monksays studmonk the app facebook monksays studmonk – the app facebook 5 : (d) given, x) x
Post on 06-Mar-2018
214 views
Embed Size (px)
TRANSCRIPT
1 Monksays StudMonk.com StudMonk The App Facebook
https://monksays.wordpress.com/http://studmonk.com/https://play.google.com/store/apps/details?id=com.infojini.studmonk&hl=enhttps://www.facebook.com/StudMonk-MHT-CET-1719764334926380/
2 Monksays StudMonk.com StudMonk The App Facebook
1 : (B)
Here,
E(x) = nP = 5 and Var (x) = npq = 2.5
2.5 1
5 2q
1
2p and n = 10
Now, ( 1) ( 0)P x P x
10
10
0
1( 1)
2P x C
2 : (D)
Correct option is (D)
3: (B)
As required circle touches y-axis at the origin.
Let Centre of the circle is d (a, 0) and radius is a
Equation of circle will be,
2 2 2( ) ( 0)x a y a
2 2 2 22x ax a y a
2 2 2 0x y ax (i)
By differentiating above equation w.r.t. x, we get
101
( 1)2
P x
https://monksays.wordpress.com/http://studmonk.com/https://play.google.com/store/apps/details?id=com.infojini.studmonk&hl=enhttps://www.facebook.com/StudMonk-MHT-CET-1719764334926380/
3 Monksays StudMonk.com StudMonk The App Facebook
2 2 2 0dy
x y adx
2 2 2dy
a x ydx
(ii)
From (i) and (ii),
2 2 2 2 0dy
x y x y xdx
2 2 22 2 0dy
x y x xydx
2 2 2 0dy
x y xydx
4 : (B)
Here,
aij is stands for element of matrix A as ith row and jth column, and Aij stands for co-factor of element aij of
matrix A.
11 121, 1a a and 13 0a
And
2 1
21
1 0( 1) 1
2 1A
2 2
22
1 0( 1) 1
1 1A
2 3
23
1 1( 1) 1
1 2A
Therefore
11 21 12 22 13 23 1 ( 1) 1 (1) 0 ( 1) 0a A a A a A
https://monksays.wordpress.com/http://studmonk.com/https://play.google.com/store/apps/details?id=com.infojini.studmonk&hl=enhttps://www.facebook.com/StudMonk-MHT-CET-1719764334926380/
4 Monksays StudMonk.com StudMonk The App Facebook
5 : (D)
Given, ( ) (sin cos )xf x e x x
'( ) [cos sin ] [sin cos ]x xf x e x x x x e
'( ) 2 sinxf x e x
To verify Rolles Theorem.
'( ) 0f c
2 sin 0ce c
sin 0c
c
6 : (C)
As given, both line passes through (0, 0), and 1 2,6 3
Equation of first line is.
0 tan ( 0)6
y x
1
3y x
3 0x y (i)
Equation of second line is
0 tan ( 0)3
3
y x
y x
3 0x y (ii)
https://monksays.wordpress.com/http://studmonk.com/https://play.google.com/store/apps/details?id=com.infojini.studmonk&hl=enhttps://www.facebook.com/StudMonk-MHT-CET-1719764334926380/
5 Monksays StudMonk.com StudMonk The App Facebook
Hence, joint equation of these line is
( 3 )( 3 ) 0x y x y
2 23 3 3 0x xy xy y
2 23 3 4 0x y xy
7 : (B)
As given, 1 12 tan (cos ) tan (2 cos )x ec x
1 1 1tan (cos ) tan (cos ) tan (2 cos )x x ec x
1 1
2
2 costan tan (2 cos )
1 cos
xec x
x
2
2 cos2 cos
sin
xec x
x
2 cot 2x
cot 1x
4x
Hence,
sin cos sin cos4 4
x x
1 1
2 2
= 2
https://monksays.wordpress.com/http://studmonk.com/https://play.google.com/store/apps/details?id=com.infojini.studmonk&hl=enhttps://www.facebook.com/StudMonk-MHT-CET-1719764334926380/
6 Monksays StudMonk.com StudMonk The App Facebook
8 : (A)
Option (A) is correct.
9 : (D)
Let 28 2
dxI
x x
29 2 1
dxI
x x
2 23 ( 1)
dxI
x
1 1sin3
xI c
10 : (A)
As given,
3 2( ) 5 7 9f x x x x
(1.1) 8.6f
11 : (B)
As given,
1, 0 5
( ) 5
0,
xf x
otherwise
Now, probability of waiting time not more than 4 is 1
4 0.85
https://monksays.wordpress.com/http://studmonk.com/https://play.google.com/store/apps/details?id=com.infojini.studmonk&hl=enhttps://www.facebook.com/StudMonk-MHT-CET-1719764334926380/
7 Monksays StudMonk.com StudMonk The App Facebook
12 : (B)
Let 2 2 2 2( ) cos ( ) sin
2 2
c cX a b a b
As we know,
( )( )sin
2
c s a s b
ab
and
( )cos
2
c s s c
ab
Where 2
a b cs
By substituting these value on above equation we will get
2X c
13 : (B)
Let 1 log (sec tan )y
21 1 (sec tan sec )sec tan
dya
d
1 sec [sec tan ]
[sec tan ]
dy
d
1 secdy
d
.(i)
Now,
Let 2 secy
2 sec tandy
d
(ii)
1
2
seccot
sec tan
dy
dy
https://monksays.wordpress.com/http://studmonk.com/https://play.google.com/store/apps/details?id=com.infojini.studmonk&hl=enhttps://www.facebook.com/StudMonk-MHT-CET-1719764334926380/
8 Monksays StudMonk.com StudMonk The App Facebook
1
24
cot 14
dy
dy
14 : (B)
We can say that both line passes through point (5, 3) and makes angle 45o and 135o with x axis
Equation of first line is ,
3 tan 45 ( 5)oy x
3 5y x
2 0y x (i)
Similarly,
3 tan 135 ( 5)oy x
3 1( 5)y x
8 0y x .(ii)
Joint equation of line is
( 2)( 8) 0y x y x
2 2 10 6 16 0x y x y
15 : (A)
As given, required point is on the
Curve 36 2y x
Therefore, only point (4, 11)
Satisfy the given equation,
Hence, option (A) is Correct.
16 : (A)
https://monksays.wordpress.com/http://studmonk.com/https://play.google.com/store/apps/details?id=com.infojini.studmonk&hl=enhttps://www.facebook.com/StudMonk-MHT-CET-1719764334926380/
9 Monksays StudMonk.com StudMonk The App Facebook
1sin 0
( )
0
x for xf x x
k for x
0
1lim sinx
x kx
0 k
17 : (C)
Given, 1sinm xy e
1sin
2
1
1
m xdy e mdx x
2 2 2
21
dy m y
dx x
2
2 2 2(1 )dy
x m ydx
2A m
18 : (B)
Let 4 25
2 5
x
x
eI dx
e
10 25 6
2 5
x x
x
e eI dx
e
5(2 5) 6
2 5
x x
x
e eI dx
e
65
2 5
x
x
eI dx
e
https://monksays.wordpress.com/http://studmonk.com/https://play.google.com/store/apps/details?id=com.infojini.studmonk&hl=enhttps://www.facebook.com/StudMonk-MHT-CET-1719764334926380/
10 Monksays StudMonk.com StudMonk The App Facebook
5 3 log(2 5)xI x e C
5A and 3B
19 : (B)
By solving we will get,
1 1
1 1
tan ( 3) sec ( 2) 4
1 5cos ( 2) cos
2ec
20 : (C)
As given, 2log(1 2 )sin
0( )
0
x xfor x
f x x
k for x
Is continuous at x = 0
20
log(1 2 ) sinlimx
x xk
x
0 0
sin2 log(1 2 ) 180
lim lim2 180
180
x x
xx
xx
= k
2180
k
90k
21 : (A)
Given, 2 2
10 2 2log 2
x y
x y
https://monksays.wordpress.com/http://studmonk.com/https://play.google.com/store/apps/details?id=com.infojini.studmonk&hl=enhttps://www.facebook.com/StudMonk-MHT-CET-1719764334926380/
11 Monksays StudMonk.com StudMonk The App Facebook
2 2
2 2100
x y
x y
2 2 2 2
2 2
100 1000
x y x y
x y
2 2
2 2
99 1010
x y
x y
2 299 101 0x y
(2 99) (2 101) 0dy
x ydx
99
101
dy x
dx y
22 : (D)
Let
/2
/2
2 sinlog
2 sin
xI dx
x
As given function is odd.
0I
23 : (C)
By using anti differentiation method,
We will get to know that, Option (C) is correct.
24 : (B)
Degree 3
Order 2
https://monksays.wordpress.com/http://studmonk.com/https://play.google.com/store/apps/details?id=com.infojini.studmonk&hl=enhttps://www.facebook.com/StudMonk-MHT-CET-1719764334926380/
12 Monksays StudMonk.com StudMonk The App Facebook
25 : (B)
Acute angle is 12
sin3
26 : (B)
2
2
0
(2 )A x x dx
23
2
03
xA x
84
3A
4
3A sq unit.
27 : (A)
Given ( )