  for  convecAve  intensity,  frequently  used  in  evaluaAng  climate  models  

•  The  disagreement  in  IWP  results  highlight  the  disagreement    

•  The  sensiAvity  to  IWP’  results  have  the  same  sign  and  similar  magnitude  to  COF’  

•  However,  the  sensiAvity  to  DIWP’  results  have  the  opposite  sign  to  and  smaller  magnitude  than  the  DOF’  results  

•  The  longwave  sensiAvity  to  AIWP’  are  the  same  sign  as,  but  smaller  magnitude  than,  the  AOF’  results  

•  The  results  for  ice  water  content  are  similar  to  IWP  

LONGDC’/DIWP’  

LONGDC’/IWP’  

LONGDC’/AIWP’  

SHORTDC’/DIWP’  

SHORTDC’/IWP’  

SHORTDC’/AIWP’  

slope

 (W/m

2 )  

slope

 (W/m

2 )  

slope

 (W/m

2 )  

slope

 (%)  

slope

 (%)  

slope

 (%)  

hour  (LST)  

hour  (LST)  

hour  (LST)  

hour  (LST)  

hour  (LST)  

hour  (LST)  

OLRDC’  OLRCDC’  LWCFDC’  

αDC’  αCDC’  αLDC’  

16