molecules at surfaces and mechanism of...

37
Molecules at surfaces and mechanism of catalysis Gerhard Ertl Fritz Haber Institut der Max Planck Gesellschaft Berlin, Germany

Upload: others

Post on 02-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Molecules at surfaces and mechanism of catalysis

    Gerhard Ertl

    Fritz Haber Institut der Max Planck GesellschaftBerlin, Germany

  • Transformation of energy and matter

    The Sun:

    nuclear fusion

    Photosynthesis

    Fossil fuels “Renewable energies”(wind, water, solar, etc.)

    Fuel processing(catalysis)

    Chemicals(catalysis)

    Fuel cell(electrocatalysis)

    Nuclearreactor

    Electrical energy

    Mechanical energy

    + O2Heat Environment

    (catalysis)

  • Catalytic synthesis of ammoniaN2 + 3 H2 Æ 2 NH3(Haber-Bosch process)

  • Steady-state reaction rate:

    = v = f (pi, pj, T, catalyst)dnjdt

    Reactor

    dnidt

    dnidt

    dnjdt

    ¢

    i: reactantsj: products

    Heterogeneous catalysis

  • Progress of a chemical reaction

    withoutcatalyst

    with catalyst

    Energy

    E

    D E

    *

  • E*

    E

    initial

    final state

    |=

    reaction coordinate

    Transition state theory

    kr = e · ekBTh

    DS /R|= –E*/RT

  • DG‡

    DG‡ – azFei

    zFeiazFei

    G

    x x

    +

    r+ ∞ exp – r+ ∞ j+ ∞ exp – DG‡ – azFei

    RT RT

    DG‡

    Heterogeneous catalysis Electrocatalysis

  • 2 H2 + O2 Æ 2 H2O / PtHeterogeneous catalysis Electrocatalysis

    O2 + 4 Haq + 4 e- 2 H2O

    +

    Æ̈ Æ̈H2 2 Haq + 2 e-+

    U0 = 1.23 V U0 = 0 V DU = U1 – U2 DG0 = –nFDU

    1 2

  • E*

    E

    initial

    final state

    |=

    reaction coordinate

    Transition state theory

    kr = e · ekBTh

    relaxation times for energy exchangebetween adsorbate and heat bath of solid(= phonons + electrons)

    DS /R|= –E*/RT

    time scale >>

  • Associative desorption of hydrogen from Ru(0001)D2

    D

    H2HDD2

    /2kBH2:(2110±450) K

    D2:(1720±290) K

    200 250 300 350 400 450 500 0 20 40 60 80

    TDS-

    sign

    al [a

    .u.]

    flux

    [a.u

    .]

    temperature [K] flight time [ms]

    A BThermal desorption spectroscopy (TDS) fs-laser induced ToF spectra

  • 3000

    2500

    2000

    1500

    1000

    500

    0

    0 1 2 3

    time [10-12 s]

    surfa

    ce te

    mpe

    ratu

    re [ K

    ]rate [a.u.]

    TelTph

    Tads : D layer Tads : H layer

    D2 yield H2 yield

    DtDDtH

    D. Denzler, C. Frischkorn, C. Hess, M. Wolf, G. Ertl,Phys.Rev.Lett. 91 (2003), 226102; J.Phys.Chem. B 108 (2004), 14503

  • O / Pt (111)

    J. Wintterlin, R. Schuster, and G. Ertl, Phys.Rev.Lett. 77 (1996), 123.

  • z

    x

    z xE*

    EE

    Ead

    tsurf = t0·eEad/RT tsite = t0 ·e

    E*/RT¢

  • O/Ru (0001)

    T = 300 K

  • OC

    260

    ~ 21

    DH = 283 kJ/mol

    ELH = 100*

    CO + 2 O21

    CO2ad

    COad + Oad CO2

    2CO + O2 2CO2

    Oad + COad CO2 + 2* O2 + 2* O2,ad 2Oad

    CO + * COad

    I––

    Pt

    Catalytic oxidation of CO

    Pt at low coverages( )

  • Oad + COad CO2 Pt 111( )/

    Density Functional Theory Study

    GGA

    1.0 2.0 3.0 4.0

    1.0

    0.5

    0.0

    C – O (a) separation / Å

    E –

    E 0 / e

    V

    A. Alavi, P. Hu, T. Deutsch, P.L. Silvestrelli, J. Hutter,Phys. Rev. Lett. 80 (1998), 3650

  • 2 H2 + O2 Æ 2 H2O Pt/

    Mechanism (?) :

    (1) O2 + * Æ 2 Oad(2) H2 + * Æ 2 Had(3) Oad + Had Æ OHad(4) OHad + Had Æ H2Oad(5) H2Oad Æ H2Og + * (T ≥ 170 K)

    But :

    Important :

    T < 170 KInduction period

    ~ 12 kJ/mol

    T > 230 KNo induction period

    > 50 kJ/molE* :

    (6) H2Oad + Oad Æ 2 OHad

    S. Völkening, K. Bedürftig, K. Jacobi, J. Wintterlin and G. Ertl,Phys. Rev. Lett. 83 (1999), 2672.

  • Oad + Had T = 131 K; p(H2) = 8 ·10-9 mbar

    625 s 1000 s

    1175 s 1250 s170 ¥ 170 Å2

  • Oad + Had T = 131 K; p(H2) = 8 ·10-9 mbar

    1300 s 1350 s

    1400 s 1450 s170 ¥ 170 Å2

  • OH-frontsT = 111 K; p(H2) = 8 ·10-9 mbar; 2100¥1760 Å2

    q

    x

    fi

    H2O O

    H2O + O Æ 2 OH

    OH

    2 OH + 2 H Æ 2 H2O

    500 s

    t = 0

    625 s

    250 s

  • 0.3

    0.2

    0.10

    0 20 40 60 80 100

    0.3

    0.2

    0.10

    0 20 40 60 80 100

    0.3

    0.2

    0.10

    0 20 40 60 80 100

    0.3

    0.2

    0.10

    0 20 40 60 80 100

    0.6

    0.4

    0.20

    0 20 40 60 80 100

    0.3

    0.2

    0.10

    0 20 40 60 80 100

    H2OO

    OHconc

    entr

    atio

    nxnum LD/

    C. Sachs, M. Hildebrand, S. Völkening,J. Wintterlin, and G. Ertl, Science 293 (2001), 1635;

    J. Chem. Phys. 116 (2002), 5759

  • Reaction-diffusion systems

    — Diffusion— Heat conductance— Variation of partial pressures— Electric field

    Coupling between different parts of the surface via

    Spatio-temporal self-organization

    Temporal and spatial variation of state variables (surface concentrations) xi

  • Heartbeats of ultra thin catalyst

    Ultra thin (200 nm thick) Pt(110) catalyst during CO oxidation, 5 mmsample diameter, T"="528 K, pO2 = 1 x 10-2 mbar, pCO = 1.85 x 10-3 mbar

    F. Cirak, J.E. Cisternas, A.M. Cuitino,G. Ertl, P.Holmes, I. Kevrekidis, M.Ortiz,H.H. Rotermund, M.Schunack, J. Wolff,

    Science 300 (2003), 1932

  • 1845 1855 18751865 1885 1895 1905 1915 1925 1935

    160

    140

    120

    100

    80

    60

    20

    40

    Year

    Num

    ber

    ( thou

    sand

    s)

    HaresLynxes

  • PEEM images with 500 µm diameter, steady-state conditions: pO2!=!4!x!10

    -4!mbar, pCO!=!4.3!x!10-5!mbar, T!=!448!K

    Spiral waves during CO-oxidation on Pt(110)

    S. Nettesheim, A. von Oertzen, H.H. Rotermund, G. Ertl, J.Chem.Phys. 98 (1993), 9977

  • Hurricane Bret over the coast of Texas,August 1999 (photo: NASA, GOES)

  • Chemical turbulence

    Photoemission electron microscope(PEEM) imaging. Dark regions arepredominantly oxygen covered, brightregions are mainly CO covered.

    Real time, image size 360 x 360 mm

    Temperature T = 548 K, oxygen partialpressure po2 = 4 x 10

    -4 mbar, COpartial pressure pco = 1.2 x10-4 mbar.

  • Global delayed feedback

    O2 CO

    UHVChamber

    PEEM

    Delay

    Amplifier

    Integrator

    sample

    M. Kim, M. Bertram, M. Pollmann, A. von Oertzen;A.S. Mikhailov, H.H. Rotermund, and G. Ertl,

    Science 292 2001 , 1357( )

  • CO oxidation reaction on Pt(110)

    • Suppression of spiral-wave turbulence anddevelopment ofintermittent turbulencewith cascades ofreproducing bubbles

  • CO oxidation on Pt(110)with delayed global feedback

    uniform oscillations

    phase turbulence

    cellular structures

    turbulence

    intermittent turbulence

    clusters

  • Retina

    10mm

  • Quantumlevel

    Atomiclevel

    Heterogeneous catalysis :Dynamics of surface reactions

    Spatio- temporalself- organization

    Micro-kinetics

    Macroscopickinetics

    1 Å 100 Å 10 mm 1 cm10-15 sec

    10-12 sec

    10-6 sec

    1 sec

    102 sec

    Microscopic Mesoscopic Macroscopic