momentum and impulse - sfu.caimpulse momentum the impulse on an object in a time interval equals the...

22
Momentum and Impulse Conservation Laws

Upload: others

Post on 15-Oct-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under

Momentum and Impulse

Conservation Laws

Page 2: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under

Impulse

Fra

cket

on

ball

Page 3: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under

ImpulseWhen the racket hits the ball

F(t)racket on ball = – F (t) ball on racket

Time interval from ti to tf is the same

Fr on b = mb (dvb/dt)

Fr on b dt = mb dvb

Define “Impulse”

J on ball = Fr on bdtti

t f

Page 4: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under

Momentum

Fr on b dt = mb dvb = d (mb vb)

Mass x Velocity = Momentum

pb = mb vb

Fr on b dt = d pb

J on ball = Fr on bdt = dpb

ti

tf

∫ti

t f

∫ = pf − pi

Page 5: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under

Impulse Momentum

The impulse on an object in a time interval equals the object’s change of momentum.

Page 6: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under

Average ForceMaximum Force

Fmax

The area under the triangle is the same as the area in part (a)

Page 7: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under
Page 8: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under
Page 9: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under
Page 10: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under
Page 11: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under

Conservation of Momentum

Page 12: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under

The momentum change of ball 1is equal and opposite to

the momentum change of ball 2

The total momentum isalways the same

Page 13: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under

Inelastic Collisionv1

m1 m2before collision

after collision

v’

stuck together

Use conservation of momentum to find v’

Page 14: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under

Inelastic Collision1-D

before

ptotal = m1v1

after

′ p total = (m1 + m2 ) ′ v =

m1v1 = (m1 + m2 ) ′ v

′ v =m1

(m1 + m2 )v1

Page 15: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under

Inelastic Collisionequal masses

′ v =m1

(m1 + m2 )v1

m1 = m2

′ v =m1

(2m1)v1 =

v1

2

Page 16: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under

Inelastic Collisionm2 =2 m1

v’=?

Page 17: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under
Page 18: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under

Explosions

v′2

m1 m2before “explosion”

v′1

after “explosion”ptotal = 0

p′total = 0

m1 ′ v 1 + m2 ′ v 2 = 0

′ v 1′ v 2

=m2

m1

Inverse Relationship

Page 19: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under

Reverse Explosionv2before v1

after m1 m2

p′total = 0

ptotal = 0

′ v 1′ v 2

=m2

m1

Velcro

Note that if you sit on one of the blocks, the “explosion” looks like a collision:

Change of reference frame.

Page 20: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under

Explosions in 2-D

Find v3 and θ

Page 21: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under

unknowns

Explosions in 2-D

pix = p1x + p2x + p3x

piy = p1y + p2 y + p3 y = 0

Page 22: Momentum and Impulse - SFU.caImpulse Momentum The impulse on an object in a time interval equals the object’s change of momentum. Average Force Maximum Force F max The area under

p3 y = −( p1y + p2 y )

p3x = pix − ( p1x + p2x )

pix = MVix = (10g)(2.0m/s) = 20 g•m/s

p2x = (3g)(−10.0m/s)

= −30 g•m/s

p1x = (3g)(12.0m/s) cos 40°

= 27.6 g•ms

0

p1y = (3g)(12.0m/s) sin 40¡

= 23.1 g•m/s

= 22.4 g•m/s

= –23.1 g•m/s

Accountancy 101

Find θ and v3.