molecular systematics of noctuoidea (insecta, lepidoptera

47
TURUN YLIOPISTON JULKAISUJA ANNALES UNIVERSITATIS TURKUENSIS SARJA - SER. AII OSA - TOM. 268 BIOLOGICA - GEOGRAPHICA - GEOLOGICA TURUN YLIOPISTO UNIVERSITY OF TURKU Turku 2012 MOLECULAR SYSTEMATICS OF NOCTUOIDEA (INSECTA, LEPIDOPTERA) REZA ZAHIRI

Upload: others

Post on 10-Dec-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

TURUN YLIOPISTON JULKAISUJAANNALES UNIVERSITATIS TURKUENSIS

SARJA - SER. AII OSA - TOM. 268

BIOLOGICA - GEOGRAPHICA - GEOLOGICA

TURUN YLIOPISTOUNIVERSITY OF TURKU

Turku 2012

Molecular SySteMaticS

of Noctuoidea (iNSecta, lepidoptera)

reza zahiri

Page 2: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

From the Laboratory of Genetics, Division of Genetics and Physiology, Department of Biology, University of Turku, FIN-20012, Finland

Supervised by:

Docent Niklas Wahlberg

University of Turku

Finland

Co-advised by: Ph.D. J. Donald Lafontaine Canadian National Collection of Insects, Arachnids and Nematodes Canada Ph.D. Ian J. Kitching Natural History Museum U.K. Ph.D. Jeremy D. Holloway Natural History Museum U.K. Reviewed by: Professor Charles Mitter University of Maryland U.S.A. Dr. Tommi Nyman University of Eastern Finland Finland

Examined by:

Dr. Erik J. van Nieukerken

Netherlands Centre for Biodiversity Naturalis, Leiden

The Netherlands

Cover image: phylogenetic tree of Noctuoidea

ISBN 978-951-29-5014-0 (PRINT) ISBN 978-951-29-5015-7 (PDF) ISSN 0082-6979

Painosalama Oy – Turku, Finland 2012

Page 3: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

To Maryam, my mother and father

Page 4: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

MOLECULAR SYSTEMATICS OF NOCTUOIDEA (INSECTA, LEPIDOPTERA)

Reza Zahiri

This thesis is based on the following original research contributions, which are referred to in the text by their Roman numerals:

I Zahiri, R, Kitching, IJ, Lafontaine, JD, Mutanen, M, Kaila, L, Holloway,

JD & Wahlberg, N (2011) A new molecular phylogeny offers hope for a

stable family-level classification of the Noctuoidea (Lepidoptera).

Zoologica Scripta, 40, 158–173

II Zahiri, R, Holloway, JD, Kitching, IJ, Lafontaine, JD, Mutanen, M &

Wahlberg, N (2012) Molecular phylogenetics of Erebidae (Lepidoptera,

Noctuoidea). Systematic Entomology, 37,102–124

III Zaspel, JM, Zahiri, R, Hoy, MA, Janzen, D, Weller, SJ & Wahlberg, N

(2012) A molecular phylogenetic analysis of the vampire moths and their

fruit-piercing relatives (Lepidoptera: Erebidae: Calpinae). Submitted

manuscript

IV Zahiri, R, Lafontaine, JD, Holloway, JD, Kitching, IJ, Schmidt, BC, Kaila,

L, & Wahlberg, N. Major lineages of Nolidae (Lepidoptera, Noctuoidea)

elucidated by molecular phylogenetics. Submitted manuscript

V Zahiri, R, Lafontaine, JD, Kitching, IJ, Holloway, JD, Schmidt, BC,

Mutanen, M & Wahlberg, N. Relationships of the early lineages of

Noctuidae (Lepidoptera, Noctuoidea) based on eight gene regions.

Manuscript

Page 5: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Abstract

In this thesis, I conduct a series of molecular systematic studies on the large phytophagous moth superfamily Noctuoidea (Insecta, Lepidoptera) to clarify deep divergences and evolutionary affinities of the group, based on material from every zoogeographic region of the globe. Noctuoidea are the most speciose radiations of butterflies and moths on earth, comprising about a quarter of all lepidopteran diversity. The general aim of these studies was to apply suitably conservative genetic markers (DNA sequences of mitochondrial—mtDNA—and nuclear gene—nDNA—regions) to reconstruct, as the initial step, a robust skeleton phylogenetic hypothesis for the superfamily, then build up robust phylogenetic frameworks for those circumscribed monophyletic entities (i.e., families), as well as clarifying the internal classification of monophyletic lineages (subfamilies and tribes), to develop an understanding of the major lineages at various taxonomic levels within the superfamily Noctuoidea, and their inter-relationships. The approaches applied included: i) stabilizing a robust family-level classification for the superfamily; ii) resolving the phylogeny of the most speciose radiation of Noctuoidea: the family Erebidae; iii) reconstruction of ancestral feeding behaviors and evolution of the vampire moths (Erebidae, Calpinae); iv) elucidating the evolutionary relationships within the family Nolidae and v) clarifying the basal lineages of Noctuidae sensu stricto. Thus, in this thesis I present a well-resolved molecular phylogenetic hypothesis for higher taxa of Noctuoidea consisting of six strongly supported families: Oenosandridae, Notodontidae, Euteliidae, Erebidae, Nolidae, and Noctuidae. The studies in my thesis highlight the importance of molecular data in systematic and phylogenetic studies, in particular DNA sequences of nuclear genes, and an extensive sampling strategy to include representatives of all known major lineages of entire world fauna of Noctuoidea from every biogeographic region. This is crucial, especially when the model organism is as species-rich, highly diverse, cosmopolitan and heterogeneous as the Noctuoidea, traits that represent obstacles to the use of morphology at this taxonomic level.

Page 6: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

CONTENTS

CONTENTS ....................................................................................................................... 6 

1. INTRODUCTION ......................................................................................................... 7 

1.1  Why Noctuoidea? .................................................................................................... 7 1.2  Status of Noctuoidea ................................................................................................ 8 1.3  Initiation of molecular phylogenetic approaches ................................................... 10 1.4  Outline of the thesis ............................................................................................... 11 

2. MATERIAL AND METHODS .................................................................................. 13 

2.1  Sampling strategy .................................................................................................. 13 2.2  Molecular markers ................................................................................................. 13 2.3  Phylogenetic analyses and character optimizations ............................................... 14 

3. RESULTS AND DISCUSSION .................................................................................. 16 

3.1  Phylogenetic hypothesis for Noctuoidea ............................................................... 16 3.2  Pattern of relationships among major lineages of Noctuoidea .............................. 17 3.3  Phylogenetic hypothesis for quadrifid Noctuoidea ................................................ 19 3.4  Character optimizations ......................................................................................... 21 3.5  Evolution of host-plant associations in Noctuoidea .............................................. 22 

4. CONCLUSIONS AND FUTURE DIRECTIONS ..................................................... 29 

4.1 Conclusions .............................................................................................................. 29 4.2 Future directions ....................................................................................................... 30 

5. ACKNOWLEDGEMENTS ........................................................................................ 32 

6. REFERENCES ............................................................................................................ 34 

APPENDIX ...................................................................................................................... 37 

ORIGINAL PUBLICATIONS ....................................................................................... 49 

Page 7: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Introduction

7

“In scientific investigations, it is permitted to invent any hypothesis and, if it explains various large and independent classes of facts, it rises to the rank of a well-grounded theory”

Charles Darwin 1. INTRODUCTION

1.1 Why Noctuoidea?

I quote a magnificent passage from Charles Darwin who said ‘‘all the organic beings which have ever lived on this earth have descended from some one primordial form.’’ It can be obviously interpreted from this simple and meaningful passage that every characteristic of every species on Earth is the outcome of an evolutionary history (Futuyma, 2005). The evolutionary perspective and phylogenetic relationships have illuminated every subject in biology, from the molecular and morphology level to ecosystem and beyond. The geneticist Theodosius Dobzhansky (1973) famously argued that ‘‘Nothing in biology makes sense, except in the light of evolution.’’ Evolution governs diversity on Earth, and insects are the most diverse organisms in the whole history of life (Grimaldi & Engel, 2005). Consequently, insects should provide profound insights into evolution.

The Order Lepidoptera (moths and butterflies) is one of four super-radiations of insects (along with beetles, flies and wasps) that account for the majority of animal life on Earth. Noctuoidea are the largest superfamily within Lepidoptera—belonging to a large ditrysian clade that also includes e.g., geometroids and bombycoids (Regier et al., 2009, Mutanen et al., 2010)—with approximately 45,000 described (Nieukerken et al., 2011) and

many unknown as well as unnamed species, particularly from tropical regions.

To understand Noctuoidea evolution, their systems of evolutionary relationships—phylogenies based on extensive evidence from living lineages of noctuoids—must be recognized. Fortunately, the monophyly of Noctuoidea is firmly established. It is based on the presence of a single apomorphic character, the metathoracic tympanal organ (Miller, 1991). This organ is a highly specialized hearing apparatus that detects the echolocation signals of bats (Kitching & Rawlins, 1998); however, there is increasing evidence that the tympanum may also be involved in reception of mating signals (Kitching & Rawlins, 1998).

Noctuoidea, like most lepidopterans, are plant feeding as caterpillars and nectar feeding as adults, and they are a prominent element of terrestrial ecosystems, functioning as herbivores, pollinators and prey, as well as being one of the most damaging groups of pests to agriculture (Regier et al., 2009). Of the approximately 6,000 Lepidoptera species noted to be of economic importance by Zhang (1994), about one-quarter belong to Noctuoidea. Although a large number of these can be assigned to what Mitchell et al. (2006) termed the ‘pest clade’, many more are

Page 8: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Introduction

8

distributed across the whole superfamily Noctuoidea in over 500 genera (Zhang, 1994). The caterpillars of many noctuoid genera have massive economic impact annually (Kitching, 1984). In addition, the adults of some genera damage fruit crops by piercing the skins to suck juices (Baenziger, 1982).

The study of relationships among major lineages of organisms—phylogenetic analysis—has been closely associated with the classification and naming of the diversity of life on Earth (i.e., taxonomy), which both are a branch of the science of systematics. The classification of organisms has been one of the major ongoing accomplishments of human society (Wilson, 2000), but is still far from completion, both in terms of the inventory of species and of the classification of those species in a hierarchical system that has a phylogenetic basis. However, there has been a striking improvement in the theory and computational methodology for inferring phylogenies (Regier et al., 1995). In particular, the use of molecular data, in particular DNA sequences, is becoming increasingly important for testing and improving classifications, especially for highly diverse groups of organisms such as insects.

The main theme of my thesis, as well as my ongoing research, is to improve our understanding of the reasons and causes behind the flourishing diversification of Noctuoidea on Earth. To address tens of such questions—diversity of their adaptations, biomass, species-richness, ecological and economical impacts, etc.—it is necessary, as a first step, to place Noctuoidea and its major lineages in a phylogenetic context, by reconstructing a

strong phylogenetic hypothesis. The resolution of a stable, extrapolative higher-level classificatory structure for the major lineages of Noctuoidea, and understanding their phylogenetic relationships, is also of importance for pest bionomic studies.

1.2 Status of Noctuoidea

Historically, the classification of noctuoid moths has been highly unstable, with different classification systems being used by different authors. It seems that the fundamental distinction between the different systems is based on the use of unsatisfactory (occasionally plesiomorphic) characters in phylogenetic reconstruction. Various authors have recognized between five and thirteen families, and strikingly, no two publications have agreed on the same divisions of the superfamily into families (Kitching & Rawlins, 1998, Lafontaine & Fibiger, 2006). For instance, in Figure 1, I have summarized most recent Noctuoidea classifications and have compared them with the most recent one, which is presented in this thesis (I). Kitching (1984) published a historical review of noctuid subfamily relationships and showed that the higher classifications of Noctuidae used up to that time had been based upon superficial resemblance and vaguely defined characters, rather than on rigorous application of cladistic principles. Subsequently, Speidel and co-workers attempted to progress beyond the age of traditional morphological noctuid taxonomy by initiating investigations based mainly on the male genitalia and the tympanal region, which they considered particularly useful in elucidating the basic relationships of the noctuid subfamilies (Speidel & Naumann, 1995, Speidel et al., 1996, Kühne & Speidel, 2004, 2005).

Page 9: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Introduction

9

Figure 1 Different classification systems of the superfamily Noctuoidea that have been used since Kitching

(1984) to date (I). In every classification moths (except the one for Micronoctuidae for which the author’s

portrait—the late Michael Fibiger—is used) indicate family-group name being used in the system.

Their work set the stage for the study of the systematics of noctuoids, and made it clear that increased character and taxon sampling were necessary to resolve the relationships of the diverse clades.

Recently, three landmark publications (Fibiger & Lafontaine, 2005, Lafontaine & Fibiger, 2006, Mitchell et al., 2006) presented detailed phylogenetic hypotheses and revised the classification of Noctuoidea three times (Figure 1), each

classification having its own limitations and strengths (Roe et al., 2010). Fibiger & Lafontaine (2005) proposed a rather new classification with ten families: Oenosandridae, Doidae, Notodontidae, Strepsimanidae, Nolidae, Lymantriidae, Arctiidae, Erebidae, Micronoctuidae and Noctuidae (Figure 1). Later on, Lafontaine & Fibiger (2006) proposed a further revision to the classification of the families of Noctuoidea, in which Nolidae, Strepsimanidae, Arctiidae, Lymantriidae

Page 10: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Introduction

10

and Erebidae sensu Fibiger & Lafontaine (2005) were downgraded to subfamily status within an expanded family concept of Noctuidae based on the quadrifid venation of the forewing and the presence of a tympanal sclerite in the tympanal membrane. In their view, the superfamily should consist of five families: Oenosandridae, Doidae, Notodontidae, Micronoctuidae and Noctuidae (Figure 1).

To resolve the dominant complexity of relationships in higher systematics of Noctuoidea, it was crucial to understand their phylogenetic relationships by building a robust skeleton phylogenetic hypothesis, i.e., a phylogeny that was based on certain specialized features, and that had a common ancestor and unique evolutionary history. To achieve a more robust phylogenetic hypothesis, one strategy is to increase the number of characters to obtain a dataset with a strong phylogenetic signal. In molecular systematics, datasets with a weak phylogenetic ‘signal’ tend to be strongly influenced by the assumptions made by the analytical methods applied, whereas datasets with a strong phylogenetic signal are not influenced as much (Wahlberg & Wheat, 2008). One avenue for acquiring more characters is to use morphology. However, a species-rich, cosmopolitan and heterogeneous group such as the Noctuoidea (Speidel & Naumann, 1995) with a vast number of species presents obstacles to the use of morphology at this taxonomic level. The adults and larvae of species in Noctuoidea exhibit a bewildering diversity of size, coloration, adaptation, behaviour and ecology (Kitching & Rawlins, 1998). Morphological data are thus often difficult to homologize and code, require great experience to identify character states

correctly and can be subject to extensive homoplasy (character convergence and reversal). As a result, morphological analyses have often failed to determine relationships among most groups with confidence.

1.3 Initiation of molecular phylogenetic approaches

As noted above, until recently, the higher systematics of Noctuoidea had been based primarily on morphological characters with a predominantly phenetic approach, until the introduction and application of cladistic philosophy by Kitching (1984, 1987) and Miller (1991). More recently, molecular data, in particular DNA sequences of mitochondrial and nuclear genes (mtDNA and nDNA, respectively), have opened new and fruitful avenues for the study of phylogenetic relationships. Molecular studies have often been based on a small number of molecular markers, usually between one and three genes (Sperling, 2003, Wahlberg & Wheat, 2008). The utility of using many mitochondrial genes alone is certainly questionable, as they have a shared evolutionary history, and even entire mitochondrial genomes (15,000–20,000 bp in insects) fail to provide robust inferences at deep levels (Cameron et al., 2004). However, they are useful in the recognition of cryptic species and sometimes resolve relationships among closely related species and genera (Lafontaine & Schmidt, 2010). They have proven most valuable for relatively recent divergences, especially those of mid-Tertiary and later age, although they have also been applied, albeit infrequently, at deeper levels (Wiegmann et al., 2000). In contrast, protein-coding nuclear genes generally have slower mutation rates compared with mtDNA. They are most

Page 11: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Introduction

11

frequently used to study older evolutionary divergences and are particularly good at resolving deeper nodes in phylogenetic hypotheses, where they have been important in establishing the family, subfamily and tribal classification of Lepidoptera (Regier et al., 2009, Wahlberg et al., 2009, Mutanen et al., 2010). Over the past few years, a series of papers have been published with a shared objective: to contribute to the development of a more satisfactory classification of Noctuoidea at levels above that of the genus and particularly the ‘quadrifid’ part—those noctuoids with forewing vein M2 arises closer to the origin of M3 than M1, in the lower part of the discal cell—of the superfamily. It began with the exploration of molecular markers by Weller et al. (1994), who were then followed by Mitchell et al. (1997, 2000, 2006). The utility of DNA sequences was undeniable, and systematists were able to gain fascinating insights that were not obvious before, e.g., the polyphyly of the old concept of Noctuidae (Mitchell et al., 1997). Mitchell et al. (2006) found a strongly supported clade of quadrifine noctuid moths that also included the families Lymantriidae and Arctiidae. They termed this the L.A.Q. clade (Lymantriidae, Arctiidae and Quadrifine Noctuidae).

Two recent molecular studies on ditrysian Lepidoptera sampled members of Noctuoidea and found that the enigmatic family Doidae did not group with the other noctuoids, but instead appeared to be related to Drepanoidea (Regier et al., 2009, Mutanen et al., 2010). Otherwise both studies found Noctuoidea to be monophyletic, with Oenosandridae being sister to the rest and Notodontidae the next lineage branching off.

However, all of these studies had very poor sampling of the higher taxa putatively belonging to the L.A.Q. clade, and critically they did not sample type genera of many higher taxa. Given that the monophyly of many named groups remains questionable, it is crucial to sample the type genera of each family, subfamily and tribe to assess the taxonomic limits of a given category. Furthermore, previous molecular studies have used only a small number of molecular markers, usually one to three gene regions (Wahlberg & Wheat, 2008).

1.4 Outline of the thesis

In this thesis, I employed the methods of molecular phylogenetics using eight markers for genomic DNA extractions of Lepidoptera to study the evolution of Noctuoidea and reconstruct a skeleton phylogenetic hypothesis for its major lineages. The first chapter gives a comprehensive overview of the higher-level phylogeny and evolutionary affinities of noctuoid moths, in an extensive sampling strategy of the entire Noctuoidea (I). It reveals a new high-level phylogenetic hypothesis comprising six major, well-supported lineages that are interpreted as families (I). The second chapter aims to understand the higher-level phylogeny and elucidate the evolutionary history of the moth family Erebidae, the most controversial group among the newly circumscribed families (II). Erebidae is a massive clade and includes a diverse groups exhibiting a broad range of feeding behaviors, including those that can be considered ‘piercers’ of fruits or other hosts (skin-piercers: hematophagous) and ‘tear feeders’ (lachryphagous) (III). Within butterflies and moths, adult hematophagy is limited to species within the vampire moth genus Calyptra

Page 12: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Introduction

12

Ochsenheimer, which are placed within the subfamily Calpinae, Erebidae. Paper III focused on the subfamily Calpinae using both morphological and molecular data to reconstruct ancestral feeding behaviors within Calpinae as well as whether fruit-piercing behavior and associated modifications of the tongue have evolved independently in different groups of Erebidae (III). The fourth chapter seeks to elucidate the deep divergences and evolutionary relationships of the major lineages within the moth family Nolidae (IV). As a result of expanded sampling, a new lineage (i.e., Diphtherinae) within Noctuoidea—which includes taxa of previously uncertain affinity—was recovered. Diphtherinae is considered to be the plesiomorphic sister lineage to the rest of Nolidae (IV), thus a new phylogenetic hypothesis for Nolidae is presented (IV). The fifth chapter elucidates the evolutionary relationships of the basal

lineages of the moth family Noctuidae (V). A summary flow chart is presented in Fig. 2, representing my thesis process with their main outputs.

Figure 2 A flow chart summarizing five chapters

included in this thesis.

Page 13: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Material and Methods

13

2. MATERIAL AND METHODS

2.1 Sampling strategy

The sampling strategy that I adopted has treated the world fauna. I attempted to include representatives of all known major lineages of quadrifine Noctuoidea from every biogeographic region. This strategy is being used to establish priorities for ongoing studies, to test further the robustness of the major clades of Noctuoidea, both in relation to each other and internally.

Based on the results of recent publications (Fibiger & Hacker, 2005, Lafontaine & Fibiger, 2006, Mitchell et al., 2006, Lafontaine & Schmidt, 2010), 152, 237, 35, 120 and 76 terminal taxa were sampled as representatives of the most recognized Noctuoidea lineages for papers I–V, respectively. Furthermore, there were numerous unplaced taxa of uncertain status that were included in each paper. Indeed, the allocation of the unplaced taxa into any higher taxa of Noctuoidea, however tentatively, could not be determined in previous classifications. I was unable to sample/amplify a few rare taxa with restricted distributions and/or low species richness (e.g., Strepsimaninae, Afridinae, Camptolominae). Where possible, a representative of the type genus of each lineage is included, but this was not possible for a few tribes/subtribes, in which case a closely related genus was selected.

Appendix 1 summarizes all 393 terminal taxa that are used in the five papers with their voucher codes and GenBank accession numbers.

To test the monophyly of the target taxon under study in the different papers, I included representatives from the most

closely related taxa of other families of Lepidoptera (papers I, II, IV, V) or subfamilies of Erebidae (III). I rooted the cladograms, in different papers, with different taxa, which represents what I consider to be the putative sister family to the remainder of the terminal taxa.

2.2 Molecular markers

The total genomic DNA from one or two legs, dried or freshly preserved in 96% ethanol, was extracted using the DNeasy tissue extraction kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions. For each specimen, I sequenced cytochrome c oxidase subunit I (COI) from the mitochondrial genome, and elongation factor-1α (EF-1α), ribosomal protein S5 (RpS5), carbamoylphosphate synthase domain protein (CAD), cytosolic malate dehydrogenase (MDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isocitrate dehydrogenase (IDH) and wingless genes from the nuclear genome. For paper III, I sequenced an additional gene, the D2 region of the nuclear ribosomal RNA (rRNA) 28S region. All genes—except 28S, which is multiple-copy and encodes ribosomal RNA—are single-copy, protein-coding exons and have previously been found to be highly informative in phylogenetic analyses of Lepidoptera at higher taxonomic levels (Wahlberg et al., 2009, Mutanen et al., 2010, I, II).

DNA amplification (PCR) and sequencing protocols follow Wahlberg & Wheat (2008). Sequencing was performed mainly with an ABI 3730XL capillary sequencer (Macrogen, Seoul, Korea), and a smaller part with an ABI PRISMR 3130XL capillary sequencer (Turku,

Page 14: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Material and Methods

14

Finland). The resulting chromatograms were checked and DNA sequences aligned by eye using BioEdit v. 7.0.4.1 (Hall, 1999). Alignment was trivial and the few insertion/deletion events that were detected were of entire codons (in CAD, IDH and RpS5), and could be easily aligned. To minimize the risk of any kind of confusion during the sequencing protocol and errors in alignments, I constructed neighbor-joining and Maximum Likelihood trees separately for each gene region and checked them carefully for identical sequences and other doubtful patterns. In addition, to minimize the risk of misidentification, all the specimens were cross-checked with their DNA barcodes (COI) in BOLD (Barcode of Life Data System, http://www.boldsystems.org/views /login.php) (Ratnasingham & Hebert, 2007), where reference specimens were available for many of the species used in this study. 2.3 Phylogenetic analyses and character

optimizations

The gene regions were analyzed using various phylogenetic approaches including model-based (Maximum Likelihood, ML; and Bayesian Inference, BI), and non model-based (i.e., parsimony) methods. Initially, the data matrices were analysed in various combinations using ML to explore their phylogenetic signal. Single genes were analyzed on their own, nuclear genes were combined, third codon positions were removed, data was partitioned into mtDNA and nDNA and finally the data was partitioned by gene regions (8 partitions). The effects of varying taxon and gene combinations were compared against the analyses of the full, combined and partitioned by gene data. Based on these data explorations, it was decided to include all genes and third

codon positions as well as to partition the data by genes (8 partitions) in the ML analyses, and by nDNA and mtDNA (two partitions) in the BI analyses.

Parsimony analyses (MP) were undertaken using New Technology heuristic searches implemented in the program, TNT v 1.1 (Goloboff et al., 2003). New technology searches (Goloboff, 1999) consisted of Tree Fusion, Ratchet, Tree Drifting and Sectorial Searches performed, with default parameters applied, until the minimal tree was found 1000 times. All characters were treated as unordered and equally weighted, and robustness of the hypothesis was assessed through the bootstrap (BP) with 1000 pseudoreplicates (Felsenstein, 1985). In addition, in papers I and II clade support was estimated by Bremer support (BS) (Bremer, 1988, 1994) using a script (Peña et al., 2006) in TNT. Model-based phylogenetic analyses were performed using ML and a GTR + Γ model was selected as the most appropriate model of sequence evolution for each gene partition based on the Akaike Information Criterion using FindModel (http://www.hiv.lanl.gov/ content/sequence/findmodel/findmodel.html). ML analyses were conducted using the default settings on the web-server RAxML III BlackBox (Stamatakis et al., 2008). ML bootstrap analysis with 1000 pseudoreplicates (Felsenstein, 1985) was also conducted with RAxML III.

BI was not used for papers I and II. In the other papers, BI analyses were carried out using the software MrBayes v3.1 (Ronquist et al., 2005) on the freely available Bioportal server (http://www. bioportal.uio.no). The dataset was divided into two partitions: mtDNA and nDNA, as partitioning by gene resulted in poor

Page 15: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Material and Methods

15

mixing of chains and problems with convergence of likelihoods. I modeled the evolution of sequences according to the GTR + Γ model independently for the two partitions using the “unlink” command in MrBayes. The Bayesian analyses were separately run two times for five, 23 and 20 million generations for papers III−V, respectively, with every 1000th generation sampled. Clade robustness was estimated by posterior probabilities (PP) in MrBayes. Convergence was determined when the standard deviation of split frequencies went below 0.05 and the PSRF (Potential Scale Reduction Factor) approached 1, and both runs had properly converged to a stationary distribution after the burn-in

stage (which was 1,000 sampled generations).

To understand character evolution in higher noctuoids, a character optimization analysis based on parsimony was undertaken in paper IV using the software Mesquite v2.75 (Maddison & Maddison, 2011). Ancestral state reconstructions and character transformations were optimized onto the topology resulting from the Bayesian analysis (IV).

All laboratory procedures and phylogenetic data analyses are detailed in the original papers.

Page 16: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Results and Discussion

16

3. RESULTS AND DISCUSSION

3.1 Phylogenetic hypothesis for Noctuoidea

In the initial study, I aimed, as a first step, to reconstruct a robust phylogenetic hypothesis for higher taxa of Noctuoidea. The results strongly supported the monophyly of Noctuoidea. The major groups within the Noctuoidea clade all shared a particular morphological synapomorphy—a metathoracic tympanal organ. I found six strongly supported major lineages within Noctuoidea that deserved family status. These are Oenosandridae, Notodontidae, Euteliidae, Erebidae, Nolidae and Noctuidae (Fig. 3). The first two major lineages are well-recognized taxa that have often been considered families within Noctuoidea. Oenosandridae are a small family, only known from Australia, comprising eight species in four genera (Nielsen et al., 1996), which mainly feed on Myrtaceae (Miller, 1991). Notodontidae contain approximately 3,800 species (Nieukerken et al., 2011) and occur worldwide. The other four lineages have been split into as many as 10 families, with arctiines, lymantriines and nolines frequently being considered to be sufficiently distinct from the rest to warrant full family status. My phylogenetic hypothesis (I) placed previously recognized families—arctiines, lymantriines, aganaines, herminiines and micronoctuines—into the strongly supported Erebidae clade. Within Erebidae, relationships of only a few lineages (e.g., Arctiinae, Aganainae and Herminiinae) were well supported (I). The low support for some nodes within

Erebidae and Noctuidae probably stems from high levels of homoplasy (particularly in the third codon position) and very sparse sampling.

At this stage, with well-supported monophyletic groups established within a phylogenetic framework, the question arose of how best to apply the Linnaean system of nomenclature to the structure of that framework, by making decisions on the content and arrangement of families, subfamilies, tribes and subtribes in a manner that was most likely to optimize the stability of that system and facilitate access to its information content (II). In particular, the establishment of a well-founded family-level noctuoid classification is certainly an issue of considerable practical importance, because it affects the classification of about a quarter of the world’s lepidopteran species, according to current estimates (Nieukerken et al., 2011). In paper II, I discussed in detail reasons for applying the six family-group system to the higher systematics of Noctuoidea with their advantages and drawbacks.

One of the most striking features of the application of molecular data in my thesis was uncovering the phylogenetic relationships of many unplaced taxa of uncertain affinity. Molecular phylogenetic techniques allowed the easy allocation of these taxa, which had remained ‘incertae sedis’ or with uncertain limits for many years. For example, the position of a number of taxa characterized by the pseudoquadrifine hindwing venation had

Page 17: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Results and Discussion

17

been unstable for a long time (IV–V). Most of these groups (i.e., pseudoquadrifine Noctuidae) were previously assumed to be related to erebid subfamilies (Fibiger & Lafontaine, 2005, Lafontaine & Fibiger, 2006) (II) or even considered as distinct families (e.g., Pantheidae) (Kitching & Rawlins, 1998) (V). The results of papers IV–V placed them in a basal position within the family Noctuidae with strong support.

3.2 Pattern of relationships among major lineages of Noctuoidea

Notodontidae are found to be the sister group of all other Noctuoidea, with Oenosandridae branching off next (I). However, this pattern of relationships relative to the rest of Noctuoidea is not well supported in all papers. Both Oenosandridae and Notodontidae have a trifid forewing venation similar to that of Geometridae, a character state that appears to be plesiomorphic relative to the quadrifid forewing venation found in the other noctuoid families. All these terms are discussed and defined in detail in paper II.

The results of paper I recovered the six recognized families within Noctuoidea and the monophyly of the quadrifid Noctuoidea (i.e., Euteliidae, Erebidae, Nolidae, and Noctuidae). Although, the relationships amongst the remaining four families are not clear, they formed a monophyletic group (i.e., quadrifid Noctuoidea clade) with very strong support (Fig. 3) and shared a synapomorphy (i.e., quadrifid forewing venation). The relationships of the four clades of quadrifid lineage remained somewhat ambiguous in papers I–II, although the results of papers IV–V suggested a basal position for Euteliidae in all three phylogenetic methods (MP, ML

and BI). In paper I, Euteliidae were sister to Noctuidae in ML analyses (Fig. 3), and sister to the other three families together in MP analyses. Similarly, in papers IV–V, Euteliidae were placed as sister to the rest of the quadrifid clade with moderately good support in MP, ML and BI analyses (Figs 4–5). In paper I, Nolidae were sister to Erebidae in ML analyses, but form a trichotomy with Erebidae and Noctuidae in MP analyses.

The short internal nodes, with little or no support for many basal divergences, in all quadrifid Noctuoidea lineages (I, II, IV, V), suggest that these groups diversified rapidly within a relatively short period of time (Whitfield & Kjer, 2008). Evolutionary rates in basal divergences appear punctuated and such explosive radiations are generally interpreted in two different ways: (i) there is an historical explanation (e.g., rapid radiation or the signature of a mass extinction event) or (ii) it is simply an artefact. Under the rapid radiation scenario, it is hypothesized that the lineages diverged so rapidly and within such a narrow time window that there was little opportunity for the ancestors of each monophyletic group to evolve distinctive apomorphies (Futuyma, 2005). However, such a pattern of short internal nodes and lineages with low support can be produced by other factors, such as inadequate data quality, poor and sparse sampling strategy, conflict within or among datasets (data inconsistency), incongruence between the real evolutionary process and the assumed models of sequence evolution, or even lack of phylogenetic signal due to accumulation of overlapping mutations (i.e., the probability of substitutional saturation at a given site).

Page 18: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Results and Discussion

18

Figure 3 The phylogenetic hypothesis of the superfamily Noctuoidea based on a maximum likelihood

analysis, along with outgroups. Clades representing families are coloured. The six families recognized here

are indicated. Names of moths shown in figure clockwise are: Notodontidae: Phalera Hübner; Euteliidae:

Eutelia Hübner, Noctuidae: Eucocytia Rothschild & Jordan (Pantheinae), Periphanes Hübner (Heliothinae);

Nolidae: Eligma Hübner (Eligminae); Erebidae: Scoliopteryx Germar (Scoliopteryginae), Lymantria Hübner

(Lymantriinae), Peridrome Walker (Aganainae), Euplagia Hübner (Arctiinae), Calyptra Ochsenheimer

(Calpinae), Phytometra Haworth (Boletobiinae), Spirama Guenée (Erebinae), Cocytia Boisduval (Erebinae),

and Ophiusa Ochsenheimer (Erebinae).

In addition, a recent study indicates that such phylogenetic patterns may well be signature of mass extinction events (Crisp & Cook, 2009), because mass extinction produces a sharp drop in the cumulative fossil diversity and is commonly thought to stimulate subsequent adaptive radiation,

creating a sharp increase in the rate of diversification (Benton & Emerson, 2007).

Page 19: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Results and Discussion

19

3.3 Phylogenetic hypothesis for quadrifid Noctuoidea

Paper I revealed an urgent need for a comprehensive series of revisions for the higher classifications of quadrifid Noctuoidea families used up to that time. My results in paper I almost failed to recover some previously recognized subfamilies within Erebidae as monophyletic groups. For instance, they suggested that some recent concepts of subfamilies Calpinae, Catocalinae, Erebinae and Phytometrinae were polyphyletic (I). Consequently, the focus in paper II was designed to elucidate the higher-level phylogeny and evolutionary relationships of the massive Erebidae clade (II). I thus conducted a large-scale molecular phylogenetic analysis, which uncovered a well-resolved skeletal phylogenetic hypothesis. I thus presented a new phylogenetic hypothesis for Erebidae consisting of 18 moderate to strongly supported subfamilies (Fig. 4): Scoliopteryginae, Rivulinae, Anobinae, Hypeninae, Lymantriinae, Pangraptinae, Herminiinae, Aganainae, Arctiinae, Calpinae, Hypocalinae, Eulepidotinae, Toxocampinae, Tinoliinae, Scolecocampinae, Hypenodinae, Boletobiinae and Erebinae (Fig. 4). Where possible, I diagnosed apomorphic morphological character states for each monophyletic lineage (II).

Paper II provides strong support for subordinating five taxa where previously treated as families—Arctiidae, Lymantriidae, Micronoctuidae, Herminiidae and Aganaidae—within Erebidae. One of the most striking features, a strong association among three of them, was shown in papers I–II: Aganainae + Herminiinae + Arctiinae are

recovered as monophyletic clade (Fig. 4), in which Arctiinae have a sister relationship with a strongly supported pairing of Aganainae and Herminiinae. The clade also has a morphological synapomorphy in the prespiracular position of the counter-tympanal hood, which was until then thought to be plesiomorphic. Adults of many aganaines and arctiines are visually striking and aposematic, and aganaines and herminiines share long labial palps and a bare lower frons. Herminiinae are generally cryptic, feeding on vegetable detritus, and Aganainae are aposematic, feeding on the same suite of toxic cardenolide-synthesizing plant families (Apocynaceae and Moraceae) as the danaine Nymphalidae and other moth genera such as Glyphodes (Crambidae) and Agathia (Geometridae) (Holloway, 2008).

Another interesting result from paper II was the placement of the new established family Micronoctuidae. Hypenodinae are enlarged to incorporate Micronoctuini as a tribe, corroborating the findings of paper I. The subfamily Erebinae, brings together the core catocalines (with the exceptions of Hypocalinae, Toxocampinae and Tinoliinae).

Calpinae sensu Lafontaine & Fibiger (2006) consisted of four tribes, Anomini, Scoliopterygini, Calpini and Phyllodini on the basis of the sharing of peculiar morphological adaptations. A robust, highly developed fruit-piercing (and in some cases skin-piercing and blood sucking) proboscis is found widely in Calpini and in some of the more robust scoliopterygines such as Anomis Hübner, with many similar features in the structure. However, my phylogenetic analysis

Page 20: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Results and Discussion

20

Figure 4 Phylogenetic hypothesis of the moths family Erebidae, based on ML analysis. Clades representing

the major clades are coloured. Support values (bootstrap) are shown next to the branches. Names of moths

shown in figure clockwise are: Nolidae: Eligma (Eligminae); Noctuidae: Periphanes (Heliothinae); Erebidae:

Scoliopteryx (Scoliopteryginae), Anoba Walker (Anobinae), Lymantria (Lymantriinae), Pangrapta Hübner

(Pangraptinae), Peridrome (Aganainae), Euplagia Hübner (Arctiinae), Syntomis Ochsenheimer (Arctiinae),

Calyptra (Calpinae), Eulepidotis Hübner (Eulepidotinae), Eublemma Hübner (Boletobiinae), Phytometra

(Boletobiinae), Thysania Dalman (Erebinae), Catocala Schrank (Erebinae), Cocytia (Erebinae), and Ophiusa

(Erebinae).

confirmed the polyphyly of the old concept of Calpinae, and supports a monophyletic Calpinae that places members of Anomini and Scoliopterygini in other noctuid subfamilies (II–III). These results

suggesting that the fruit-piercing behavior and the associated modifications of the tongue seen in moths of both groups have evolved independently (III). The phylogenetic hypothesis suggested three

Page 21: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Results and Discussion

21

subclades for the subfamily Calpinae that were treated as tribes: Phyllodini, Ophiderini and Calpini (II). The polyphyly of the former concept of Calpinae provides an object lesson in how the sharing of peculiar morphological adaptations may mislead classifications, and how shared features of a more subtle nature may be overlooked in an unchallenged traditional classification. Within the entire Lepidoptera, adult hematophagy—the ability to pierce mammalian tissue and extract a blood meal—is limited to species within the vampire moth genus Calyptra Ochsenheimer, which belongs to the subfamily Calpinae. In paper III, we tested whether hematophagy in Calyptra arose from plant (e.g., fruit-piercing) or animal-related behaviors (e.g., tear feeding or lachryphagy). To do that, we subjected the resulting phylogenetic trees to a Bayesian method of ancestral state reconstruction to reconstruct ancestral feeding behaviors within Calpinae and test competing hypotheses regarding their evolution. The results supported the hypothesis that blood feeding in vampire moth evolved from the fruit-piercing habit as opposed to tear feeding or other animal-related feeding behaviors (e.g., dung feeding, urine feeding) (III).

In paper IV, I aimed to elucidate the higher-level phylogeny of Nolidae and to clarify relationships in basal lineages of Noctuidae (V). My phylogenetic hypothesis (I) had already recovered Nolidae and Noctuidae as well-supported monophyletic clades (Fig. 3). The results were fascinating and fairly robust. Many genera previously placed in Nolidae and the former subfamily Ophiderinae (Erebidae) were placed with strong support within Noctuidae, in the subfamily Bagisarinae, supporting an expanded

concept of the subfamily (V). In addition, by increasing taxon sampling of several unassigned Neotropical taxa, I uncovered a previously unknown lineage of Noctuoidea with Neotropical origins (Diphthera Hübner + Lepidodes Guenée) with strong support. This lineage appears to be the sister group to Nolidae, and it shares an unambiguous feature and the most characteristic Nolidae apomorphy yet proposed—the structure of the boat-shaped cocoon with a vertical, anterior exit slit—, suggesting that the clade could be included in the family Nolidae as the subfamily Diphtherinae (IV). Diphtherinae is considered to be the plesiomorphic sister lineage to the rest of Nolidae, characterized by the loss of the proximal pair of tibial spurs on the hindlegs of males, and the presence of a frontal tubercle or process, which is presumably associated with a derived strategy of emergence from the cocoon (IV). My analyses (IV) revealed a well-resolved phylogenetic hypothesis for Nolidae, allowing me to present a new classification for Nolidae consisting of eight strongly supported subfamilies: Diphtherinae, Risobinae, Collomeninae, Beaninae, Eligminae, Westermanniinae, Nolinae, and Chloephorinae. Among these, two groups are suggested as new subfamilies (i.e., Collomeninae and Beaninae). I also defined each monophyletic group by autapomorphic morphological character states.

3.4 Character optimizations

The higher systematics of the quadrifid Noctuoidea is often discussed in terms of whether the hindwings have a trifine or quadrifine venation. To understand character evolution in higher noctuoids and major nolids, I undertook a character optimization analysis based on parsimony

Page 22: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Results and Discussion

22

using the software Mesquite v2.75 (Maddison & Maddison, 2011). My results of ancestral-state reconstructions and character optimization (Fig. 5) showed that most traits—those characters that are considered to be of phylogenetic significance—are clearly synapomorphic for major lineages of quadrifids, except the hindwing venation which was an ambiguous character state (IV). It is generally thought that the pseudoquadrifine condition is the ancestral state for Noctuoidea. This condition concerns the position of three veins (M2, M3 and CuA1), in which M2 arises about one-third of the way up the discal cell, and M2 is strong and parallel to M3. My character examinations indicated that the pseudoquadrifine condition is shared by the basal lineages of Noctuidae s.s. (i.e., Bagisarinae, Plusiinae, Dilobinae and Pantheinae) (V), and a few erebid subfamilies (Hypeninae, Herminiinae, Scoliopteryginae and Rivulinae) (II), as well as Diphtherinae (Nolidae) (IV). I evaluated the distribution patterns and evolutionary trends of this complex trait under the two most commonly used character optimization algorithms of parsimony analysis: ACCTRAN—accelerated transformation—and DELTRAN—delayed transformation—(Agnarsson & Miller, 2008). I finally favoured DELTRAN optimization (IV), which minimizes reversals and maximizes convergences and parallel evolution. This favours the acquisition of the derived quadrifine state—base of M2 close to M3—independently in Erebidae, Nolidae (with Diphtherinae excluded), and Euteliidae (Fig. 5). In other words, the plesiomorphic condition of M2 in the hindwing of the four quadrifid lineages is the form found in Diphtherinae and basal lineages of Noctuidae, and arguably some

basal lineages of Erebidae. This trend of character evolution can be traced by checking the position of the vein M2 in different groups of quadrifids. For instance, the condition of M2 in Diphtherinae is exactly the same condition that occurs in Pantheinae, Plusiinae, Dilobinae and Bagisarinae (V), where M2 is very slightly reduced. In higher noctuids (i.e., Hadeninae) the vein is still visible in exactly the same position, but is even more reduced, and then entirely lost in Noctuinae (Fibiger & Lafontaine, 2005). In the Erebidae lineage, M2 is seen in this condition in some primitive lineages (e.g., Rivulinae, Hypeninae, and Herminiinae). As a consequence, the quadrifine (M2 adjacent to M3) form of venation must have been independently gained several times within Erebidae, acquired once in Nolidae (after the Diphtherinae lineage branched off), and once in Euteliidae (Fig. 5). Thus, all these so-called primitive lineages have retained the ancestral (symplesiomorphic) hindwing venation trait with a pseudoquadrifine condition (Fig. 5).

3.5 Evolution of host-plant associations in Noctuoidea

There have been few attempts to study the evolution of host-plant use in Noctuoidea. The results from the character optimizations (IV) drove me to learn more about the evolution of feeding habits in higher noctuoids. One feature that has been suggested as the prime factor governing the evolution of butterfly-host plant associations, is host growth form, which appears, on the whole, to be more conserved phylogenetically than host-plant taxon affiliation (Janz & Nylin, 1998). Given its prevalence among the deeper lineages, woody-plant feeding can be

Page 23: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Results and Discussion

23

Fig. 5 Summary of ancestral states reconstruction on Bayesian tree under DELTRAN optimization. Clades representing higher taxa (i.e., families) are coloured. Support values under the two support measures (bootstrap/posterior probabilities) shown next to the branches. Coloured characters on terminal branches and internal nodes indicate the presence of morphological traits as shown below the tree. Names of moths shown in figure from top to bottom are: Spirama (Erebidae, Erebinae), Autographa Hübner (Noctuidae, Plusiinae), Diphthera (Nolidae: Diphtherinae), Eligma Hübner (Nolidae: Eligminae), Nola Leach (Nolidae, Nolinae), Pseudoips Hübner (Nolidae, Chloephorinae, Chloephorini), Giaura Walker (Nolidae, Chloephorinae, Sarrothripini). reasonably inferred as ancestral for entire Noctuoidea (Holloway, 1989, Mitchell et al., 2006), as it is, apparently, for most

other macrolepidopteran superfamilies (Powell et al., 1998).

Page 24: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Results and Discussion

24

Within Noctuoidea, arboreal feeding is predominant among the oldest and basal lineages in trifid families—Oenosandridae and Notodontidae—and, within quadrifids, in diverse lineages of Erebidae (e.g., many Erebinae, Aganainae, Lymantriinae, etc.) as well as Euteliidae (Table 1). My results corroborate those of previous results (Forbes, 1923, Holloway, 1987, Weller, 1989, Miller, 1991, Richards, (1933) 1932) in accepting that trifids are the plesiomorphic sister lineage to the rest of Noctuoidea (i.e. quadrifid Noctuoidea) (I, II, IV, V). For example, the family Oenosandridae—only known from Australia—mainly feeds on the woody plant family Myrtaceae (Miller, 1991). In Notodontidae—with a worldwide distribution but more diverse in tropics and especially the Neotropics (Weller, 1989, Miller, 1991)—almost all species feed on trees, and only a few are found on herbaceous plants (Miller, 1991). Within Euteliidae, Euteliinae most commonly feed on Anacardiaceae (Powell et al., 1998), a plant family that contains trees and shrubs with highly poisonous flowers. Among their other prominent hosts are Burseraceae (includes both shrubs and trees), Dipterocarpaceae (mainly tropical lowland rainforest trees), Moraceae and Hamamelidaceae (which consists of small trees and shrubs) (Holloway, 1985, Powell et al., 1998). Stictopterinae, the sister group of Euteliinae, is associated primarily with Dipterocarpaceae and Clusiaceae (Table 1). Within quadrifids, where tree feeding is probably also ancestral, it seems clear that there have been many independent colonizations and subsequent radiations on herbaceous plants, most spectacularly in Arctiinae (Erebidae) and derived trifine lineages (e.g., the pest clade). Although, the great majority of quadrifids feed on living higher plants,

consumption of lower plants and detritus has arisen in several groups, most notably Erebidae (II). For example, lichen-feeding is predominant among lithosiines (Arctiinae) and a number of Aventiini (Boletobiinae) species (Wagner et al., 2008), while detritivory, mycophagy and algivory is dominant in Herminiinae and Boletobiinae (II) and recurs sporadically in other noctuid subfamilies (e.g., some Bryophilinae, see Table 1) (V).

The results in paper V also suggested that Noctuidae included a number of lineages that are exclusively arboreal feeders, such as Dilobinae (Rosaceae), Raphiinae (Salicaceae), Pantheinae (Pinaceae) and Acronictinae (polyphagous but mostly on trees) (Table 1). The first three of these groups are associated with basal Noctuidae lineages in my phylogenetic hypothesis (Fig. 6)—those characterized by the plesiomorphic pseudoquadrifine condition of the hindwing venation. There are also a few groups among the derived noctuid lineages that generally feed on trees and shrubs, such as some Xylenini, Psaphidini (Mitchell et al., 2006), and Orthosiini. Some other subfamilies are more specialized; for example, Agaristinae, often show a strong preference for Vitaceae (Holloway, 1989). My review of major trends in feeding habits in the subfamily Dyopsinae (Table 1) indicates that most of them feed on the plant family Urticaceae, a flowering plant family of mostly trees and shrubs. In contrast, herbaceous-feeding larvae are predominant in the higher trifines (i.e., the ‘pest clade’, Amphipyrinae, Metoponiinae, etc.).

Page 25: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Results and Discussion

25

Table 1 Larval host-plant families for Noctuidae study taxa. Zoogeographic regions are abbreviated as

follows: P = Palaearctic; O = Oriental; Au = Australasia; Nea = Nearctic; Neo = Neotropical; Af =

Afrotropical.

Page 26: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Results and Discussion

26

Continuation of Table 1.

Page 27: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Results and Discussion

27

These results are also widely corroborated by the study of Mitchell et al. (2006), who studied the role of ecological and geographical factors in the diversification of Noctuoidea. They presented a provisional synopsis of species diversity, latitudinal distribution, and host-plant use for major noctuoid groups sampled in their study, superimposed onto the phylogeny. It is revealed that the growth form (i.e., woody-plant feeding vs. herb-feeding) of the host-plant appears on the whole more conserved phylogenetically than host-plant taxon affiliation, where woody-plant feeding can be reasonably inferred as ancestral for Noctuoidea, as it is, apparently, for most other macrolepidopteran superfamilies.

In general, herbaceous-feeding larvae are predominant in the higher trifines (i.e., the ‘pest clade’, Amphipyrinae, Metoponiinae, etc.), whereas in the basal noctuid and basal trifines lineages arboreal feeding is predominant. This evolutionary pattern of feeding habits, postulating a general evolutionary trend from a tree feeding to a herb feeding habit, has also been shown for butterflies (Janz & Nylin, 1998). Thus it can be suggested that the host-growth form in Noctuoidea is more

evolutionarily conservative than host affiliation (Mitchell et al., 2006). However, my preliminary study of host-plant associations showed that in a few Noctuidae subfamilies a strong preference toward feeding on a specific plant family can be seen, such as Bagisarinae which feed mainly on Malvaceae.

One of the fundamental reasons for studying the evolutionary history of noctuoid moths is to determine the main driving forces behind the diversification of this species-rich group. It has become apparent that the evolution of host-plant use has likely been a key ecological mechanism behind the rapid diversification and evolutionary divergence in the butterfly families (Janz & Nylin, 1998, Janz et al., 2006). Noctuoidea are about three times more diverse than the butterflies, and the role of host plant specialization in the diversification of the moths has yet to be studied in detail. With the phylogenetic relationships of the major lineages of Noctuoidea becoming clearer (I, II, IV, V), questions about host plant associations and diversification can now be addressed for this megadiverse clade.

Fig. 6 Phylogenetic hypothesis of the basal Noctuidae subfamilies, based on a Bayesian inference analysis.

Clades representing major lineages are coloured. Support values under the two support measures

(Bootstrap/posterior probabilities) shown next to the branches. Names of moths shown in figure clockwise

are: Eutelia (Euteliidae); Catocala (Erebidae); Eligma (Nolidae); Dyops (Noctuidae Dyopsinae, Dyopsini),

Sosxetra Walker (Dyopsinae, Ceroctena clade), Diloba Boisduval (Dilobinae), Eucocytia (Pantheinae),

Amyna Guenée (Bagisarinae), Vespola Walker (Bagisarinae), Concana Walker (Bagisarinae), Acronicta

Ochsenheimer (Acronictinae), Periphanes (Heliothinae), Euxoa Hübner (Noctuinae).

Page 28: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Results and Discussion

28

Page 29: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Conclusions and future directions

29

4. CONCLUSIONS AND FUTURE DIRECTIONS

4.1 Conclusions

To conclude my Ph.D. thesis, I have summarized a number of distinctive issues and strategies that I have employed in this thesis that are different from those in previous works.

First of all and probably the most important scheme was the taxon sampling strategy. Elucidating the evolutionary history of the massive superfamily Noctuoidea clade (potentially including 45,000 species) required extensive taxon sampling. A deliberate and carefully considered sampling strategy could only be accomplished by selecting exemplars from significant groupings of genera and morphologically well-supported concepts of higher taxa. In my five projects, I chose up to 393 taxa (Appendix 1) of 45,000 noctuoids that have been formally described, covering almost all recognized major clades of Noctuoidea, as representatives for major lineages of Noctuoidea. This extensive taxon sampling was made possible through the extensive network that I built up during my studies. One of the main causes for the previous low support of phylogenetic relationships for some massive clades probably stems from very sparse sampling.

The second feature was the obstacles that are met in applying morphological traits, in particular, in a species-rich, cosmopolitan and heterogeneous taxon such as Noctuoidea. The high number of species presents complications to the use of morphology and any other kinds of phenotypic traits at this taxonomic level. Morphological data are thus often difficult to homologize and code, require great experience to identify character states

correctly and can be subject to extensive homoplasy (character convergence and reversal). Consequently, despite their major role in inferring phylogenies, morphological analyses have often failed to determine relationships among most groups with confidence. On the other hand, phenotypic traits (e.g., morphological, ecological, host-plant associations, behavioural characters, etc.) and synapomorphies can be properly recognized from molecular phylogeny-based systems. In the context of such a robust evolutionary hypothesis, morphological, ecological and behavioural characters can be better understood. For example, I demonstrated that the prespiracular counter-tympanal hood of Aganainae, Herminiinae and Arctiinae is not the result of convergent (independent) evolutionary events, as previously thought (I–II). I proved that this is the result of a common ancestry of these groups within the family Erebidae (II). Polyphyly of the old concept of Calpinae was another clear case (II–III). My results recovered a monophyletic subfamily Calpinae that was restricted to three monophyletic tribes (i.e., Phyllodini, Ophiderini and Calpini) (III), and placed all other groups that had previously been placed as tribes within Calpinae (e.g., Anobini, Anomini and Scoliopterygini), as independent and distant well-defined lineages (i.e., Scoliopteryginae and Anobinae) within Erebidae (II). Calpinae sensu lato was traditionally restricted to the fruit-piercing (and in some cases skin piercing and blood sucking) moths (Kitching & Rawlins, 1998). However, my molecular phylogeny revealed that this feeding behavior, as well as its associated modifications of the proboscis and adaptations (III), have

Page 30: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Conclusions and future directions

30

evolved independently in Calpinae, Scoliopteryginae (including Anomini), Anobinae and some Erebinae (II). This provides again an object lesson on how the sharing of peculiar morphological adaptations may mislead in classification, and how shared features of a more subtle nature may be overlooked in an unchallenged traditional classification (I). Other examples of discovering morphological apomorphies based on my molecular phylogeny results were in Diphtherinae—characterized by the loss of the proximal pair of tibial spurs on the hindlegs of males and the presence of a frontal tubercle—(IV), Nolidae—construction of a boat-shaped cocoon with a vertical exit slit, and finger-like retinaculum on the forewings of the males—(IV), trifid and quadrifid lineages—condition of vein M2 in forewing—(I, II, IV, V), host-plant associations—e.g., detritivory, lichen-feeding, mycophagy and algivory—in Boletobiinae (Erebidae) (II) and finally speculation for a potential broad evolutionary feeding habit trend in Noctuoidea from tree feeding in trifid lineages toward herb feeding in more derived lineages (i.e., pest clade in Noctuidae), similar to the pattern that has been suggested for butterflies (Janz & Nylin, 1998).

A third issue was related to determining the evolutionary relationships of noctuoid taxa of uncertain systematic position using molecular data. In particular, those taxa characterized by the pseudoquadrifine hindwing venation, which have been previously assigned to various noctuoid groups (IV–V). Molecular phylogenetics methods illustrate how easy is it can be to pinpoint their certain phylogenetic position.

To conclude, I had been able to address a massive and long-recalcitrant phylogenetic problem, that of the relationships among and within major lineages of the largest superfamily of Lepidoptera, Noctuoidea. The phylogenetic analyses that I employed were well designed, and many relatively deep nodes are strongly resolved and substantial progress has been made on the backbone phylogeny of Noctuoidea. This group of insects is of major economic and ecological importance. It constitutes an exemplar case in which molecular methods, which seem to be highly informative at this level, have been of enormous help, in part because the sheer size of the group has greatly impeded progress via the morphological approach.

4.2 Future directions

This Ph.D. thesis addressed several phylogenetic problems concerning the evolution of Noctuoidea, but there are still many unanswered questions. For example, it is crucial to determine where, when and how the major groups of noctuoids diverged and evolved. The common factors that influence the speciation process and identifying possible reasons for this remarkable and extraordinary diversity of species among other herbivorous insects are not yet understood. Likewise, the patterns of diversification, the main driving forces behind the diversification of this species-rich group, and plausible explanations for the differences in diversity among the various groups within Noctuoidea have yet to be determined—for instance, why does a family such as Euteliidae contain about 500 species, but another like Erebidae contains 25,000 species? It would be of great interest to know whether major climatic changes and mass extinction events over geological

Page 31: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Conclusions and future directions

31

time scales have had a major impact on the diversification of Noctuoidea. And it would be most interested to infer a scenario of the evolutionary history and biogeography of noctuoids, based on all available data (i.e., morphology, DNA sequences, ecological data, geographical distributions, and geological and paleontological information).

Further studies are also needed to identify the reasons and causes for the short basal branches, i.e., whether there is a historical explanation behind them (e.g., rapid radiation), or whether it is simply an artefact of insufficient data.

The use of novel tools in DNA sequencing technologies, such as Next-Generation Sequencing (NGS) methods and relatively new field of phylogenomics, might be able to address the state of uncertainty in Noctuoidea diversification and their rapid radiations. Phylogenomics is useful for evolutionary studies, in particular resolving ambiguous phylogenies and for verifying relationships created on the basis of a few gene regions (Hackett et al., 2008). Since the cost of whole genome sequencing is decreasing, anticipation of total genome sequences from the major lineages of interest, is no longer a distant dream (Murphy et al., 2004).

Page 32: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Acknowledgements

32

5. ACKNOWLEDGEMENTS

Laboratory work for this project was funded through a grant from the Academy of Finland (grant no. 129811) and Kone Foundation to my supervisor, Dr. Niklas Wahlberg. My subsistence expenses were funded by the CIMO (May 2008 to April 2009), the Finnish Cultural Foundation (February 2010 to January 2011) and the Alfred Kordelin Foundation (January 2012 to June 2012). I would like to take this opportunity to say thank to these Foundations for supporting my four years stay in Finland.

Next, I would like to express my deep thankfulness to my supervisor, Dr. Niklas Wahlberg. To be honest, this dissertation would not have been possible without Niklas’s support and consistent guidance since the first day I started my laboratory work (in September 2008) to the final parts, where I am typing these words (April 2012). I have started from below zero when Niklas taught me how to work in Genetics laboratory! It was a completely new field to me as a taxonomist! Niklas, you have been so kind all times, very patient, always positive and constantly optimistic. Thank you for the trust and confidence you had on me.

I would like to dedicate this thesis to one of the most influential persons in my life, the late Michael Fibiger, who was my first teacher in lepidopterology, God bless you kind man.

I owe my deepest gratitude to my thesis’ advisory team, Dr. Donald Lafontaine, Dr. Ian Kitching and Dr. Jeremy Holloway, who made this thesis possible. I think a nice feature of this thesis was the inclusion of three leading authorities on noctuoid morphology and classification in the world, and that they have been closely involved in the design and interpretation of my molecular results. Don, I would like to thank you for all the discussions

(including coffee and other supplies you brought every day) and practical supervision during the period I was working at the Canadian National Collection of Insects. Don, I would like to say, thank you for your confidence in me. Ian and Jeremy, I would like to thank you for your fruitful, brilliant and comprehensive comments on the manuscripts.

I am pleased to acknowledge my co-authors, Dr. Lauri Kaila and Dr. Marko Mutanen, who have greatly contributed to the improvement of manuscripts and also for sequencing of some material. I sincerely thank to Dr. Jennifer Zaspel, lead author of paper III, for helping me on that paper. I am grateful to Dr. Chris Schmidt for all his practical and valuable comments on our joint-papers (IV,V). I also wish to acknowledge the work of Ms Jocelyn Gill (CNC) for her expert work on the color plates for paper IV.

A large number of specimens for the molecular study were provided by a group of nice people collaborating with us in this project: Prof Charles Mitter et al. (LepTree project, University of Maryland, USA), Prof Daniel H. Janzen (University of Pennsylvania, USA); Roger C. Kendrick (Kadoorie Farm, Hong Kong); Ugo Dall’Asta (Royal Museum for Central Africa, Belgium); Lauri Kaila and Jaakko Kullberg (Finnish Museum of Natural History); Rob de Vos (Zoologisch Museum, Netherlands); Erik Nieukerken (Netherlands Centre for Biodiversity); Laszlo Ronkay (Hungarian Natural History Museum); Alexej Matov (Zoological Institute of the Russian Academy of Sciences); Leif Aarvik (Natural History Museum, Norway); Shen-Horn Yen (National Sun Yat-sen University, Taiwan); Henry Barlow (International Trust for Zoological Nomenclature, UK & Malaysia); Chris Muller (Flinders University, Australia);

Page 33: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Acknowledgements

33

Ian Kitching & Jeremy Holloway (Natural History Museum, UK); Michael G. Pogue (Smithsonian Institution, U.S.A); Jennifer M. Zaspel (University of Wisconsin Oshkosh, USA); Jérôme Barbut (Muséum national d'Histoire naturelle, France); Donald Lafontaine and Christian Schmidt (the Canadian National Collection of Insects); David Wagner (University of Connecticut, USA); Vasiliy Kravchenko (Tel Aviv University, Israel), as well as a number of private collectors: Kari Nupponen (Espoo, Finland); Petri Hirvonen (Porvoo, Finland); Szabolcs Safian (Hungary); Michael Fibiger (Sorø, Denmark); Jorg-Uwe Meineke (Germany); Peter Smetacek (India); Ulf Drechsel (Paraguay); and Markku Pellinen (Finland).

I wish to thank the pre-reviewers of the thesis, Prof. Charlie Mitter and Dr. Tommi Nyman, for their informative comments on the thesis introduction. Despite not having had the chance to meet Prof. Mitter in person, I have learned a lot from his great personality. I was impressed, for the first time in October 2007, before coming to Finland, when we were asking experts to set up a strong research proposal for PhD project. It is a pleasure to thank Prof. Harri Savilahti and Dr. Erik van Nieukerken, the custos and the opponent in my doctoral disputation.

I would like to show my gratitude to Prof. Craig Primmer for all his unseen but valuable support. I am grateful to Ville Aukee and Meri Lindqvist for all your assistance and technical support.

My sincere thank goes to Dr. Carlos Peña, NSG’ web application developer, who created the noctuid database for my thesis project. Special thanks to my nice ex-officemates, Akarapong Swatdipong (Pop) and Kalle Rytkönen. Pop, thank you for all those nice moments we have shared together in the same office and coffee room. Kalle, thank you so much for being positive, cheerful, joyful and

helpful all the time. I will never forget our Finnish sauna events, will never forget Vappu 2010 and 2011! I would like to thank Julien Leneveu and Heike Witthauer for providing me with the great atmosphere in which to work in the TEGlab environment. I also wish to thank Raija Rouhiainen, who was the one who took care of my financial matters, calculating Niklas’s grants several times a year.

I would like to thank Heidi and Johanna for keeping the laboratory working. I owe sincere thankfulness to Irma Saloniemi for all her consultation, guidance and advice throughout my doctoral studies. I would like to thank the lecturers and researchers of the ‘Laboratory of Genetics’: Christina Nokkola, Seppo Nokkala, Erica Leder, Anti Vasemägi, Juha-Pekka Vähä, Sanna Huttunen, Mikko Nieminen, Spiros, Matthieu, Olaf, and Susan. I am very grateful to all the TEGlab people, in particular: Tatjaana, Mikhail, Roghelio, Paula, Veronika, Elsi, Heidi, Megha, Ksenia, Walter, Bineet and Eero for technical help, resolving practical issues, and of course tolerating me for four years! Also, it is my privilege to share my feelings of gratitude with my always cheerful friends, Pavel Matos and Siim Kahar. I would like to express my sincere thanks to the UTU Zoological Museum, especially Prof. Pekka Niemelä, Ilari Sääksjärvi, Anssi Teräs (ÅA), for your continued supports.

I am obliged to my wife, Maryam, who has supported me through every situation. I also want to thank my Aunt Shari for her support, especially when I was deeply hopeless and desperate.

And finally thanks to Suomi for letting me be here for four years and allowing me finally to live! I have experienced things I have never experienced before: ice swimming, enjoying 30 degrees below zero, smoked saunas, real Finnish Saunas, Salmiakki vodka shots, getting almost five months snow per year (Nov.-March 2010), spring snow, winter snow, autumn snow!!!

Page 34: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

References

34

6. REFERENCES

Agnarsson, I. & Miller, J. A. (2008) Is ACCTRAN better than DELTRAN? Cladistics, 24, 1032–1038.

Baenziger, H. (1982) Fruit-piercing moths in Thailand: a general survey and some new perspectives. Mitt. Schweiz. ent. Ges., 55, 213–240.

Benton, M. J. & Emerson, B. C. (2007) How did life become so diverse? The dynamics of diversification according to the fossil record and molecular phylogenetics. Palaeontology, 50, 23–40.

Bremer, K. (1988) The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction. Evolution, 42, 795–803.

Bremer, K. (1994) Branch support and tree stability. Cladistics, 10, 295–304.

Cameron, S. L., Miller, K. B., D'Haese, C. A., Whiting, M. F. & Barker, S. C. (2004) Mitochondrial genome data alone are not enough to unambiguously resolve the relationships of Entognatha, Insecta and Crustacea sensu lato (Arthropoda). Cladistics, 20, 534–557.

Crisp, M. D. & Cook, L. G. (2009) Explosive radiation or cryptic mass extinction ? Interpreting signatures in molecular phylogenies. Evolution, 63, 2257–2265.

Dobzhansky, T. (1973) Nothing in biology makes sense except in the light of evolution. The American Biology Teacher 35, 125–129.

Felsenstein, J. (1985) Confidence-limits on phylogenies - an approach using the bootstrap. Evolution, 39, 783–791.

Fibiger, M. & Hacker, H. H. (2005) Systematic List of the Noctuoidea of Europe (Notodontidae, Nolidae, Arctiidae, Lymantriidae, Erebidae, Micronoctuidae, and Noctuidae). Esperiana, Schwanfeld, 11, 93–205.

Fibiger, M. & Lafontaine, J. D. (2005) A review of the higher classification of the Noctuoidea (Lepidoptera) with special reference to the Holarctic fauna. Esperiana, 11, 7–92.

Forbes, W. T. M. (1923) The Lepidoptera of New York and neighboring states. Part 1. Cornell

University Agricultural Experiment Station Memoir, 68, 1–729.

Futuyma, D. J. (2005). Evolution. Sinauer Associates, Sunderland, Massachusetts.

Goloboff, P., Farris, J. & Nixon, K. (2003) T.N.T.: tree analysis using new technology. Program and documentation, available from the authors, and at <www.zmuc.dk/public/phylogeny>.

Goloboff, P. A. (1999) Analyzing large data sets in reasonable times: Solutions for composite optima. Cladistics, 15, 415–428.

Grimaldi, D. & Engel, M. S. (2005). Evolution of the insects. Cambridge University Press, Cambridge, New York etc.

Hackett, S. J., R. T. Kimball, S. Reddy, R. C. K. Bowie, E. L. Braun, M. J. Braun, J. L. Chojnowski, W. A. Cox, K. L. Han, J. Harshman, C. J. Huddleston, B. D. Marks, K. J. Miglia, W. S. Moore, F. H. Sheldon, D. W. Steadman, C. C. Witt and T. Yuri. 2008. A phylogenomic study of birds reveals their evolutionary history. Science 320: 1763–1768.

Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. 41, 95–98. In: Nucleic Acids Symposium Series.

Holloway, J. D. (1985) The moths of Borneo (part 14): Family Noctuidae: subfamilies Euteliinae, Stictopterinae, Plusiinae, Pantheinae. Malayan Nature Journal, 38, 157–317.

Holloway, J. D. (1987) Lepidoptera patterns involving Sulawesi: what do they indicate of past geography? In: Biogeographical evolution of the Malay archipelago (Whitemore. T. C., ed.). pp. 103–118. Clarendon Press, Oxford.

Holloway, J. D. (1989). The moths of Borneo (part 12): Family Noctuidae: Trifine subfamilies: Noctuinae, Heliothinae, Hadeninae, Acronictinae, Amphipyrinae, Agaristinae. Southdene Sdn Bhd., Kuala Lumpur.

Holloway, J. D. (2008) The moths of Borneo (part 17): Family Noctuidae, subfamilies Rivulinae, Phytometrinae, Herminiinae, Hypeninae and Hypenodinae. Malayan Nature Journal, 60, 1–268.

Page 35: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

References

35

Janz, N. & Nylin, S. (1998) Butterflies and plants: A phylogenetic study. Evolution, 52, 486–502.

Janz, N., Nylin, S. & Wahlberg, N. (2006) Diversity begets diversity: host expansions and the diversification of plant-feeding insects. Bmc Evolutionary Biology, 6.

Kitching, I. J. (1984). An historical review of the higher classification of the Noctuidae (Lepidoptera). Bulletin of the British Museum (Natural History) (Entomology).

Kitching, I. J. (1987). Spectacles and silver Y's: a synthesis of the systematics, cladistics and biology of the Plusiinae (Lepidoptera: Noctuidae). Bulletin of the British Museum (Natural History) (Entomology), London.

Kitching, I. J. & Rawlins, J. E. (1998) The Noctuoidea. In: Handbook of Zoology, Lepidoptera, Moths and Butterflies, (Kristensen, N. P., ed.). pp. 355–401. W. de Gruyter, Berlin.

Kühne, L. & Speidel, W. (2004) The system of the Catocalinae (Lepidoptera, Noctuidae)- a historical survey. Beiträge zur Entomologie, 54, 127–146.

Lafontaine, J. D. & Fibiger, M. (2006) Revised higher classification of the Noctuoidea (Lepidoptera). Canadian Entomologist, 138, 610–635.

Lafontaine, J. D. & Schmidt, B. C. (2010) Annotated check list of the Noctuoidea (Insecta, Lepidoptera) of North America north of Mexico. Zookeys, 1–239.

Maddison, W. P. & Maddison, D. R. (2011) Mesquite: a modular system for evolutionary analysis. pp.

Miller, J. S. (1991) Cladistics and classification of the Notodontidae (Lepidoptera, Noctuoidea) based on larval and adult morphology. Bulletin of the American Museum of Natural History, 204, 1–230.

Mitchell, A., Cho, S., Regier, J. C., Mitter, C., Poole, R. W. & Matthews, M. (1997) Phylogenetic utility of elongation factor-1 alpha in Noctuoidea (Insecta: Lepidoptera): The limits of synonymous substitution. Molecular Biology and Evolution, 14, 381–390.

Mitchell, A., Mitter, C. & Regier, J. C. (2000) More taxa or more characters revisited: Combining data from nuclear protein-encoding

genes for phylogenetic analyses of Noctuoidea (Insecta : Lepidoptera). Systematic Biology, 49, 202–224.

Mitchell, A., Mitter, C. & Regier, J. C. (2006) Systematics and evolution of the cutworm moths (Lepidoptera : Noctuidae): evidence from two protein-coding nuclear genes. Systematic Entomology, 31, 21–46.

Murphy, W. J., P. A. Pevzner and S. J. O'Brien. 2004. Mammalian phylogenomics comes of age. Trends in Genetics 20: 631-639.

Mutanen, M., Wahlberg, N. & Kaila, L. (2010) Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proceedings of the Royal Society B-Biological Sciences, 277, 2839–2848.

Nielsen, E. S., Edwards, E. D. & Rangsi, T. V. (1996). Checklist of the Lepidoptera of Australia. CSIRO, Australia.

Nieukerken, E. J., Kaila, L., Kitching, I. J., Kristensen, N. P., Lees, D. C., Minet, J., Mitter, C., Mutanen, M., Regier, J. C., Simonsen, T. J., Wahlberg, N., Yen, S.-H., Zahiri, R., Adamski, D., Baixeras, J., Bartsch, D., Bengtsson, B. Å., Brown, J. W., Bucheli, S. R., Davis, D. R., De Prins, J., De Prins, W., Epstein, M. E., Gentili-Poole, P., Gielis, C., Hättenschwiler, P., Hausmann, A., Holloway, J. D., Kallies, A., Karsholt, O., Kawahara, A., Koster, S. J. C., Kozlov, M., Lafontaine, J. D., Lamas, G., Landry, J.-F., Lee, S., Nuss, M., Penz, C., Rota, J., Schmidt, B. C., Schintlmeister, A., Sohn, J. C., Solis, M. A., Tarmann, G. M., Warren, A. D., Weller, S., Yakovlev, R., Zolotuhin, V. & Zwick, A. (2011) Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, 212–221.

Peña, C., Wahlberg, N., Weingartner, E., Kodandaramaiah, U., Nylin, S., Freitas, A. V. L. & Brower, A. V. Z. (2006) Higher level phylogeny of Satyrinae butterflies (Lepidoptera : Nymphalidae) based on DNA sequence data. Molecular Phylogenetics and Evolution, 40, 29–49.

Powell, J. A., Mitter, C. & Farrell, B. (1998) Evolution of larval food preferences in Lepidoptera. In: Handbook of Zoology, Lepidoptera, Moths and Butterflies, (Kristensen, N. P., ed.).

Page 36: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

References

36

Ratnasingham, S. & Hebert, P. D. N. (2007) BOLD: The Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes, 7, 355–364.

Regier, J. C., Friedlander, T., Leclerc, R. F., Mitter, C. & Wiegmann, B. M. (1995) Lepidopteran phylogeny and applications to comparative studies of development. In: Molecular model systems in the Lepidoptera, (Goldsmith, M. R. & Wilkins, A. S., eds.). Cambridge University Press, Cambridge.

Regier, J. C., Zwick, A., Cummings, M. P., Kawahara, A. Y., Cho, S., Weller, S., Roe, A., Baixeras, J., Brown, J. W., Parr, C., Davis, D. R., Epstein, M., Hallwachs, W., Hausmann, A., Janzen, D. H., Kitching, I. J., Solis, M. A., Yen, S. H., Bazinet, A. L. & Mitter, C. (2009) Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evolutionary Biology, 9, 280–300.

Richards, A. G. ((1933) 1932) Comparative skeletal morphology of the noctuid tympanum. Entomologica Americana, 13, 1–43.

Roe, A. D., Weller, S. J., Baixeras-Almela, J., Brown, J., Cummings, M., Davis, D., Horak, M., Kawahara, A., Mitter, C., Parr, C., Regier, J., Rubinoff, D., Simonsen, T. J., Wahlberg, N. & Zwick, A. (2010) Evolutionary Framework for Lepidoptera Model Systems. In: Genetics and Molecular Biology of Lepidoptera, (Goldsmith, M. & Marec, F., eds.). pp. 1-24. CRC Press, Gainsville, FL, USA.

Ronquist, F. J. & Huelsenbeck, P. (2005) Bayesian analysis of molecular evolution using MrBayes. In: Statistical methods in molecular evolution (Nielsen, R. ed.). Springer, New York, New York, USA.

Speidel, W., Fanger, H. & Naumann, C. M. (1996) The phylogeny of the Noctuidae (Lepidoptera). Systematic Entomology, 21, 219–251.

Speidel, W. & Naumann, C. M. (1995) Phylogenetic aspects in the higher classification of the subfamily Catocalinae (Lepidoptera, Noctuidae). Beiträge zur Entomologie, 45, 109–118.

Speidel, W. & Naumann, C. M. (2005) A survey of family-group names in noctuoid moths (Insecta: Lepidoptera). Systematics and Biodiversity, 2, 191–221.

Sperling, F. A. H. (2003). Butterfly species and molecular phylogenies. University of Chicago Press, Chicago.

Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A Rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57, 758–771.

Wagner, D. L., Rota, J. & McCabe, T. L. (2008) Larva of Abablemma (Noctuidae) with notes on algivory and lichenivory in macrolepidoptera. Annals of the Entomological Society of America, 101, 40–52.

Wahlberg, N., Leneveu, J., Kodandaramaiah, U., Peña, C., Nylin, S., Freitas, A. V. L. & Brower, A. V. Z. (2009) Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proceedings of the Royal Society Series B Biological Sciences, 276, 4295–4302.

Wahlberg, N. & Wheat, C. W. (2008) Genomic outposts serve the phylogenomic pioneers: Designing novel nuclear markers for genomic DNA extractions of lepidoptera. Systematic Biology, 57, 231–242.

Weller, S. J. (1989) Phylogeny of the Nystaleini (Lepidoptera: Noctuoidea: Notodontidae) Vol. PhD dissertation. University of Texas, Austin.

Weller, S. J., Pashley, D. P., Martin, J. A. & Constable, J. L. (1994) Phylogeny of noctuoid moths and the utility of combining independent nuclear and mitochondrial genes. Systematic Biology, 43, 194–211.

Whitfield, J. B. & Kjer, K. M. (2008) Ancient rapid radiations of insects: Challenges for phylogenetic analysis. Annual Review of Entomology, 53, 449–472.

Wiegmann, B. M., Mitter, C., Regier, J. C., Friedlander, T. P., Wagner, D. M. & Nielsen, E. S. (2000) Nuclear genes resolve Mesozoic-aged divergences in the insect order Lepidoptera. Molecular Phylogenetics and Evolution, 15, 242–259.

Wilson, E. O. (2000) A global biodiversity map. Science, 289, 2279–2279.

Zhang, B. C. (1994). Index of Economically Important Lepidoptera. Wallingford: CAB International.

Page 37: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Appendix

37

APPENDIX F

amily

Subf

amily

Spec

ies

Pap

er

Specimen ID

COI-LCO

COI-Jerry

EF1

-egin

EF1

-en

Wingless

GAPDH

RpS5

MDH

CAD

IDH

Type status

Locality

Out

grou

p

Dre

pan

idae

Thy

atir

inae

Thy

atir

a ba

tis

IM

M00

027

GU

8285

80G

U82

8380

GU

8289

19G

U82

9212

GU

8294

81G

U82

9743

GU

8305

97G

U83

0293

GU

8280

83G

U82

9969

TG

/TS

FIN

LA

ND

Sp

hing

idae

Sphi

ngin

aeSp

hinx

ligu

stri

IN

W14

1-12

EU

1413

58E

U14

1358

EU

1366

65E

U13

6665

EU

1412

39E

U14

1494

EU

1413

91E

U14

1615

EU

1413

13E

U14

1550

TG

/TS

FIN

LA

ND

Bom

byc

idae

Bom

byci

nae

Bom

byx

mor

iI

NW

149-

1E

U14

1360

EU

1413

60E

U13

6667

EU

1366

67E

U14

1241

EU

1414

95E

U14

1393

EU

1416

17E

U14

1315

EU

1415

52T

G/T

SU

SA

Geo

met

rid

aeA

rchi

eari

nae

Arc

hiea

ris

part

heni

asI

NW

107-

1D

Q01

8928

DQ

0189

28D

Q01

8899

DQ

0188

99D

Q01

8869

EU

1414

85E

U14

1381

EU

1416

04E

U14

1303

EU

1415

39T

G/T

SS

WE

DE

N

Ingr

oup

Oen

osan

drid

aeO

enos

andr

a bo

isdu

vali

I,II

,IV

MM

0759

0G

U82

8791

GU

9297

62G

U82

9098

GU

8293

77G

U82

9651

GU

8298

71G

U83

0751

GU

8304

92G

U82

8266

GU

8301

73T

G/T

SA

US

TR

AL

IA

Oen

osan

drid

aeD

isco

phle

bia

sp.

I,IV

RZ

403

HQ

0062

17H

Q00

6921

HQ

0063

13H

Q00

6404

HQ

0068

25H

Q00

6480

HQ

0067

29H

Q00

6638

−H

Q00

6551

AU

ST

RA

LIA

Not

odon

tida

ePh

aler

inae

Pha

lera

buc

epha

laI,

IIM

M00

122

GU

8286

07G

U82

8405

GU

8289

41G

U82

9235

GU

8295

02−

GU

8306

17G

U83

0318

GU

8281

08G

U82

9995

TG

/TS

FIN

LA

ND

Not

odon

tida

eH

eter

ocam

pina

eSt

auro

pus

fagi

I,II

,IV

MM

0098

1G

U82

8651

GU

8284

49G

U82

8983

GU

8292

66G

U82

9539

GU

8297

80G

U83

0650

GU

8303

57G

U82

8148

GU

8300

38T

SFI

NL

AN

D

Not

odon

tida

eN

otod

ontin

aeN

otod

onta

dro

med

ariu

sI,

II,I

V,V

MM

0099

8G

U82

8653

GU

8284

51G

U82

8984

GU

8292

68G

U82

9540

GU

8297

81G

U83

0652

GU

8303

59G

U82

8150

GU

8300

40T

G/T

SFI

NL

AN

D

Not

odon

tida

ePy

gaer

inae

Clo

ster

a pi

gra

IM

M01

005

GU

8286

54G

U82

8452

GU

8289

85G

U82

9269

GU

8295

41G

U82

9782

GU

8306

53G

U83

0360

GU

8281

51G

U83

0041

FIN

LA

ND

Not

odon

tida

eT

haum

etop

oein

aeE

pico

ma

mel

anos

tict

aI

MM

0759

2G

U82

8792

GU

9297

63G

U82

9099

GU

8293

78G

U82

9652

GU

8298

72G

U83

0752

GU

8304

93G

U82

8267

GU

8301

74A

US

TR

AL

IA

Not

odon

tida

eT

haum

etop

oein

aeT

haum

etop

oea

soli

tari

aI,

VM

M09

888

GU

8288

43G

U92

9807

GU

8291

44−

GU

8296

92G

U82

9904

GU

8307

91G

U83

0534

GU

8283

07G

U83

0223

TG

GR

EE

CE

Not

odon

tida

eD

udus

inae

Cri

node

s be

scke

iI

05-S

RN

P-5

7213

GU

8285

27−

GU

8288

73G

U82

9175

GU

8294

34−

GU

8305

63G

U83

0251

GU

8280

39G

U82

9918

CO

ST

A R

ICA

Not

odon

tida

eN

ysta

lein

aeN

ysta

lea

stri

ata

I05

-SR

NP

-444

3G

U82

8525

−G

U82

8871

GU

8291

73G

U82

9432

GU

8297

17G

U83

0561

GU

8302

49G

U82

8037

GU

8299

16T

GC

OS

TA

RIC

A

Not

odon

tida

eD

iopt

inae

Scot

ura

leuc

ophl

eps

I06

-SR

NP

-227

81G

U82

8532

GU

8283

34G

U82

8878

GU

8291

79G

U82

9439

GU

8297

21G

U83

0568

GU

8302

56G

U82

8044

GU

8299

23C

OS

TA

RIC

A

Eut

eliid

aeE

utel

iinae

Eut

elia

adu

latr

ixI,

II,V

MM

0016

0G

U82

8621

GU

8284

19G

U82

8956

GU

8292

46G

U82

9516

GU

8297

64G

U83

0629

GU

8303

30G

U82

8122

GU

8300

10T

G/T

SG

RE

EC

E

Eut

eliid

aeE

utel

iinae

Eut

elia

gey

eri

IVR

Z50

8X

XX

XX

XX

X−

XT

GH

ON

G K

ON

G

Eut

eliid

aeE

utel

iinae

Mar

athy

ssa

basa

lis

IR

Z23

HQ

0061

83H

Q00

6887

HQ

0062

79H

Q00

6374

HQ

0067

91H

Q00

6455

HQ

0066

98H

Q00

6606

HQ

0069

79H

Q00

6528

TS

US

A

Eut

eliid

aeE

utel

iinae

Tar

gall

a su

boce

llat

aI,

II,I

V,V

RZ

35H

Q00

6210

HQ

0069

14H

Q00

6306

HQ

0063

97H

Q00

6818

HQ

0064

73H

Q00

6722

HQ

0066

31H

Q00

7000

−H

ON

G K

ON

G

Eut

eliid

aeSt

icto

pter

inae

Aeg

ilia

des

crib

ens

IIR

Z28

7JN

4012

34JN

4011

18JN

4013

52−

JN40

0927

JN40

1566

JN40

1873

JN40

1772

JN40

1036

−T

SIN

DO

NE

SIA

Eut

eliid

aeSt

icto

pter

inae

Lop

hopt

era

hem

ithy

ris

I,II

MM

0761

4G

U82

8802

GU

9297

72G

U82

9107

GU

8293

85G

U82

9661

GU

8298

79G

U83

0759

GU

8305

01G

U82

8274

GU

8301

83A

US

TR

AL

IA

Eut

eliid

aeSt

icto

pter

inae

Lop

hopt

era

squa

mm

iger

aIV

,VR

Z12

0X

XX

XX

XX

X−

XT

GH

ON

G K

ON

G

Eut

eliid

aeSt

icto

pter

inae

Stic

topt

era

colu

mba

IV,V

RZ

541

XX

XX

X−

XX

−X

TG

MA

LA

YS

IA

Ere

bida

eSc

olio

pter

ygin

aeSc

olio

pter

yx li

batr

ixI,

II,I

VM

M00

407

GU

8286

41G

U82

8439

GU

8289

75G

U82

9260

GU

8295

32−

GU

8306

43G

U83

0348

GU

8281

40G

U83

0028

TG

/TS

FIN

LA

ND

Ere

bida

eSc

olio

pter

ygin

aeO

sson

oba

torp

ida

IIR

Z41

1JN

4012

52JN

4011

34JN

4013

69JN

4014

80JN

4009

39JN

4015

82JN

4018

93−

JN40

1050

−T

SM

AL

AY

SIA

Ere

bida

eSc

olio

pter

ygin

aeR

usic

ada

fulv

ida

IIR

Z10

1JN

4012

53JN

4011

35JN

4013

70JN

4014

81JN

4009

83JN

4015

83JN

4018

94JN

4017

90JN

4010

51JN

4016

83H

ON

G K

ON

G

Ere

bida

eSc

olio

pter

ygin

aeR

usic

ada

met

axan

tha

I,II

RZ

55H

Q00

6227

HQ

0069

30H

Q00

6322

HQ

0064

14H

Q00

6835

−H

Q00

6739

HQ

0066

47H

Q00

7016

HQ

0065

60T

GT

AIW

AN

Ere

bida

eSc

olio

pter

ygin

aeG

onit

is in

volu

taI,

IIR

Z13

HQ

0061

66H

Q00

6963

HQ

0062

63H

Q00

6357

HQ

0067

75−

HQ

0066

82H

Q00

6592

HQ

0069

63−

TG

TA

NZ

AN

IA

Ere

bida

eSc

olio

pter

ygin

aeA

nom

is fl

ava

IIR

Z10

0JN

4012

54JN

4011

36JN

4013

71JN

4014

82JN

4009

81JN

4015

84−

−JN

4010

52JN

4016

84H

ON

G K

ON

G

Ere

bida

eun

assi

gned

Rhe

sala

impa

rata

IIR

Z26

5JN

4012

55JN

4011

37JN

4013

72JN

4014

83JN

4009

40JN

4015

85−

JN40

1791

JN40

1053

JN40

1685

TS

HO

NG

KO

NG

Ere

bida

eun

assi

gned

Nyc

hiop

tera

noct

uida

lis

IIR

Z28

3JN

4012

56JN

4011

38JN

4013

73−

JN40

0941

−−

JN40

1792

−−

TS

US

A

Ere

bida

eR

ivul

inae

Riv

ula

seri

ceal

isI,

IIM

M01

404

GU

8286

64G

U82

8462

GU

8289

95G

U82

9278

−G

U82

9791

−G

U83

0370

GU

8281

61G

U83

0051

TG

/TS

FIN

LA

ND

Page 38: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Appendix

38

Ere

bida

eR

ivul

inae

Riv

ula

ochr

eaII

RZ

159

JN40

1257

JN40

1139

JN40

1374

JN40

1484

JN40

0979

JN40

1586

−JN

4017

93JN

4010

54−

TG

GH

AN

A

Ere

bida

eR

ivul

inae

Oxy

cill

a on

doI,

IIR

Z24

HQ

0061

84H

Q00

6888

HQ

0062

80H

Q00

6375

HQ

0067

92H

Q00

6456

−H

Q00

6607

HQ

0069

80H

Q00

6529

US

A

Ere

bida

eR

ivul

inae

Boc

ula

bifa

ria

IIR

Z41

3JN

4012

58JN

4011

40JN

4013

75JN

4014

85JN

4009

42JN

4015

87−

−JN

4010

55JN

4016

86M

AL

AY

SIA

Ere

bida

eR

ivul

inae

Ogl

asa

anso

rgei

IIR

Z16

7JN

4012

59JN

4011

41JN

4013

76JN

4014

86JN

4009

86JN

4015

88−

−JN

4010

56JN

4016

87G

HA

NA

Ere

bida

eR

ivul

inae

Ale

sua

etia

lis

IIR

Z94

JN40

1260

JN40

1142

JN40

1377

JN40

1487

JN40

0943

JN40

1589

−JN

4017

94−

JN40

1688

TS

CO

ST

A R

ICA

Ere

bida

eA

nobi

nae

Ano

ba a

ngul

ipla

gaI,

IIR

Z33

2H

Q00

6206

HQ

0069

10H

Q00

6302

HQ

0063

95H

Q00

6814

HQ

0064

69−

HQ

0066

27−

HQ

0065

44T

GG

HA

NA

Ere

bida

eA

nobi

nae

Mar

cipa

sp.

I,II

RZ

177

HQ

0061

77H

Q00

6881

−H

Q00

6368

HQ

0067

85H

Q00

6450

−H

Q00

6601

HQ

0069

73H

Q00

6522

GH

AN

A

Ere

bida

eA

nobi

nae

Mar

cipa

sp.

IIR

Z20

0JN

4012

61JN

4011

43JN

4013

78JN

4014

88JN

4009

44JN

4015

90−

JN40

1795

−JN

4016

89G

HA

NA

Ere

bida

eA

nobi

nae

Ple

copt

era

maj

orII

RZ

183

JN40

1262

JN40

1144

−JN

4014

89JN

4009

45JN

4015

91−

JN40

1796

−JN

4016

90G

HA

NA

Ere

bida

eA

nobi

nae

Cri

thot

e pr

omin

ens

IIR

Z10

9JN

4012

63JN

4011

45JN

4013

79JN

4014

90JN

4009

46JN

4015

92−

JN40

1797

JN40

1057

JN40

1691

HO

NG

KO

NG

Ere

bida

eA

nobi

nae

Rem

a co

stim

acul

aII

RZ

103

JN40

1264

JN40

1146

JN40

1380

JN40

1491

JN40

0947

JN40

1593

−JN

4017

98JN

4010

58JN

4016

92T

SH

ON

G K

ON

G

Ere

bida

eA

nobi

nae

Ban

iana

str

igat

aII

RZ

92JN

4012

65JN

4011

47JN

4013

81JN

4014

92JN

4009

48JN

4015

94−

JN40

1799

JN40

1059

JN40

1693

CO

ST

A R

ICA

Ere

bida

eA

nobi

nae

Dei

nopa

sig

nipl

ena

IIR

Z31

1JN

4012

66JN

4011

48JN

4013

82JN

4014

93JN

4009

49JN

4015

95−

JN40

1800

JN40

1060

JN40

1694

CO

ST

A R

ICA

Ere

bida

eH

ypen

inae

Hyp

ena

prob

osci

dali

sI,

IIM

M01

545

GU

8286

68G

U82

8466

GU

8289

99G

U82

9282

GU

8295

53G

U82

9794

GU

8306

64G

U83

0374

GU

8281

65G

U83

0055

TG

/TS

FIN

LA

ND

Ere

bida

eH

ypen

inae

Hyp

ena

balt

imor

alis

IIR

Z36

7JN

4012

67JN

4011

49JN

4013

83JN

4014

94JN

4009

93JN

4015

96JN

4018

95JN

4018

01JN

4010

61JN

4016

95T

GU

SA

Ere

bida

eH

ypen

inae

Hyp

ena

lace

rata

lis

IIR

Z36

8JN

4012

68JN

4011

50JN

4013

84JN

4014

95JN

4009

50−

JN40

1896

−JN

4010

62JN

4016

96T

GH

ON

G K

ON

G

Ere

bida

eun

assi

gned

Cul

trip

alpa

sp.

IIR

Z39

4JN

4012

69JN

4011

51JN

4013

85JN

4014

96JN

4009

51JN

4015

97JN

4018

97JN

4018

02−

JN40

1697

MA

LA

YS

IA

Ere

bida

eun

assi

gned

Col

oboc

hyla

sal

ical

isI,

IIR

Z4

HQ

0062

15H

Q00

6919

HQ

0063

11H

Q00

6402

HQ

0068

23H

Q00

6478

HQ

0067

27H

Q00

6636

HQ

0070

05−

TS

HU

NG

AR

Y

Ere

bida

eL

yman

triin

aeL

yman

tria

mon

acha

I,II

,IV

,VM

M01

048

GU

8286

55G

U82

8453

GU

8289

86G

U82

9270

GU

8295

42−

GU

8306

54G

U83

0361

GU

8281

52G

U83

0042

TG

FIN

LA

ND

Ere

bida

eL

yman

triin

aeL

euco

ma

sali

cis

I,II

MM

0674

0G

U82

8748

GU

9297

22G

U82

9062

GU

8293

47G

U82

9611

−G

U83

0719

GU

8304

49G

U82

8232

GU

8301

32T

G/T

SFI

NL

AN

D

Ere

bida

eL

yman

triin

aeN

ygm

ia p

lana

I,II

RZ

34H

Q00

6209

HQ

0069

13H

Q00

6305

HQ

0063

96H

Q00

6817

HQ

0064

72H

Q00

6721

HQ

0066

30H

Q00

6999

HQ

0065

46T

GH

ON

G K

ON

G

Ere

bida

eL

yman

triin

aeO

rgyi

a an

tiqu

aI,

IIR

Z13

0H

Q00

6167

HQ

0069

64H

Q00

6264

HQ

0063

58H

Q00

6776

HQ

0064

43H

Q00

6683

HQ

0065

93H

Q00

6964

HQ

0065

13T

G/T

SFI

NL

AN

D

Ere

bida

eL

yman

triin

aeA

rcto

rnis

sp.

I,II

RZ

89H

Q00

6241

HQ

0069

43H

Q00

6335

HQ

0064

28H

Q00

6849

HQ

0064

94H

Q00

6752

HQ

0066

59H

Q00

7024

HQ

0065

72T

GJA

PA

N

Ere

bida

ePa

ngra

ptin

aeP

angr

apta

bic

ornu

taI,

IIR

Z40

HQ

0062

16H

Q00

6920

HQ

0063

12H

Q00

6403

HQ

0068

24H

Q00

6479

HQ

0067

28H

Q00

6637

HQ

0070

06H

Q00

6550

TG

HO

NG

KO

NG

Ere

bida

ePa

ngra

ptin

aeP

angr

apta

dec

oral

isI,

IIR

Z66

HQ

0062

36H

Q00

6939

HQ

0063

31H

Q00

6423

HQ

0068

44−

HQ

0067

47−

HQ

0070

22H

Q00

6568

TG

/TS

US

A

Ere

bida

ePa

ngra

ptin

aeC

hrys

ogra

pta

igne

ola

IIR

Z40

8JN

4012

70JN

4011

52JN

4013

86JN

4014

97JN

4009

52JN

4015

98JN

4018

98JN

4018

03−

−T

SM

AL

AY

SIA

Ere

bida

ePa

ngra

ptin

aeH

ypos

eman

sis

sing

haII

RZ

279

JN40

1271

JN40

1153

JN40

1387

JN40

1498

JN40

0953

JN40

1599

JN40

1899

JN40

1804

JN40

1063

JN40

1698

TS

MA

LA

YS

IA

Ere

bida

ePa

ngra

ptin

aeG

raci

lode

s ca

ffra

IIR

Z29

2JN

4012

72JN

4011

54JN

4013

88JN

4014

99JN

4009

54JN

4016

00JN

4019

00JN

4018

05JN

4010

64JN

4016

99T

ST

AN

ZA

NIA

Ere

bida

ePa

ngra

ptin

aeE

pisp

aris

cos

tist

riga

IIR

Z31

9JN

4012

73JN

4011

55JN

4013

89JN

4015

00JN

4009

55JN

4016

01JN

4019

01−

−JN

4017

00M

AL

AY

SIA

Ere

bida

ePa

ngra

ptin

aeM

asca

aba

ctal

isI,

IIR

Z18

HQ

0061

78H

Q00

6882

HQ

0062

74H

Q00

6369

HQ

0067

86H

Q00

6451

HQ

0066

93−

HQ

0069

74H

Q00

6523

TS

IND

ON

ES

IA

Ere

bida

eun

assi

gned

Schi

stor

hynx

arge

ntis

trig

aII

RZ

119

JN40

1274

JN40

1156

JN40

1390

JN40

1501

JN40

0956

JN40

1602

JN40

1902

JN40

1806

JN40

1065

JN40

1701

TS

HO

NG

KO

NG

Ere

bida

eH

erm

iniin

aeP

olyp

ogon

str

igil

atus

I,II

MM

0128

6G

U82

8663

GU

8284

61G

U82

8994

GU

8292

77G

U82

9549

GU

8297

90G

U83

0660

GU

8303

69G

U82

8160

GU

8300

50T

G/T

SFI

NL

AN

D

Ere

bida

eH

erm

iniin

aeP

arac

olax

tris

talis

I,II

RZ

5H

Q00

6224

HQ

0069

27H

Q00

6319

HQ

0064

11H

Q00

6832

−H

Q00

6736

−H

Q00

7013

−H

UN

GA

RY

Ere

bida

eH

erm

iniin

aeH

erm

inia

tars

icri

nali

sI,

IIR

Z6

HQ

0062

32H

Q00

6935

HQ

0063

27H

Q00

6419

HQ

0068

40H

Q00

6489

−−

−−

TG

HU

NG

AR

Y

Ere

bida

eH

erm

iniin

aeSi

mpl

icia

sp.

I,II

RZ

166

HQ

0061

75H

Q00

6879

HQ

0062

72H

Q00

6366

−H

Q00

6448

HQ

0066

91H

Q00

6599

HQ

0069

71H

Q00

6520

GH

AN

A

Ere

bida

eH

erm

iniin

aeId

ia a

emul

aII

RZ

271

JN40

1275

JN40

1157

JN40

1391

JN40

1502

JN40

0957

−−

JN40

1807

JN40

1066

JN40

1702

TS

US

A

Ere

bida

eH

erm

iniin

aeL

ysim

elia

nel

eusa

lis

IIR

Z26

0JN

4012

76JN

4011

58−

JN40

1503

JN40

0958

JN40

1603

−JN

4018

08JN

4010

67JN

4017

03T

SH

ON

G K

ON

G

Ere

bida

eH

erm

iniin

aeN

odar

ia v

erti

cali

sII

RZ

180

JN40

1277

JN40

1159

JN40

1392

JN40

1504

JN40

0959

JN40

1604

−−

−JN

4017

04G

HA

NA

Page 39: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Appendix

39

Ere

bida

eA

gana

inae

Aso

ta c

aric

aeI,

IIM

M00

145

GU

8286

15G

U82

8413

GU

8289

49G

U82

9240

GU

8295

09−

GU

8306

24G

U83

0325

GU

8281

15G

U83

0003

TG

/TS

TA

HIL

AN

D

Ere

bida

eA

gana

inae

Aso

ta h

elic

onia

I,II

RZ

44H

Q00

6220

HQ

0069

24H

Q00

6316

HQ

0064

07H

Q00

6828

HQ

0064

83H

Q00

6732

HQ

0066

41H

Q00

7009

HQ

0065

54T

GH

ON

G K

ON

G

Ere

bida

eA

gana

inae

Neo

cher

a in

ops

IIR

Z34

6JN

4012

78JN

4011

60JN

4013

93−

JN40

0960

JN40

1605

−JN

4018

09JN

4010

68JN

4017

05JA

PA

N

Ere

bida

eA

gana

inae

Eup

loci

a m

embl

iari

aII

RZ

345

JN40

1279

JN40

1161

JN40

1394

JN40

1505

JN40

0961

JN40

1606

−JN

4018

10−

JN40

1706

TS

MA

LA

YS

IA

Ere

bida

eA

gana

inae

Per

idro

me

orbi

cula

ris

IIR

Z28

0JN

4012

80JN

4011

62JN

4013

95JN

4015

06JN

4009

62JN

4016

07JN

4019

03JN

4018

11−

JN40

1707

TS

MA

LA

YS

IA

Ere

bida

eA

gana

inae

Mec

odin

a pr

aeci

pua

IIR

Z26

8JN

4012

81JN

4011

63JN

4013

96JN

4015

07JN

4009

63JN

4016

08−

JN40

1812

JN40

1069

JN40

1708

HO

NG

KO

NG

Ere

bida

eA

gana

inae

Psi

mad

a qu

adri

penn

isII

RZ

47JN

4012

82JN

4011

64JN

4013

97JN

4015

08JN

4009

64−

JN40

1904

JN40

1813

JN40

1070

JN40

1709

TG

/TS

HO

NG

KO

NG

Ere

bida

eA

rctii

nae

Bru

nia

anti

caI,

IIR

Z28

HQ

0061

93H

Q00

6897

HQ

0062

89H

Q00

6383

HQ

0068

01H

Q00

6462

HQ

0067

06H

Q00

6614

−H

Q00

6534

TS

HO

NG

KO

NG

Ere

bida

eA

rctii

nae

Gar

udin

ia s

imul

ana

IIR

Z39

9JN

4012

83JN

4011

65JN

4013

98JN

4015

09JN

4009

65JN

4016

09JN

4019

05JN

4018

14JN

4010

71JN

4017

10M

AL

AY

SIA

Ere

bida

eA

rctii

nae

Eug

oa b

ipun

ctat

aII

RZ

400

JN40

1284

JN40

1166

JN40

1399

JN40

1510

JN40

0966

−JN

4019

06JN

4018

15JN

4010

72JN

4017

11M

AL

AY

SIA

Ere

bida

eA

rctii

nae

Cya

na s

pII

RZ

398

JN40

1285

JN40

1167

JN40

1400

JN40

1511

JN40

0967

JN40

1610

JN40

1876

JN40

1816

JN40

1073

JN40

1712

MA

LA

YS

IA

Ere

bida

eA

rctii

nae

Bar

sine

sp

IIR

Z39

7JN

4012

86JN

4011

68JN

4014

01JN

4015

12JN

4009

68−

JN40

1878

JN40

1817

JN40

1074

JN40

1713

MA

LA

YS

IA

Ere

bida

eA

rctii

nae

Api

sa c

anes

cens

I,II

MM

0584

3H

Q00

6146

HQ

0068

53−

HQ

0063

39H

Q00

6765

−H

Q00

6663

−−

−T

SO

MA

N

Ere

bida

eA

rctii

nae

Synt

omis

phe

gea

I,II

RZ

8H

Q00

6238

HQ

0069

41−

HQ

0064

25H

Q00

6846

HQ

0064

92H

Q00

6749

HQ

0066

56−

−T

G/T

SH

UN

GA

RY

Ere

bida

eA

rctii

nae

Dys

auxe

s fa

mul

aI,

IIM

M00

154

GU

8286

19G

U82

8417

GU

8289

54G

U82

9244

GU

8295

14−

−G

U83

0328

GU

8281

20G

U83

0008

GR

EE

CE

Ere

bida

eA

rctii

nae

Ant

ichl

oris

vir

idis

I,II

MM

0538

0H

Q00

6151

HQ

0068

58H

Q00

6249

HQ

0063

44H

Q00

6760

HQ

0064

33H

Q00

6668

HQ

0065

79H

Q00

6951

HQ

0065

01E

CU

AD

OR

Ere

bida

eA

rctii

nae

Cte

nuch

a vi

rgin

ica

I,II

AM

-94-

0396

GU

8285

35G

U82

8337

GU

8288

81G

U82

9181

GU

8294

42G

U82

9722

GU

8305

70−

−G

U82

9926

TG

US

A

Ere

bida

eA

rctii

nae

Cos

cini

a cr

ibra

ria

I,II

MM

0567

1H

Q00

6149

HQ

0068

56H

Q00

6247

HQ

0063

42H

Q00

6758

−H

Q00

6666

−H

Q00

6949

HQ

0064

99FI

NL

AN

D

Ere

bida

eA

rctii

nae

Pse

udop

halo

e tr

oets

chi

I,II

06-S

RN

P-3

5191

GU

8285

34G

U82

8336

GU

8288

80G

U82

9180

GU

8294

41−

GU

8305

69G

U83

0258

GU

8280

46G

U82

9925

CO

ST

A R

ICA

Ere

bida

eA

rctii

nae

Dys

sche

ma

leuc

opha

eaI,

IIR

Z88

HQ

0062

40

−H

Q00

6334

HQ

0064

27H

Q00

6848

HQ

0064

93H

Q00

6751

HQ

0066

58−

HQ

0065

71C

OS

TA

RIC

A

Ere

bida

eA

rctii

nae

Nyc

tem

era

baul

usII

RZ

387

JN40

1287

JN40

1169

JN40

1402

JN40

1513

JN40

0969

JN40

1611

JN40

1909

JN40

1818

−JN

4017

14M

AL

AY

SIA

Ere

bida

eA

rctii

nae

Cal

lim

orph

a do

min

ula

I,II

RZ

136

HQ

0061

69H

Q00

6873

HQ

0062

66H

Q00

6360

HQ

0067

78H

Q00

6444

HQ

0066

85H

Q00

6594

HQ

0069

65H

Q00

6514

TG

/TS

RU

SS

IA

Ere

bida

eA

rctii

nae

Cre

aton

otos

tran

sien

sI,

IIR

Z30

HQ

0061

98H

Q00

6902

HQ

0062

94H

Q00

6387

HQ

0068

06−

HQ

0067

11H

Q00

6619

HQ

0069

91H

Q00

6537

HO

NG

KO

NG

Ere

bida

eA

rctii

nae

Arc

tia c

aja

I,II

,IV

,VM

M03

713

GU

8286

93G

U82

8489

−G

U82

9305

GU

8295

73G

U82

9813

−G

U83

0398

GU

8281

85G

U83

0080

TG

/TS

FIN

LA

ND

Ere

bida

eA

rctii

nae

Am

eril

a as

treu

sII

RZ

404

JN40

1288

JN40

1170

JN40

1403

JN40

1514

−JN

4016

12JN

4019

10−

−JN

4017

15T

SM

AL

AY

SIA

Ere

bida

eU

nass

igne

dE

pita

usa

dili

naII

RZ

93JN

4012

89JN

4011

71JN

4014

04JN

4015

15JN

4009

70JN

4016

13JN

4019

11JN

4018

19−

JN40

1716

CO

ST

A R

ICA

Ere

bida

eC

alpi

nae

Phy

llod

es e

yndh

ovii

I,II

,III

RZ

56H

Q00

6228

HQ

0069

31H

Q00

6323

HQ

0064

15H

Q00

6836

−H

Q00

6740

HQ

0066

48−

HQ

0065

61T

GT

AIW

AN

Ere

bida

eC

alpi

nae

Phy

llod

es im

peri

alis

II,I

IIR

Z54

6JN

6748

69JN

6748

51JN

6748

86JN

6749

02JN

6749

68JN

6749

19JN

6749

50JN

6749

34−

JN67

4991

TG

AU

ST

RA

LIA

Ere

bida

eC

alpi

nae

Min

iode

s ph

aeos

oma

I,II

,III

RZ

153

HQ

0061

73H

Q00

6877

HQ

0062

70H

Q00

6364

HQ

0067

82H

Q00

6446

HQ

0066

89H

Q00

6597

HQ

0069

69H

Q00

6518

GH

AN

A

Ere

bida

eC

alpi

nae

Hem

icer

atoi

des

sitt

aca

II,I

IIR

Z15

5JN

4012

90JN

4011

72JN

4014

05JN

4015

16JN

4009

71JN

4016

14JN

4019

12JN

4018

20−

JN40

1717

GH

AN

A

Ere

bida

eC

alpi

nae

Eud

ocim

a sa

lam

inia

II,I

IIR

Z33

8JN

4012

91JN

4011

73JN

4014

06JN

4015

17JN

4009

90JN

4016

15JN

4019

13JN

4018

21−

JN40

1740

TG

/TS

HO

NG

KO

NG

Ere

bida

eC

alpi

nae

Eud

ocim

a fu

llon

iaI,

II,I

IIR

Z16

HQ

0061

74H

Q00

6878

HQ

0062

71H

Q00

6365

HQ

0067

83H

Q00

6447

HQ

0066

90H

Q00

6598

HQ

0069

70H

Q00

6519

TG

MA

LA

YS

IA

Ere

bida

eC

alpi

nae

Eud

ocim

a di

viti

osa

III

RZ

210

JN67

4870

JN67

4852

JN67

4887

JN67

4903

JN67

4969

JN67

4920

JN67

4951

−−

JN67

4992

TG

GH

AN

A

Ere

bida

eC

alpi

nae

Eud

ocim

a ty

rann

usII

IR

Z43

0JN

6748

71JN

6748

53JN

6748

88JN

6749

04JN

6749

70JN

6749

21JN

6749

52JN

6749

35−

JN67

4993

TG

RU

SS

IA

Ere

bida

eC

alpi

nae

Gon

odon

ta u

xor

I,II

,III

RZ

335

HQ

0062

08H

Q00

6912

HQ

0063

04−

HQ

0068

16H

Q00

6471

HQ

0067

20H

Q00

6629

−H

Q00

6545

CO

ST

A R

ICA

Ere

bida

eC

alpi

nae

Gon

odon

ta li

ncus

III

RZ

417

JN67

4872

JN67

4854

JN67

4889

JN67

4905

JN67

4971

JN67

4922

JN67

4953

JN67

4936

−JN

6749

94B

RA

ZIL

Ere

bida

eC

alpi

nae

Gon

odon

ta m

illa

III

RZ

421

JN67

4873

JN67

4855

JN67

4890

JN67

4906

JN67

4972

JN67

4923

JN67

4954

JN67

4937

−JN

6749

95B

RA

ZIL

Ere

bida

eC

alpi

nae

Gon

odon

ta s

yrna

III

RZ

420

JN67

4874

JN67

4856

JN67

4891

JN67

4907

JN67

4973

JN67

4924

JN67

4955

JN67

4938

−JN

6749

96B

RA

ZIL

Page 40: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Appendix

40

Ere

bida

eC

alpi

nae

Gon

odon

ta fu

lvan

gula

III

RZ

423

JN67

4875

JN67

4857

JN67

4892

JN67

4908

JN67

4974

−JN

6749

57JN

6749

40−

JN67

4997

BR

AZ

IL

Ere

bida

eC

alpi

nae

Gon

odon

ta n

utri

xII

IR

Z43

2JN

6748

76JN

6748

58JN

6748

93JN

6749

09JN

6749

75−

JN67

4956

JN67

4939

JN67

4985

JN67

4998

US

A

Ere

bida

eC

alpi

nae

Gon

odon

ta s

iche

asII

IR

Z41

9JN

6748

77JN

6748

59JN

6748

94JN

6749

10JN

6749

76JN

6749

25JN

6749

59JN

6749

41−

JN67

4999

EC

UA

DO

R

Ere

bida

eC

alpi

nae

Cal

yptr

a th

alic

tri

I,II

,III

,IV

,VM

M00

963

HQ

0061

56H

Q00

6861

HQ

0062

52H

Q00

6348

HQ

0067

63H

Q00

6435

HQ

0066

71H

Q00

6582

HQ

0069

55H

Q00

6504

TG

/TS

FIN

LA

ND

Ere

bida

eC

alpi

nae

Cal

yptr

a ho

kkai

daII

,III

RZ

336

JN40

1292

JN40

1174

JN40

1407

JN40

1518

JN40

0972

JN40

1616

JN40

1914

JN40

1823

JN40

1075

JN40

1718

TG

JAP

AN

Ere

bida

eC

alpi

nae

Cal

yptr

a la

taII

IR

Z43

1JN

6748

84JN

6748

66JN

6749

00JN

6749

17JN

6749

82JN

6749

31JN

6749

65JN

6749

47JN

6749

88−

TG

RU

SS

IA

Ere

bida

eC

alpi

nae

Cal

yptr

a ca

nade

nsis

III

CT

W2

−JN

6748

67−

−JN

6749

83JN

6749

33JN

6749

67JN

6749

49JN

6749

89JN

6750

05T

GU

SA

Ere

bida

eC

alpi

nae

Cal

yptr

a m

inut

icor

nis

III

RZ

514

JN67

4885

JN67

4868

JN67

4901

JN67

4918

JN67

4984

JN67

4932

JN67

4966

JN67

4948

JN67

4990

JN67

5006

TG

MA

LA

YS

IA

Ere

bida

eC

alpi

nae

Plu

siod

onta

nit

issi

ma

I,II

,III

RZ

333

HQ

0062

07H

Q00

6911

HQ

0063

03−

HQ

0068

15H

Q00

6470

HQ

0067

19H

Q00

6628

−−

CO

ST

A R

ICA

Ere

bida

eC

alpi

nae

Plu

siod

onta

coe

lono

taII

IR

Z10

6JN

6748

78JN

6748

60JN

6748

95JN

6749

11JN

6749

77JN

6749

26JN

6749

60JN

6749

42−

JN67

5000

HO

NG

KO

NG

Ere

bida

eC

alpi

nae

Plu

siod

onta

cas

taII

IR

Z42

9JN

6748

79JN

6748

61JN

6748

96JN

6749

12JN

6749

78JN

6749

27JN

6749

61JN

6749

43−

JN67

5001

RU

SS

IA

Ere

bida

eC

alpi

nae

Ora

esia

em

argi

nata

I,II

,III

RZ

102

HQ

0061

59H

Q00

6864

HQ

0062

56H

Q00

6351

HQ

0067

68H

Q00

6439

HQ

0066

75H

Q00

6586

HQ

0069

58H

Q00

6508

TS

HO

NG

KO

NG

Ere

bida

eC

alpi

nae

Ora

esia

exc

avat

aII

,III

RZ

337

JN40

1293

JN40

1175

JN40

1408

JN40

1519

JN40

0987

JN40

1617

JN40

1915

JN40

1824

JN40

1076

JN40

1719

HO

NG

KO

NG

Ere

bida

eC

alpi

nae

Ora

esia

exc

avat

eII

IR

Z43

4JN

6748

80JN

6748

62−

JN67

4913

−−

JN67

4958

−JN

6749

86−

US

A

Ere

bida

eC

alpi

nae

Ora

esia

nob

ilis

III

RZ

422

JN67

4881

JN67

4863

JN67

4897

JN67

4914

JN67

4979

JN67

4928

JN67

4962

JN67

4944

−JN

6750

02B

RA

ZIL

Ere

bida

eC

alpi

nae

Ora

esia

gla

ucoc

heil

aII

IR

Z41

8JN

6748

82JN

6748

64JN

6748

98JN

6749

15JN

6749

80JN

6749

29JN

6749

63JN

6749

45JN

6749

87JN

6750

03B

RA

ZIL

Ere

bida

eC

alpi

nae

Ora

esia

rec

tris

tria

III

RZ

433

JN67

4883

JN67

4865

JN67

4899

JN67

4916

JN67

4981

JN67

4930

JN67

4964

JN67

4946

−JN

6750

04N

EP

AL

Ere

bida

eH

ypoc

alin

aeH

ypso

roph

a ho

rmos

I,II

,III

RZ

17H

Q00

6176

HQ

0068

80H

Q00

6273

HQ

0063

67H

Q00

6784

HQ

0064

49H

Q00

6692

HQ

0066

00H

Q00

6972

HQ

0065

21U

SA

Ere

bida

eH

ypoc

alin

aeH

ypoc

ala

defl

orat

aII

RZ

105

JN40

1294

JN40

1176

JN40

1409

JN40

1520

JN40

0985

JN40

1618

JN40

1916

JN40

1825

JN40

1077

JN40

1720

TG

/TS

HO

NG

KO

NG

Ere

bida

eH

ypoc

alin

aeH

ypoc

ala

andr

emon

aII

,III

RZ

340

JN40

1295

JN40

1177

JN40

1410

JN40

1521

JN40

0980

JN40

1619

JN40

1917

JN40

1826

JN40

1078

JN40

1721

TG

CO

ST

A R

ICA

Ere

bida

eE

ulep

idot

inae

Tau

tobr

iga

glau

copi

sII

RZ

354

JN40

1296

JN40

1178

−−

JN40

0977

−−

JN40

1827

−−

CO

ST

A R

ICA

Ere

bida

eE

ulep

idot

inae

Pan

opod

a ru

fim

argo

I,II

,III

RZ

59H

Q00

6231

HQ

0069

34H

Q00

6326

HQ

0064

18H

Q00

6839

HQ

0064

88H

Q00

6743

HQ

0066

51H

Q00

7018

HQ

0065

64T

GU

SA

Ere

bida

eE

ulep

idot

inae

Ant

ible

mm

a fu

scir

etic

ulat

aII

,III

RZ

334

JN40

1297

JN40

1179

JN40

1411

−JN

4009

75JN

4016

20JN

4019

18JN

4018

28−

−C

OS

TA

RIC

A

Ere

bida

eE

ulep

idot

inae

Sany

s ir

rosc

aII

RZ

343

JN40

1298

JN40

1180

JN40

1412

−JN

4009

73JN

4016

21JN

4019

19JN

4018

29JN

4010

79JN

4017

22C

OS

TA

RIC

A

Ere

bida

eE

ulep

idot

inae

Eul

epid

otis

rec

tim

argo

I,II

,III

RZ

12H

Q00

6162

HQ

0069

60H

Q00

6259

HQ

0063

54H

Q00

6771

−H

Q00

6678

HQ

0065

88H

Q00

6960

HQ

0065

11T

GC

OS

TA

RIC

A

Ere

bida

eE

ulep

idot

inae

Ant

icar

sia

gem

mat

alis

IIR

Z26

7JN

4012

99JN

4011

81JN

4014

13JN

4015

22JN

4009

74JN

4016

22JN

4019

20JN

4018

30−

JN40

1723

TS

US

A

Ere

bida

eE

ulep

idot

inae

Ant

icar

sia

irro

rata

IIR

Z37

0JN

4013

00JN

4011

82JN

4014

14JN

4015

23JN

4009

95JN

4016

23JN

4019

21JN

4018

31JN

4010

80JN

4017

24H

ON

G K

ON

G

Ere

bida

eE

ulep

idot

inae

Hem

erop

lani

s fi

niti

ma

IIR

Z29

8JN

4013

01JN

4011

83JN

4014

15JN

4015

24JN

4010

04JN

4016

24JN

4019

22JN

4018

32−

JN40

1725

US

A

Ere

bida

eE

ulep

idot

inae

Oxi

derc

ia to

xea

I,II

RZ

295

HQ

0061

96H

Q00

6900

HQ

0062

92−

HQ

0068

04−

HQ

0067

09H

Q00

6617

HQ

0069

89−

TS

CO

ST

A R

ICA

Ere

bida

eE

ulep

idot

inae

Aze

ta c

eram

ina

I,II

,III

RZ

22H

Q00

6182

HQ

0068

86H

Q00

6278

HQ

0063

73H

Q00

6790

−H

Q00

6697

HQ

0066

05H

Q00

6978

HQ

0065

27C

OS

TA

RIC

A

Ere

bida

eT

oxoc

ampi

nae

Aut

ophi

la c

ham

aeph

anes

IIR

Z27

6JN

4013

02JN

4011

84JN

4014

16JN

4015

25JN

4010

05JN

4016

25JN

4019

23JN

4018

33JN

4010

81JN

4017

26C

OS

TA

RIC

A

Ere

bida

eT

oxoc

ampi

nae

Lyg

ephi

la p

asti

num

I,II

MM

0509

2G

U82

8711

GU

8285

06−

GU

8293

23G

U82

9587

−G

U83

0699

GU

8304

15G

U82

8199

GU

8300

97T

GFI

NL

AN

D

Ere

bida

eT

oxoc

ampi

nae

Lyg

ephi

la m

axim

aI,

IIR

Z57

HQ

0062

29H

Q00

6932

HQ

0063

24H

Q00

6416

HQ

0068

37H

Q00

6487

HQ

0067

41H

Q00

6649

−H

Q00

6562

TG

JAP

AN

Ere

bida

eT

inol

iinae

Tin

oliu

s eb

urne

igut

taII

RZ

331

JN40

1303

JN40

1185

JN40

1417

−−

−JN

4019

24JN

4018

34JN

4010

82−

TG

/TS

TH

AIL

AN

D

Ere

bida

eT

inol

iinae

Poe

ta d

enot

alis

IIR

Z44

5JN

4013

04JN

4011

86JN

4014

18JN

4015

26JN

4010

06JN

4016

26JN

4019

25−

−JN

4017

27T

SM

AL

AY

SIA

Ere

bida

eT

inol

iinae

Tam

sia

hier

ogly

phic

aII

RZ

389

JN40

1305

JN40

1187

JN40

1419

JN40

1527

JN40

1007

JN40

1627

JN40

1907

JN40

1835

JN40

1083

JN40

1728

MA

LA

YS

IA

Ere

bida

eU

nass

igne

dP

laty

jion

ia m

edio

rufa

IIR

Z11

1JN

4013

06JN

4011

88JN

4014

20JN

4015

28JN

4009

91JN

4016

28JN

4019

26−

JN40

1084

JN40

1729

HO

NG

KO

NG

Ere

bida

eSc

olec

ocam

pina

eSc

olec

ocam

pa li

burn

aI,

IIR

Z9

HQ

0062

42H

Q00

6944

HQ

0063

36H

Q00

6429

HQ

0068

50H

Q00

6495

HQ

0067

53H

Q00

6660

HQ

0070

25H

Q00

6573

TG

US

A

Page 41: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Appendix

41

Ere

bida

eSc

olec

ocam

pina

eG

abar

a st

ygia

lis

IIR

Z29

7JN

4013

07JN

4011

89JN

4014

21JN

4015

29−

JN40

1629

JN40

1927

JN40

1836

JN40

1085

JN40

1730

US

A

Ere

bida

eH

ypen

odin

aeH

ypen

odes

hum

idal

isI,

IIM

M01

780

GU

8286

71G

U82

8469

−G

U82

9285

GU

8295

56−

GU

8306

66−

GU

8281

68G

U83

0058

TG

/TS

FIN

LA

ND

Ere

bida

eH

ypen

odin

aeSc

hran

kia

cost

aest

riga

lis

I,II

RZ

27H

Q00

6192

HQ

0068

96H

Q00

6288

HQ

0063

82H

Q00

6800

HQ

0064

61H

Q00

6705

HQ

0066

13H

Q00

6987

−H

ON

G K

ON

G

Ere

bida

eH

ypen

odin

aeL

ucer

ia s

tria

taII

RZ

42JN

4013

08JN

4011

90JN

4014

22JN

4015

30JN

4010

08−

JN40

1928

−−

−H

ON

G K

ON

G

Ere

bida

eH

ypen

odin

aeL

ucer

ia o

cula

lis

IIR

Z36

9JN

4013

09JN

4011

91JN

4014

23JN

4015

31JN

4010

09−

JN40

1929

−JN

4010

86JN

4017

31H

ON

G K

ON

G

Ere

bida

eH

ypen

odin

aeA

nach

rost

is s

p.II

RZ

288

JN40

1310

JN40

1192

JN40

1424

−−

−JN

4019

30JN

4018

37JN

4010

87−

IND

ON

ES

IA

Ere

bida

eH

ypen

odin

aeM

icro

noct

ua s

p.I,

IIR

Z13

8H

Q00

6171

HQ

0068

75H

Q00

6268

HQ

0063

62H

Q00

6780

HQ

0064

45H

Q00

6687

HQ

0065

95H

Q00

6967

HQ

0065

16T

GIN

DO

NE

SIA

Ere

bida

eH

ypen

odin

aeB

iunc

us s

p. 1

IIR

Z47

5−

JN40

1193

JN40

1425

JN40

1532

JN40

0992

JN40

1630

JN40

1931

JN40

1838

JN40

1088

JN40

1732

GH

AN

A

Ere

bida

eH

ypen

odin

aeB

iunc

us s

p. 2

IIR

Z47

6JN

4013

11JN

4011

94JN

4014

26−

JN40

0994

JN40

1631

JN40

1908

JN40

1839

JN40

1089

JN40

1733

GH

AN

A

Ere

bida

eB

olet

obiin

aeSa

roba

pus

tuli

fera

I,II

RZ

104

HQ

0061

60H

Q00

6865

HQ

0062

57H

Q00

6352

HQ

0067

69−

HQ

0066

76−

−H

Q00

6509

TS

HO

NG

KO

NG

Ere

bida

eB

olet

obiin

aeC

onda

te s

p.II

RZ

393

JN40

1312

JN40

1195

JN40

1427

JN40

1533

JN40

1010

JN40

1632

JN40

1932

JN40

1840

JN40

1090

JN40

1734

MA

LA

YS

IA

Ere

bida

eB

olet

obiin

aeC

orga

tha

nite

nsI,

IIR

Z36

HQ

0062

11H

Q00

6915

HQ

0063

07H

Q00

6398

HQ

0068

19H

Q00

6474

HQ

0067

23H

Q00

6632

HQ

0070

01H

Q00

6547

HO

NG

KO

NG

Ere

bida

eB

olet

obiin

aeP

hyto

met

ra v

irid

aria

I,II

RZ

129

HQ

0061

65H

Q00

6962

HQ

0062

62H

Q00

6356

HQ

0067

74H

Q00

6442

HQ

0066

81H

Q00

6591

HQ

0069

62H

Q00

6512

TG

FIN

LA

ND

Ere

bida

eB

olet

obiin

aeLa

spey

ria

flexu

laI,

IIR

Z3

HQ

0061

97H

Q00

6901

HQ

0062

93H

Q00

6386

HQ

0068

05H

Q00

6463

HQ

0067

10H

Q00

6618

HQ

0069

90H

Q00

6536

TG

/TS

HU

NG

AR

Y

Ere

bida

eB

olet

obiin

aeZ

urob

ata

rora

taII

RZ

385

JN40

1313

JN40

1196

JN40

1428

JN40

1534

JN40

0996

−JN

4019

33JN

4018

41JN

4010

91JN

4017

35T

SM

AL

AY

SIA

Ere

bida

eB

olet

obiin

aeH

omod

es c

roce

aII

RZ

412

JN40

1314

JN40

1197

JN40

1429

JN40

1535

JN40

1011

−JN

4019

34JN

4018

42JN

4010

92JN

4017

36T

SM

AL

AY

SIA

Ere

bida

eB

olet

obiin

aeE

nisp

odes

pur

pure

aII

RZ

390

JN40

1315

JN40

1198

JN40

1430

−JN

4010

12JN

4016

33JN

4019

35JN

4018

43JN

4010

93JN

4017

37T

SM

AL

AY

SIA

Ere

bida

eB

olet

obiin

aeT

amba

mni

onom

era

IIR

Z41

5JN

4013

16JN

4011

99JN

4014

31JN

4015

36−

JN40

1634

JN40

1936

JN40

1844

−JN

4017

38M

AL

AY

SIA

Ere

bida

eB

olet

obiin

aeP

arol

ulis

abs

imil

isII

RZ

392

JN40

1317

JN40

1200

JN40

1432

JN40

1537

−JN

4016

35JN

4019

37JN

4018

45−

JN40

1739

MA

LA

YS

IA

Ere

bida

eB

olet

obiin

aeA

raeo

pter

on s

p.I,

IIR

Z13

7H

Q00

6170

HQ

0068

74H

Q00

6267

HQ

0063

61H

Q00

6779

−H

Q00

6686

−H

Q00

6966

HQ

0065

15T

GIN

DO

NE

SIA

Ere

bida

eB

olet

obiin

aeA

raeo

pter

on s

p.II

RZ

410

JN40

1318

JN40

1201

JN40

1433

JN40

1538

JN40

1013

JN40

1636

JN40

1938

JN40

1846

JN40

1094

−T

GM

AL

AY

SIA

Ere

bida

eB

olet

obiin

aeE

uble

mm

a pu

rpur

ina

I,II

RZ

7H

Q00

6237

HQ

0069

40H

Q00

6332

HQ

0064

24H

Q00

6845

HQ

0064

91H

Q00

6748

HQ

0066

55−

HQ

0065

69T

GH

UN

GA

RY

Ere

bida

eB

olet

obiin

aeE

uble

mm

a an

acho

resi

sII

RZ

98JN

4013

19JN

4012

02JN

4014

34JN

4015

39JN

4009

89JN

4016

37JN

4019

39JN

4018

47−

JN40

1741

TG

HO

NG

KO

NG

Ere

bida

eB

olet

obiin

aeE

uble

mm

a al

bifa

scia

IIR

Z22

0JN

4013

20JN

4012

03JN

4014

35JN

4015

40JN

4010

14JN

4016

38JN

4019

40−

−JN

4017

42T

GG

HA

NA

Ere

bida

eB

olet

obiin

aeP

aras

coti

afu

ligi

nari

aI,

IIM

M00

340

HQ

0061

54H

Q00

6862

HQ

0062

53H

Q00

6347

HQ

0067

64H

Q00

6436

HQ

0066

72H

Q00

6583

HQ

0069

54H

Q00

6505

TG

/TS

FIN

LA

ND

Ere

bida

eB

olet

obiin

aeM

etal

ectr

aed

ilis

IIR

Z37

2JN

4013

21JN

4012

04JN

4014

36JN

4015

41JN

4010

15JN

4016

39JN

4019

41JN

4018

48−

JN40

1744

FIN

LA

ND

Ere

bida

eB

olet

obiin

aeTr

isat

eles

em

ortu

alis

I,II

MM

0487

7G

U82

8707

GU

8285

02G

U82

9030

GU

8293

19G

U82

9583

GU

8298

21G

U83

0695

GU

8304

11G

U82

8195

GU

8300

93T

G/T

SFI

NL

AN

D

Ere

bida

eB

olet

obiin

aeP

rolo

phot

a tr

igon

ifer

aI,

IIR

Z37

HQ

0062

12H

Q00

6916

HQ

0063

08H

Q00

6399

HQ

0068

20H

Q00

6475

HQ

0067

24H

Q00

6633

HQ

0070

02−

TS

HO

NG

KO

NG

Ere

bida

eB

olet

obiin

aeH

ypen

agon

ia ?

brac

hypa

lpia

IIR

Z40

9JN

4013

22−

JN40

1437

JN40

1542

JN40

1016

JN40

1640

JN40

1942

JN40

1849

−−

MA

LA

YS

IA

Ere

bida

eB

olet

obiin

aeM

etae

men

e at

rigu

ttaI,

IIR

Z41

HQ

0062

18H

Q00

6922

HQ

0063

14H

Q00

6405

HQ

0068

26H

Q00

6481

HQ

0067

30H

Q00

6639

HQ

0070

07H

Q00

6552

HO

NG

KO

NG

Ere

bida

eB

olet

obiin

aeM

atae

omer

ase

mia

lba

IIR

Z10

7JN

4013

23JN

4012

05JN

4014

38−

−JN

4016

41−

JN40

1850

JN40

1095

JN40

1745

HO

NG

KO

NG

Ere

bida

eE

rebi

nae

Eua

onti

a se

mir

ufa

IIR

Z28

5JN

4013

24JN

4012

06JN

4014

39JN

4015

43JN

4010

17JN

4016

42JN

4019

43−

JN40

1096

JN40

1746

TS

US

A

Ere

bida

eE

rebi

nae

Aca

ntho

lipe

s ci

rcum

data

I,II

RZ

248

HQ

0061

89H

Q00

6893

HQ

0062

85H

Q00

6379

HQ

0067

97−

HQ

0067

02−

HQ

0069

84H

Q00

6531

TG

UA

E

Ere

bida

eE

rebi

nae

Aca

ntho

lipe

s re

gula

ris

I,II

RZ

135

HQ

0061

68H

Q00

6872

HQ

0062

65H

Q00

6359

HQ

0067

77−

HQ

0066

84−

−−

TG

/TS

RU

SS

IA

Ere

bida

eE

rebi

nae

Hyp

ospi

la b

olin

oide

sII

RZ

116

JN40

1325

JN40

1207

JN40

1440

JN40

1544

JN40

0997

JN40

1643

JN40

1944

JN40

1851

−JN

4017

43T

SH

ON

G K

ON

G

Ere

bida

eE

rebi

nae

Ugi

a in

susp

ecta

I,II

RZ

45H

Q00

6221

HQ

0069

25−

HQ

0064

08H

Q00

6829

HQ

0064

84H

Q00

6733

HQ

0066

42H

Q00

7010

HQ

0065

55H

ON

G K

ON

G

Ere

bida

eE

rebi

nae

Ugi

odes

cin

erea

IIR

Z32

6JN

4013

26JN

4012

08−

−−

JN40

1644

JN40

1945

−JN

4010

97−

TS

GH

AN

A

Page 42: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Appendix

42

Ere

bida

eE

rebi

nae

Sypn

oide

s fu

mos

aI,

IIR

Z31

3H

Q00

6201

HQ

0069

05H

Q00

6297

HQ

0063

90H

Q00

6809

HQ

0064

66H

Q00

6714

HQ

0066

22H

Q00

6994

HQ

0065

39JA

PA

N

Ere

bida

eE

rebi

nae

Dad

dala

luci

lla

IIR

Z32

0JN

4013

27JN

4012

09JN

4014

41JN

4015

45JN

4009

98JN

4016

45JN

4019

46JN

4018

52JN

4010

98JN

4017

47JA

PA

N

Ere

bida

eE

rebi

nae

Cat

ephi

a al

chym

ista

I,II

RZ

127

HQ

0061

64H

Q00

6961

HQ

0062

61H

Q00

6355

HQ

0067

73H

Q00

6441

HQ

0066

80H

Q00

6590

HQ

0069

61−

TG

/TS

GE

RM

AN

Y

Ere

bida

eE

rebi

nae

Het

eran

assa

sp.

IIR

Z35

0JN

4013

28JN

4012

10JN

4014

42JN

4015

46JN

4010

02JN

4016

46JN

4019

47JN

4018

60−

JN40

1748

US

A

Ere

bida

eE

rebi

nae

Zal

e be

thun

eiII

RZ

270

JN40

1329

JN40

1211

JN40

1443

JN40

1547

JN40

1018

JN40

1647

JN40

1948

JN40

1853

−JN

4017

49U

SA

Ere

bida

eE

rebi

nae

Thy

sani

a ze

nobi

aI,

IIR

Z53

HQ

0062

25H

Q00

6928

HQ

0063

20H

Q00

6412

HQ

0068

33H

Q00

6486

HQ

0067

37H

Q00

6645

HQ

0070

14H

Q00

6558

TG

CO

ST

A R

ICA

Ere

bida

eE

rebi

nae

Tox

onpr

ucha

sp.

IIR

Z30

7JN

4013

30JN

4012

12JN

4014

44JN

4015

48−

JN40

1648

JN40

1949

JN40

1854

−JN

4017

50U

SA

Ere

bida

eE

rebi

nae

Pse

udba

rydi

a cr

espu

laII

RZ

91JN

4013

31JN

4012

13JN

4014

45JN

4015

49JN

4010

19JN

4016

49JN

4019

50JN

4018

55JN

4010

99JN

4017

51C

OS

TA

RIC

A

Ere

bida

eE

rebi

nae

Pan

desm

a ro

bust

aI,

IIR

Z32

1H

Q00

6204

HQ

0069

08H

Q00

6300

HQ

0063

93H

Q00

6812

−H

Q00

6717

HQ

0066

25H

Q00

6997

HQ

0065

42T

G/T

SS

PA

IN

Ere

bida

eE

rebi

nae

Het

erop

alpi

a ac

rost

icta

I,II

RZ

243

HQ

0061

86H

Q00

6890

HQ

0062

82H

Q00

6376

HQ

0067

94−

HQ

0067

00−

HQ

0069

81−

UA

E

Ere

bida

eE

rebi

nae

Sphi

ngom

orph

a ch

lore

aI,

IIR

Z29

1H

Q00

6195

HQ

0068

99H

Q00

6291

HQ

0063

85H

Q00

6803

−H

Q00

6708

HQ

0066

16−

−T

ST

AN

ZA

NIA

Ere

bida

eE

rebi

nae

Per

icym

a cr

uege

riI,

IIR

Z99

HQ

0062

44H

Q00

6946

HQ

0063

38H

Q00

6431

HQ

0068

52H

Q00

6497

HQ

0067

55H

Q00

6662

HQ

0070

27H

Q00

6575

TG

HO

NG

KO

NG

Ere

bida

eE

rebi

nae

Sym

pis

rufi

basi

sI,

IIR

Z48

HQ

0062

23−

HQ

0063

18H

Q00

6410

HQ

0068

31H

Q00

6485

HQ

0067

35H

Q00

6644

HQ

0070

12H

Q00

6557

TS

HO

NG

KO

NG

Ere

bida

eE

rebi

nae

Ere

bus

ephe

sper

isI,

IIR

Z11

HQ

0061

61H

Q00

6866

HQ

0062

58H

Q00

6353

HQ

0067

70H

Q00

6440

HQ

0066

77H

Q00

6587

HQ

0069

59H

Q00

6510

TG

TA

IWA

N

Ere

bida

eE

rebi

nae

Ery

gia

apic

alis

I,II

RZ

29H

Q00

6194

HQ

0068

98H

Q00

6290

HQ

0063

84H

Q00

6802

−H

Q00

6707

HQ

0066

15H

Q00

6988

HQ

0065

35T

SH

ON

G K

ON

G

Ere

bida

eE

rebi

nae

Bul

ia d

educ

taII

RZ

314

JN40

1332

JN40

1214

JN40

1446

JN40

1550

JN40

1020

JN40

1650

JN40

1951

JN40

1856

JN40

1100

JN40

1752

US

A

Ere

bida

eE

rebi

nae

For

sebi

a pe

rlae

taII

RZ

284

JN40

1333

JN40

1215

JN40

1447

JN40

1551

JN40

1021

JN40

1651

JN40

1952

JN40

1857

JN40

1101

JN40

1753

TS

US

A

Ere

bida

eE

rebi

nae

Mel

ipot

is p

unct

ifini

sII

RZ

342

JN40

1334

JN40

1216

JN40

1448

JN40

1552

JN40

1022

JN40

1652

JN40

1953

JN40

1858

JN40

1102

JN40

1754

TG

CO

ST

A R

ICA

Ere

bida

eE

rebi

nae

Mel

ipot

is ju

cund

aI,

IIR

Z58

HQ

0062

30H

Q00

6933

HQ

0063

25H

Q00

6417

HQ

0068

38−

HQ

0067

42H

Q00

6650

HQ

0070

17H

Q00

6563

TG

/TS

US

A

Ere

bida

eE

rebi

nae

Pho

beri

a at

omar

isII

RZ

286

JN40

1335

JN40

1217

JN40

1449

−JN

4010

23−

JN40

1954

JN40

1859

JN40

1103

JN40

1755

TS

US

A

Ere

bida

eE

rebi

nae

Aud

ea b

ipun

ctat

aI,

IIR

Z60

HQ

0062

33H

Q00

6936

HQ

0063

28H

Q00

6420

HQ

0068

41−

HQ

0067

44H

Q00

6652

HQ

0070

19H

Q00

6565

TG

/TS

CO

NG

O

Ere

bida

eE

rebi

nae

Aud

ea h

umer

alis

IIR

Z29

0JN

4013

36JN

4012

18JN

4014

50JN

4015

53JN

4010

24JN

4016

53JN

4019

55−

JN40

1104

JN40

1756

TG

TA

NZ

AN

IA

Ere

bida

eE

rebi

nae

Hyp

otac

ha b

rand

berg

ensi

sII

RZ

275

JN40

1337

JN40

1219

JN40

1451

JN40

1554

JN40

0999

JN40

1654

JN40

1956

−JN

4011

05JN

4017

57N

AM

IBIA

Ere

bida

eE

rebi

nae

Cat

ocal

a sp

onsa

I,II

,IV

,VM

M04

358

GU

8287

00G

U82

8495

GU

8290

23G

U82

9312

GU

8295

76G

U82

9816

GU

8306

88G

U83

0404

GU

8281

89G

U83

0086

TG

FIN

LA

ND

Ere

bida

eE

rebi

nae

Ulo

tric

hopu

s m

acul

aI,

IIR

Z24

1H

Q00

6185

HQ

0068

89H

Q00

6281

−H

Q00

6793

HQ

0064

57H

Q00

6699

HQ

0066

08−

HQ

0065

30T

AIW

AN

Ere

bida

eE

rebi

nae

Hyp

opyr

a ca

pens

isII

RZ

149

HQ

0061

72H

Q00

6876

HQ

0062

69H

Q00

6363

HQ

0067

81−

HQ

0066

88H

Q00

6596

HQ

0069

68H

Q00

6517

TG

GH

AN

A

Ere

bida

eE

rebi

nae

Spir

ama

reto

rta

IIR

Z35

9JN

4013

38JN

4012

20JN

4014

52−

JN40

1025

JN40

1655

JN40

1957

−JN

4011

06JN

4017

58T

AIW

AN

Ere

bida

eE

rebi

nae

Cal

ypti

s id

onea

IIR

Z47

3JN

4013

39JN

4012

21JN

4014

53−

JN40

1000

JN40

1656

JN40

1958

JN40

1861

JN40

1107

JN40

1759

EC

UA

DO

R

Ere

bida

eE

rebi

nae

Om

mat

opho

ra lu

min

osa

IIR

Z40

7JN

4013

40JN

4012

22JN

4014

54JN

4015

55JN

4010

26JN

4016

57JN

4019

59JN

4018

62JN

4011

08JN

4017

60T

G/T

SM

AL

AY

SIA

Ere

bida

eE

rebi

nae

Pan

tydi

adi

emen

iI,

IIR

Z30

9H

Q00

6199

HQ

0069

03H

Q00

6295

HQ

0063

88H

Q00

6807

HQ

0064

64H

Q00

6712

HQ

0066

20H

Q00

6992

HQ

0065

38A

US

TR

AL

IA

Ere

bida

eE

rebi

nae

Moc

is la

tipes

I,II

RZ

20H

Q00

6180

HQ

0068

84H

Q00

6276

HQ

0063

71H

Q00

6788

HQ

0064

53H

Q00

6695

HQ

0066

03H

Q00

6976

HQ

0065

25C

OS

TA

RIC

A

Ere

bida

eE

rebi

nae

Cal

list

ege

mi

I,II

MM

0546

9H

Q00

6150

HQ

0068

57H

Q00

6248

HQ

0063

43H

Q00

6759

−H

Q00

6667

HQ

0065

78H

Q00

6950

HQ

0065

00T

SFI

NL

AN

D

Ere

bida

eE

rebi

nae

Euc

lidi

a gl

yphi

caI,

IIR

Z82

HQ

0062

39H

Q00

6942

HQ

0063

33H

Q00

6426

HQ

0068

47−

HQ

0067

50H

Q00

6657

HQ

0070

23H

Q00

6570

TG

FIN

LA

ND

Ere

bida

eE

rebi

nae

Erc

heia

cyl

lari

aI,

IIR

Z33

HQ

0062

05H

Q00

6909

HQ

0063

01H

Q00

6394

HQ

0068

13−

HQ

0067

18H

Q00

6626

HQ

0069

98H

Q00

6543

TG

HO

NG

KO

NG

Ere

bida

eE

rebi

nae

Hul

odes

car

anea

I,II

RZ

126

HQ

0061

63−

HQ

0062

60−

HQ

0067

72−

HQ

0066

79H

Q00

6589

−−

TG

MA

LA

YS

IA

Ere

bida

eE

rebi

nae

Eri

ceia

sub

cine

rea

IIR

Z39

HQ

0062

14H

Q00

6918

HQ

0063

10H

Q00

6401

HQ

0068

22H

Q00

6477

HQ

0067

26H

Q00

6635

HQ

0070

04H

Q00

6549

HO

NG

KO

NG

Ere

bida

eE

rebi

nae

Pla

tyja

um

min

eaII

RZ

261

JN40

1341

JN40

1223

JN40

1455

JN40

1556

JN40

1027

JN40

1658

JN40

1960

JN40

1863

−JN

4017

61T

SH

ON

G K

ON

G

Ere

bida

eE

rebi

nae

Ani

sone

ura

sale

bros

aI,

IIR

Z38

HQ

0062

13H

Q00

6917

HQ

0063

09H

Q00

6400

HQ

0068

21H

Q00

6476

HQ

0067

25−

HQ

0070

03H

Q00

6548

TS

HO

NG

KO

NG

Page 43: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Appendix

43

Ere

bida

eE

rebi

nae

Pra

xis

porp

hyre

tica

IIR

Z30

8JN

4013

42JN

4012

24JN

4014

56−

JN40

1028

JN40

1659

JN40

1961

JN40

1864

JN40

1109

JN40

1762

AU

ST

RA

LIA

Ere

bida

eE

rebi

nae

Isch

yja

man

liaII

RZ

269

JN40

1343

JN40

1225

JN40

1457

JN40

1557

JN40

1029

JN40

1660

JN40

1962

JN40

1822

JN40

1110

JN40

1763

TS

MA

LA

YS

IA

Ere

bida

eE

rebi

nae

Oxy

odes

scr

obic

ulat

aII

RZ

113

JN40

1344

JN40

1226

JN40

1458

JN40

1558

JN40

1030

JN40

1661

JN40

1963

JN40

1866

JN40

1111

JN40

1764

TS

HO

NG

KO

NG

Ere

bida

eE

rebi

nae

Serr

odes

cam

pana

I,II

RZ

318

HQ

0062

02H

Q00

6906

HQ

0062

98H

Q00

6391

HQ

0068

10H

Q00

6467

HQ

0067

15H

Q00

6623

HQ

0069

95H

Q00

6540

TA

IWA

N

Ere

bida

eE

rebi

nae

Ava

tha

ulop

tera

IIR

Z31

7JN

4013

45JN

4012

27JN

4014

59JN

4015

59JN

4010

03JN

4016

62JN

4019

64JN

4018

67−

JN40

1765

MA

LA

YS

IA

Ere

bida

eE

rebi

nae

Coc

ytia

dur

vill

iiII

RZ

401

JN40

1346

JN40

1228

JN40

1460

JN40

1560

JN40

1031

JN40

1663

JN40

1965

JN40

1869

JN40

1112

JN40

1766

TG

/TS

NE

W G

UIN

EA

Ere

bida

eE

rebi

nae

Bas

till

a pr

aete

rmis

saII

RZ

306

JN40

1347

JN40

1229

JN40

1461

JN40

1561

JN40

1032

JN40

1664

JN40

1966

JN40

1868

JN40

1113

JN40

1767

MA

LA

YS

IA

Ere

bida

eE

rebi

nae

Ach

aea

serv

aI,

IIR

Z19

HQ

0061

79H

Q00

6883

HQ

0062

75H

Q00

6370

HQ

0067

87H

Q00

6452

HQ

0066

94H

Q00

6602

HQ

0069

75H

Q00

6524

MA

LA

YS

IA

Ere

bida

eE

rebi

nae

Cha

lcio

pe m

ygdo

nII

RZ

391

JN40

1348

JN40

1230

JN40

1462

JN40

1562

JN40

1001

JN40

1665

JN40

1967

JN40

1865

JN40

1881

JN40

1768

TS

MA

LA

YS

IA

Ere

bida

eE

rebi

nae

All

otri

a el

onym

pha

IIR

Z29

4JN

4013

49JN

4012

31JN

4014

63JN

4015

63JN

4010

33JN

4016

66JN

4019

68JN

4018

70JN

4011

15JN

4017

69T

SU

SA

Ere

bida

eE

rebi

nae

Cly

tie d

evia

I,II

RZ

247

HQ

0061

88H

Q00

6892

HQ

0062

84H

Q00

6378

HQ

0067

96H

Q00

6459

−H

Q00

6610

HQ

0069

83−

UA

E

Ere

bida

eE

rebi

nae

Oph

iusa

tirh

aca

I,II

,IV

RZ

246

HQ

0061

87H

Q00

6891

HQ

0062

83H

Q00

6377

HQ

0067

95H

Q00

6458

HQ

0067

01H

Q00

6609

HQ

0069

82−

TG

/TS

UA

E

Ere

bida

eE

rebi

nae

Thy

as m

etap

haea

IIR

Z19

0JN

4013

50JN

4012

32JN

4014

64JN

4015

64JN

4010

34JN

4016

67JN

4019

69JN

4018

71JN

4011

16JN

4017

70G

HA

NA

Ere

bida

eE

rebi

nae

Oph

iusa

cor

onat

aI,

IIR

Z21

HQ

0061

81H

Q00

6885

HQ

0062

77H

Q00

6372

HQ

0067

89H

Q00

6454

HQ

0066

96H

Q00

6604

HQ

0069

77H

Q00

6526

TG

MA

LA

YS

IA

Ere

bida

eE

rebi

nae

Art

ena

dota

taI,

IIR

Z46

HQ

0062

22H

Q00

6926

HQ

0063

17H

Q00

6409

HQ

0068

30−

HQ

0067

34H

Q00

6643

HQ

0070

11H

Q00

6556

HO

NG

KO

NG

Nol

idae

Dip

hthe

rina

eL

epid

odes

gal

lopa

voIV

RZ

353

XX

XX

X−

−X

X−

CO

ST

A R

ICA

Nol

idae

Dip

hthe

rina

eL

epid

odes

lim

bula

ta 1

IVR

Z62

8−

−X

XX

X−

XX

XT

SC

OS

TA

RIC

A

Nol

idae

Dip

hthe

rina

eL

epid

odes

lim

bula

ta 2

IVR

Z63

0X

−X

XX

X−

XX

XT

SC

OS

TA

RIC

A

Nol

idae

Dip

hthe

rina

eL

epid

odes

lim

bula

ta 3

IVR

Z59

4X

X−

−X

−−

−−

−T

SC

OS

TA

RIC

A

Nol

idae

Dip

hthe

rina

eD

ipht

hera

fest

iva

2IV

RZ

465

XX

XX

XX

−X

XX

TG

/TS

CO

ST

A R

ICA

Nol

idae

Dip

hthe

rina

eD

ipht

hera

fest

iva

3IV

RZ

631

X−

−−

X−

X−

−−

TG

/TS

CO

ST

A R

ICA

Nol

idae

Dip

hthe

rina

eD

ipht

hera

fest

iva

1IV

RZ

633

X−

X−

X−

−−

−−

TG

/TS

CO

ST

A R

ICA

Nol

idae

Ris

obin

aeR

isob

a ob

stru

cta

2II

,IV

RZ

381

JN40

1233

JN40

1117

JN40

1351

−JN

4009

26JN

4015

65JN

4018

72JN

4017

71JN

4010

35JN

4016

68T

GM

AL

AY

SIA

Nol

idae

Ris

obin

aeR

isob

a ob

stru

cta

1I,

II,I

VR

Z65

XX

XX

XX

XX

−X

TG

TH

AIL

AN

D

Nol

idae

Ris

obin

aeB

aile

ya le

vita

nsIV

RZ

461

XX

XX

XX

XX

XX

US

A

Nol

idae

Col

lom

enin

aeC

ollo

men

a si

oper

a 1

IVR

Z63

2X

−−

−X

−X

X−

−T

GC

OS

TA

RIC

A

Nol

idae

Col

lom

enin

aeC

ollo

men

a si

oper

a 2

IV,V

RZ

634

X−

XX

XX

XX

−−

TG

CO

ST

A R

ICA

Nol

idae

Col

lom

enin

aeN

eost

icto

pera

nig

ropu

ncta

IV,V

RZ

469

XX

XX

XX

XX

XX

TS

CO

ST

A R

ICA

Nol

idae

Bea

nina

eB

eana

term

inig

era

IVR

Z63

8X

−X

XX

XX

XX

XT

GT

HA

ILA

ND

Nol

idae

Elig

min

aeB

aroa

sia

mic

aIV

RZ

396

XX

XX

XX

XX

XX

MA

LA

YS

IA

Nol

idae

Elig

min

aeSe

lepa

mol

ybde

aI,

IVR

Z32

HQ

0062

03H

Q00

6907

HQ

0062

99H

Q00

6392

HQ

0068

11H

Q00

6468

HQ

0067

16H

Q00

6624

HQ

0069

96H

Q00

6541

HO

NG

KO

NG

Nol

idae

Elig

min

aeSe

lepa

dis

cige

ra/c

elti

sIV

RZ

500

XX

XX

X−

XX

XX

HO

NG

KO

NG

Nol

idae

Elig

min

aeP

tisc

iana

sem

iniv

eaIV

RZ

516

XX

XX

XX

XX

−X

TS

MA

LA

YS

IA

Nol

idae

Elig

min

aeT

rior

bis

aure

ovitt

aIV

RZ

360

XX

XX

XX

XX

XX

MA

LA

YS

IA

Nol

idae

Elig

min

aeE

ligm

a na

rcis

sus

I,II

,IV

,VR

Z97

HQ

0062

43H

Q00

6945

HQ

0063

37H

Q00

6430

HQ

0068

51H

Q00

6496

HQ

0067

54H

Q00

6661

HQ

0070

26H

Q00

6574

TG

/TS

HO

NG

KO

NG

Nol

idae

Elig

min

aeE

laeo

gnat

ha a

rgyr

itis

IVR

Z46

2X

XX

−X

XX

X−

−T

SC

OS

TA

RIC

A

Nol

idae

Elig

min

aeIs

cadi

a pr

oduc

tIV

RZ

361

XX

−−

X−

XX

−−

CO

ST

A R

ICA

Nol

idae

Wes

term

anni

inae

Pte

rogo

nia

card

inal

isIV

RZ

522

XX

XX

XX

XX

X−

MA

LA

YS

IA

Page 44: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Appendix

44

Nol

idae

Wes

term

anni

inae

Mia

rom

ima

corn

ucop

iaIV

RZ

530

XX

XX

XX

XX

−X

MA

LA

YS

IA

Nol

idae

Wes

term

anni

inae

Wes

term

anni

a su

perb

aIV

RZ

645

X−

XX

XX

XX

X−

TG

/TS

TH

AIL

AN

D

Nol

idae

Wes

term

anni

inae

Irag

aode

s no

bili

sIV

RZ

483

XX

XX

XX

X−

−−

TS

JAP

AN

Nol

idae

Wes

term

anni

inae

Neg

eta

cont

rari

ata

2I,

II,I

VR

Z26

HQ

0061

91H

Q00

6895

HQ

0062

87H

Q00

6381

HQ

0067

99H

Q00

6460

HQ

0067

04H

Q00

6612

HQ

0069

86H

Q00

6533

HO

NG

KO

NG

Nol

idae

Wes

term

anni

inae

Neg

eta

abbr

evia

taIV

RZ

414

X−

XX

XX

XX

XX

MA

LA

YS

IA

Nol

idae

Wes

term

anni

inae

Neg

eta

cont

rari

ata

1IV

RZ

487

XX

X−

XX

XX

−X

TA

IWA

N

Nol

idae

Wes

term

anni

inae

Neg

eta

cont

rari

ata

3IV

RZ

504

XX

XX

XX

XX

XX

TS

MA

LA

YS

IA

Nol

idae

Nol

inae

Mel

anog

raph

ia fl

exil

inea

taIV

RZ

498

XX

XX

XX

XX

XX

TS

HO

NG

KO

NG

Nol

idae

Nol

inae

Mem

bran

ola

lam

pang

IVR

Z62

6X

XX

XX

XX

X−

XT

HA

ILA

ND

Nol

idae

Nol

inae

Alc

anol

a ty

mpa

nist

esIV

RZ

624

XX

XX

XX

XX

XX

TH

AIL

AN

D

Nol

idae

Nol

inae

Alc

anol

a ob

scur

ata

IVR

Z62

5X

−X

XX

XX

XX

−T

HA

ILA

ND

Nol

idae

Nol

inae

Meg

anol

a m

inus

cula

IVR

Z48

5X

XX

XX

XX

−−

XU

SA

Nol

idae

Nol

inae

Nol

a ba

sini

gra

IVR

Z62

7X

XX

XX

XX

XX

XT

GT

HA

ILA

ND

Nol

idae

Nol

inae

unkn

own

nolin

eIV

RZ

526

XX

XX

XX

X−

XX

MA

LA

YS

IA

Nol

idae

Nol

inae

Nol

a ae

rugu

laI,

II,I

VM

M01

776

GU

8286

70G

U82

8468

GU

8290

01G

U82

9284

GU

8295

55−

GU

8306

65G

U83

0376

GU

8281

67G

U83

0057

TG

FIN

LA

ND

Nol

idae

Nol

inae

Nol

a m

inna

IVR

Z48

8X

XX

XX

XX

X−

XT

GU

SA

Nol

idae

Nol

inae

Nol

a cr

etac

eaIV

RZ

493

XX

X−

XX

X−

X−

TG

HO

NG

KO

NG

Nol

idae

Nol

inae

Nol

a an

alis

IVR

Z49

4X

X−

XX

X−

−X

−T

GH

ON

G K

ON

G

Nol

idae

Nol

inae

Nol

a lu

cida

lis

IVR

Z53

3X

XX

XX

−X

X−

−T

GM

AL

AY

SIA

Nol

idae

Nol

inae

Nol

a fa

scia

taIV

RZ

534

X−

XX

XX

XX

−X

TG

MA

LA

YS

IA

Nol

idae

Nol

inae

Man

oba

brun

ellu

sIV

RZ

495

XX

XX

XX

−X

XX

HO

NG

KO

NG

Nol

idae

Chl

oeph

orin

aeM

aced

a m

ansu

eta

IVR

Z64

1X

−−

−X

−X

X−

−T

ST

HA

ILA

ND

Nol

idae

Chl

oeph

orin

aeP

arac

ram

a an

gula

taI,

IVR

Z43

HQ

0062

19H

Q00

6923

HQ

0063

15H

Q00

6406

HQ

0068

27H

Q00

6482

HQ

0067

31H

Q00

6640

HQ

0070

08H

Q00

6553

HO

NG

KO

NG

Nol

idae

Chl

oeph

orin

aeP

arac

ram

a du

lcis

sim

aIV

RZ

648

X−

XX

XX

XX

−−

TS

TH

AIL

AN

D

Nol

idae

Chl

oeph

orin

aeE

aria

s cl

oran

aI,

II,I

VM

M06

650

GU

8287

47G

U92

9721

GU

8290

61G

U82

9346

GU

8296

10G

U82

9845

GU

8307

18G

U83

0448

GU

8282

31G

U83

0131

TG

/TS

FIN

LA

ND

Nol

idae

Chl

oeph

orin

aeE

aria

s ro

seife

raIV

RZ

480

XX

XX

XX

XX

XX

TA

IWA

N

Nol

idae

Chl

oeph

orin

aeE

aria

s in

sula

naIV

RZ

492

XX

X−

XX

−X

XX

TG

HO

NG

KO

NG

Nol

idae

Chl

oeph

orin

aeM

auri

lia

icon

ica

IVR

Z48

4X

X−

XX

XX

XX

XIN

DO

NE

SIA

Nol

idae

Chl

oeph

orin

aeTo

rtri

cifo

rma

razo

wsk

iiIV

RZ

586

XX

XX

XX

XX

−−

MA

LA

YS

IA

Nol

idae

Chl

oeph

orin

aeD

idig

ua v

irid

ifas

cia

IVR

Z52

5X

XX

XX

XX

X−

XM

AL

AY

SIA

Nol

idae

Chl

oeph

orin

aeX

enoc

hroa

ann

aeIV

RZ

386

XX

XX

XX

XX

XX

MA

LA

YS

IA

Nol

idae

Chl

oeph

orin

aeX

enoc

hroa

xan

thia

IVR

Z50

3X

XX

XX

XX

XX

XM

AL

AY

SIA

Nol

idae

Chl

oeph

orin

aeD

iehl

ea tu

mid

aIV

RZ

479

XX

XX

X−

XX

X−

TS

MA

LA

YS

IA

Nol

idae

Chl

oeph

orin

aeC

hlor

iola

gra

tiss

ima

IVR

Z53

1X

XX

XX

XX

XX

XT

SM

AL

AY

SIA

Nol

idae

Chl

oeph

orin

aeG

elas

toce

ra v

irid

imac

ula

IVR

Z52

1X

XX

XX

XX

X−

XT

GM

AL

AY

SIA

Nol

idae

Chl

oeph

orin

aeB

eara

tort

rici

form

isIV

RZ

515

XX

XX

XX

XX

−X

MA

LA

YS

IA

Nol

idae

Chl

oeph

orin

aeA

riol

ica

arge

ntea

I,IV

RZ

63H

Q00

6234

HQ

0069

37H

Q00

6329

HQ

0064

21H

Q00

6842

−H

Q00

6745

HQ

0066

53H

Q00

7020

HQ

0065

66T

GJA

PA

N

Nol

idae

Chl

oeph

orin

aeG

arig

a m

irab

ilis

IVR

Z11

4X

XX

−X

XX

X−

−H

ON

G K

ON

G

Page 45: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Appendix

45

Nol

idae

Chl

oeph

orin

aeT

ympa

nist

es fu

sim

argo

IVR

Z56

6X

XX

XX

XX

XX

−M

AL

AY

SIA

Nol

idae

Chl

oeph

orin

aeP

seud

oips

pra

sina

na 2

IVR

Z12

8X

−X

XX

XX

−−

−T

G/T

SG

ER

MA

NY

Nol

idae

Chl

oeph

orin

aeP

seud

oips

pra

sina

na 1

I,IV

,VM

M00

107

GU

8286

00G

U82

8399

GU

8289

34G

U82

9229

GU

8294

96G

U82

9754

GU

8306

11G

U83

0312

GU

8281

01G

U82

9989

TG

FIN

LA

ND

Nol

idae

Chl

oeph

orin

aeC

leth

roph

ora

dist

inct

aIV

RZ

478

XX

XX

XX

XX

XX

TS

JAP

AN

Nol

idae

Chl

oeph

orin

aeH

ylop

hilo

des

orie

ntal

isIV

RZ

643

X−

XX

X−

XX

X−

TS

TH

AIL

AN

D

Nol

idae

Chl

oeph

orin

aeC

hlor

opla

ga s

p.IV

RZ

520

XX

XX

XX

XX

XX

MA

LA

YS

IA

Nol

idae

Chl

oeph

orin

aeC

hlor

opla

ga n

ygm

iaIV

RZ

646

X−

XX

XX

XX

−X

TS

TH

AIL

AN

D

Nol

idae

Chl

oeph

orin

aeSi

nna

extr

ema

IVR

Z49

0X

XX

XX

XX

XX

XJA

PA

N

Nol

idae

Chl

oeph

orin

aeSi

nna

flor

alis

IVR

Z52

9X

XX

XX

XX

X−

XM

AL

AY

SIA

Nol

idae

Chl

oeph

orin

aeSi

glop

hora

ferr

eilu

tea

IVR

Z48

9X

XX

XX

XX

XX

−JA

PA

N

Nol

idae

Chl

oeph

orin

aeC

hand

ica

quad

ripe

nnis

IVR

Z57

9X

XX

XX

XX

X−

XT

SM

AL

AY

SIA

Nol

idae

Chl

oeph

orin

aeC

osse

dia

hyri

odes

IVR

Z52

4X

XX

XX

XX

X−

−M

AL

AY

SIA

Nol

idae

Chl

oeph

orin

aeLa

band

a ce

ylus

alis

IVR

Z55

5X

XX

XX

XX

X−

XM

AL

AY

SIA

Nol

idae

Chl

oeph

orin

aeA

quis

orb

icul

aris

IVR

Z63

9X

−X

XX

XX

X−

−T

HA

ILA

ND

Nol

idae

Chl

oeph

orin

aeT

atho

thri

pa c

onti

nua

IVR

Z64

0−

−X

XX

XX

X−

−T

ST

HA

ILA

ND

Nol

idae

Chl

oeph

orin

aeB

leni

na d

onan

sI,

IVR

Z64

HQ

0062

35H

Q00

6938

HQ

0063

30H

Q00

6422

HQ

0068

43H

Q00

6490

HQ

0067

46H

Q00

6654

HQ

0070

21H

Q00

6567

TG

SU

MA

TR

A

Nol

idae

Chl

oeph

orin

aeB

leni

na q

uina

ria

IVR

Z49

9X

XX

XX

XX

XX

XT

GH

ON

G K

ON

G

Nol

idae

Chl

oeph

orin

aeD

ilop

hoth

ripa

chr

ysor

rhae

aIV

RZ

528

XX

XX

XX

XX

−−

TS

MA

LA

YS

IA

Nol

idae

Chl

oeph

orin

aeE

gchi

rete

s no

mim

usIV

RZ

481

XX

XX

X−

X−

−−

TS

CO

ST

A R

ICA

Nol

idae

Chl

oeph

orin

aeN

ycte

ola

dege

nera

naI,

IVM

M00

135

GU

8286

12G

U82

8410

GU

8289

46G

U82

9238

GU

8295

06G

U82

9760

GU

8306

21G

U83

0323

GU

8281

13G

U83

0000

TG

FIN

LA

ND

Nol

idae

Chl

oeph

orin

aeN

ycte

ola

sinu

osa

IVR

Z50

1X

XX

XX

XX

X−

−T

GH

ON

G K

ON

G

Nol

idae

Chl

oeph

orin

aeN

ycte

ola

indi

caIV

RZ

539

XX

XX

XX

XX

−X

TG

MA

LA

YS

IA

Nol

idae

Chl

oeph

orin

aeG

arel

la n

ilot

ica

IVR

Z47

7X

XX

XX

XX

XX

XU

SA

Nol

idae

Chl

oeph

orin

aeG

arel

la r

ufic

irra

IVR

Z50

2X

XX

XX

−X

X−

XH

ON

G K

ON

G

Nol

idae

Chl

oeph

orin

aeG

iaur

a ro

bust

aI,

IVR

Z31

HQ

0062

00H

Q00

6904

HQ

0062

96H

Q00

6389

HQ

0068

08H

Q00

6465

HQ

0067

13H

Q00

6621

HQ

0069

93−

HO

NG

KO

NG

Nol

idae

Chl

oeph

orin

aeG

iaur

a ni

gril

inea

taIV

RZ

519

X−

XX

XX

XX

−X

MA

LA

YS

IA

Nol

idae

Chl

oeph

orin

aeG

iaur

a m

ulti

punc

tata

IVR

Z49

6X

XX

XX

XX

XX

XH

ON

G K

ON

G

Nol

idae

Chl

oeph

orin

aeG

iaur

a ni

veid

isca

IVR

Z52

7X

XX

XX

XX

X−

XM

AL

AY

SIA

Nol

idae

Chl

oeph

orin

aeP

arda

sena

ver

naIV

RZ

532

XX

XX

X−

XX

X−

MA

LA

YS

IA

Nol

idae

Chl

oeph

orin

aeE

tann

a cl

opae

aIV

RZ

486

XX

XX

XX

XX

−X

AU

ST

RA

LIA

Nol

idae

Chl

oeph

orin

aeE

tann

a br

eviu

scul

a 2

IVR

Z49

1X

XX

XX

XX

XX

XH

ON

G K

ON

G

Nol

idae

Chl

oeph

orin

aeE

tann

a br

eviu

scul

a 1

IVR

Z49

7X

XX

XX

XX

X−

XH

ON

G K

ON

G

Nol

idae

Chl

oeph

orin

aeE

tann

a br

eviu

scul

a 3

IVR

Z51

8X

XX

XX

XX

X−

XM

AL

AY

SIA

Noc

tuid

aeD

yops

inae

Dyo

ps c

hrom

atop

hila

I,II

,VR

Z10

HQ

0061

58−

HQ

0062

55H

Q00

6350

HQ

0067

67H

Q00

6438

HQ

0066

74H

Q00

6585

HQ

0069

57H

Q00

6507

TG

CO

ST

A R

ICA

Noc

tuid

aeD

yops

inae

Pse

udoa

rcte

mel

anis

II,V

RZ

147

JN40

1235

JN40

1119

JN40

1353

JN40

1465

JN40

0928

JN40

1567

JN40

1874

JN40

1773

JN40

1037

JN40

1669

GH

AN

A

Noc

tuid

aeD

yops

inae

Arc

te m

odes

taI,

II,V

RZ

54H

Q00

6226

HQ

0069

29H

Q00

6321

HQ

0064

13H

Q00

6834

−H

Q00

6738

HQ

0066

46H

Q00

7015

HQ

0065

59T

GM

AL

AY

SIA

Noc

tuid

aeD

yops

inae

Par

arct

e sc

hnei

deri

ana

VR

Z54

8X

XX

XX

XX

X−

−T

SC

OS

TA

RIC

A

Noc

tuid

aeD

yops

inae

Bel

cian

a ka

laII

,VR

Z41

6JN

4012

38−

JN40

1356

JN40

1468

JN40

0930

JN40

1570

JN40

1879

JN40

1776

JN40

1040

JN40

1672

MA

LA

YS

IA

Page 46: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Appendix

46

Noc

tuid

aeD

yops

inae

Bel

cian

a bi

form

isII

,VR

Z38

4JN

4012

37JN

4011

21JN

4013

55JN

4014

67JN

4009

29JN

4015

69JN

4018

77JN

4017

75JN

4010

39JN

4016

71T

SM

AL

AY

SIA

Noc

tuid

aeD

yops

inae

Cyc

lode

s om

ma

VR

Z63

6X

XX

XX

XX

X−

XT

ST

HA

ILA

ND

Noc

tuid

aeD

yops

inae

Cer

octe

na a

myn

taV

RZ

552

XX

XX

XX

XX

X−

TS

EC

UA

DO

R

Noc

tuid

aeD

yops

inae

Sosx

etra

gra

taII

,VR

Z28

1JN

4012

36JN

4011

20JN

4013

54JN

4014

66JN

4009

88JN

4015

68JN

4018

75JN

4017

74JN

4010

38JN

4016

70T

SC

OS

TA

RIC

A

Noc

tuid

aePl

usiin

aeA

utog

raph

a ga

mm

aI,

II,I

V,V

MM

0032

8G

U82

8636

GU

8284

34G

U82

8970

GU

8292

56G

U82

9528

−G

U83

0640

GU

8303

44G

U82

8135

GU

8300

23T

G/T

SFI

NL

AN

D

Noc

tuid

aePl

usiin

aeA

bros

tola

trip

arti

taI,

VM

M05

132

HQ

0061

52H

Q00

6859

HQ

0062

50H

Q00

6345

HQ

0067

61−

HQ

0066

69H

Q00

6580

HQ

0069

52H

Q00

6502

TG

FIN

LA

ND

Noc

tuid

aeE

ustr

oniin

aeD

elto

te u

ncul

aI,

VM

M04

601

GU

8287

03G

U82

8498

GU

8290

26G

U82

9315

GU

8295

79G

U82

9818

GU

8306

91G

U83

0407

GU

8281

92G

U83

0089

FIN

LA

ND

Noc

tuid

aeC

ucul

liina

eC

ucul

lia

umbr

atic

aI,

IV,V

MM

0454

3G

U82

8701

GU

8284

96G

U82

9024

GU

8293

13G

U82

9577

GU

8298

17G

U83

0689

GU

8304

05G

U82

8190

GU

8300

87T

G/T

SFI

NL

AN

D

Noc

tuid

aeD

ilobi

nae

Dil

oba

caer

uleo

ceph

ala

II,V

MM

0926

7JN

4012

46JN

4011

28JN

4013

64JN

4014

75JN

4009

82−

JN40

1887

JN40

1784

−JN

4016

78T

G/T

SFI

NL

AN

D

Noc

tuid

aeR

aphi

inae

Rap

hia

abru

ptI,

II,V

CW

M-9

4-03

72G

U82

8548

GU

8283

50G

U82

8893

GU

8291

93G

U82

9455

GU

8297

28G

U83

0579

GU

8302

70G

U82

8059

GU

8299

39T

GU

SA

Noc

tuid

aePa

nthe

inae

Euc

ocyt

ia m

eeki

II,V

RZ

87JN

4012

47JN

4011

29−

−−

−JN

4018

88JN

4017

85JN

4010

47−

TG

/TS

IND

ON

ES

IA

Noc

tuid

aePa

nthe

inae

Thi

acid

as s

p.II

,VR

Z45

9JN

4012

49JN

4011

31JN

4013

66JN

4014

77JN

4009

37JN

4015

79JN

4018

88JN

4017

87−

JN40

1680

TG

IND

IA

Noc

tuid

aePa

nthe

inae

Ant

itri

sulo

ides

cat

ocal

ina

II,V

RZ

388

JN40

1248

JN40

1130

JN40

1365

JN40

1476

JN40

0936

JN40

1578

JN40

1889

JN40

1786

JN40

1048

JN40

1679

TG

MA

LA

YS

IA

Noc

tuid

aePa

nthe

inae

Pan

thea

coe

nobi

taI,

II,V

MM

0458

3G

U82

8702

GU

8284

97G

U82

9025

GU

8293

14G

U82

9578

−G

U83

0690

GU

8304

06G

U82

8191

GU

8300

88T

G/T

SFI

NL

AN

D

Noc

tuid

aeA

cont

iinae

Em

mel

ia tr

abea

lis

I,V

MM

0989

3H

Q00

6147

HQ

0068

54H

Q00

6245

HQ

0063

40H

Q00

6756

−H

Q00

6664

HQ

0065

76H

Q00

6947

−S

AR

DIN

IA

Noc

tuid

aeA

cont

iinae

Aco

ntia

luci

daI,

IV,V

MM

0015

2G

U82

8617

GU

8284

15G

U82

8952

GU

8292

43G

U82

9512

GU

8297

63G

U83

0627

GU

8303

27G

U82

8118

GU

8300

06T

GG

RE

EC

E

Noc

tuid

aeB

agis

arin

aeA

myn

a oc

toII

,VR

Z50

JN40

1242

JN40

1125

JN40

1360

JN40

1471

JN40

0984

JN40

1574

JN40

1883

JN40

1780

JN40

1043

JN40

1675

MA

LA

YS

IA

Noc

tuid

aeB

agis

arin

aeX

anth

odes

alb

ago

I,II

,VM

M09

894

GU

8288

44G

U92

9808

GU

8291

45G

U82

9412

GU

8296

93−

GU

8307

92G

U83

0535

GU

8283

08G

U83

0224

SA

RD

INIA

Noc

tuid

aeB

agis

arin

aeR

amad

asa

pavo

II,V

RZ

382

JN40

1241

JN40

1124

JN40

1359

JN40

1470

JN40

0978

JN40

1573

JN40

1882

JN40

1779

−JN

4016

74T

SM

AL

AY

SIA

Noc

tuid

aeB

agis

arin

aeD

yrze

la p

lagi

ata

II,V

RZ

395

JN40

1240

JN40

1123

JN40

1358

JN40

1469

JN40

0932

JN40

1572

JN40

1881

JN40

1778

JN40

1042

JN40

1673

TS

MA

LA

YS

IA

Noc

tuid

aeB

agis

arin

aeE

ncru

phio

n le

ena

II,V

RZ

351

JN40

1243

JN

4011

26JN

4013

61JN

4014

72JN

4009

33JN

4015

75JN

4018

84JN

4017

81JN

4010

44JN

4016

76C

OS

TA

RIC

A

Noc

tuid

aeB

agis

arin

aeV

espo

la c

aeru

leif

era

VR

Z59

5X

XX

XX

−X

XX

−T

SC

OS

TA

RIC

A

Noc

tuid

aeB

agis

arin

aeP

aran

giti

a te

mpe

rata

II,I

V,V

RZ

463

JN40

1244

JN40

1127

JN40

1362

JN40

1473

JN40

0934

JN40

1576

JN40

1885

JN40

1782

JN40

1045

CO

ST

A R

ICA

Noc

tuid

aeB

agis

arin

aeP

aran

giti

a m

osai

caII

,IV

,VR

Z46

4JN

4012

45−

JN40

1363

JN40

1474

JN40

0935

JN40

1577

JN40

1886

JN40

1783

JN40

1046

JN40

1677

CO

ST

A R

ICA

Noc

tuid

aeB

agis

arin

aeD

iopa

cor

one

II,I

V,V

RZ

472

JN40

1239

JN40

1122

JN40

1357

−JN

4009

31JN

4015

71JN

4018

80JN

4017

77JN

4010

41−

FRE

NC

H

GU

IAN

A

Noc

tuid

aeB

agis

arin

aeC

onca

na m

undi

ssim

aIV

,VR

Z62

1X

XX

XX

XX

−−

XT

SU

SA

Noc

tuid

aeB

agis

arin

aeC

onca

na le

cta

IV,V

RZ

474

X−

−X

X−

XX

−−

CO

ST

A R

ICA

Noc

tuid

aeB

agis

arin

aeC

onca

na p

erm

ixta

IV,V

RZ

482

XX

XX

XX

XX

−X

GU

AT

EM

AL

A

Noc

tuid

aeA

mph

ipyr

inae

Am

phip

yra

perf

lua

I,II

,IV

,VM

M01

162

GU

8286

60G

U82

8458

GU

8289

91G

U82

9275

GU

8295

46G

U82

9787

GU

8306

57

GU

8303

66G

U82

8157

GU

8300

47T

GFI

NL

AN

D

Noc

tuid

aeA

mph

ipyr

inae

Bra

chio

nych

a nu

becu

losa

I,V

MM

0154

2G

U82

8667

GU

8284

65G

U82

8998

GU

8292

81G

U82

9552

GU

8297

93G

U83

0663

GU

8303

73G

U82

8164

GU

8300

54T

SFI

NL

AN

D

Noc

tuid

aeM

etop

oniin

aeF

lam

mon

a qu

adri

fasc

iata

VR

Z59

6X

XX

XX

XX

XX

XT

SM

AL

AY

SIA

Noc

tuid

aeM

etop

oniin

aeP

anem

eria

tene

brat

aI,

VM

M00

005

HQ

0061

57H

Q00

6863

HQ

0062

54H

Q00

6349

HQ

0067

66H

Q00

6437

HQ

0066

73H

Q00

6584

HQ

0069

56H

Q00

6506

FIN

LA

ND

Noc

tuid

aeA

cron

ictin

aeC

rani

opho

ra li

gust

riI,

VM

M06

745

HQ

0061

48H

Q00

6855

HQ

0062

46H

Q00

6341

HQ

0067

57H

Q00

6432

HQ

0066

65H

Q00

6577

HQ

0069

48H

Q00

6498

TS

FIN

LA

ND

Noc

tuid

aeA

cron

ictin

aeA

cron

icta

am

eric

ana

VR

Z59

7X

XX

XX

XX

X−

XT

GU

SA

Noc

tuid

aeA

cron

ictin

aeA

cron

icta

rum

icis

I,V

MM

0152

9G

U82

8666

GU

8284

64G

U82

8997

GU

8292

80G

U82

9551

GU

8297

92G

U83

0662

GU

8303

72G

U82

8163

GU

8300

53T

GFI

NL

AN

D

Noc

tuid

aeA

cron

ictin

aeC

erm

a ce

rint

haV

RZ

617

XX

XX

XX

X−

−X

US

A

Noc

tuid

aeA

cron

ictin

aeC

omac

hara

cad

bury

iV

RZ

618

XX

XX

XX

XX

−X

TS

US

A

Page 47: Molecular SySteMaticS of Noctuoidea (iNSecta, lepidoptera

Appendix

47

Noc

tuid

aeA

cron

ictin

aeH

arri

sim

emna

tris

igna

taV

RZ

619

XX

XX

XX

XX

−X

US

A

Noc

tuid

aeA

cron

ictin

aeP

olyg

ram

mat

e he

brae

icum

VR

Z62

0X

XX

XX

XX

XX

XT

SU

SA

Noc

tuid

aeA

cron

ictin

aeA

grio

pode

s fa

llax

VR

Z61

6X

XX

XX

XX

X−

XT

SU

SA

Noc

tuid

aeA

gari

stin

aeP

eris

cept

a po

lyst

icta

I,II

,VM

M07

669

GU

8288

20G

U92

9788

GU

8291

25G

U82

9400

GU

8296

74G

U82

9892

GU

8307

73G

U83

0519

GU

8282

89G

U83

0201

TG

/TS

AU

ST

RA

LIA

Noc

tuid

aeA

ediin

aeA

edia

leuc

omel

asII

,VR

Z27

7JN

4012

50JN

4011

32JN

4013

67JN

4014

78JN

4009

76JN

4015

80JN

4018

91JN

4017

88−

JN40

1681

TS

JAP

AN

Noc

tuid

aeC

ondi

cina

eC

ondi

ca il

lect

aV

RZ

511

XX

XX

XX

X−

−X

TG

MA

LA

YS

IA

Noc

tuid

aeC

ondi

cina

eC

ondi

ca v

ecor

sI,

IIC

WM

-95-

0471

GU

8285

50G

U82

8352

GU

8288

95G

U82

9194

GU

8294

57−

GU

8305

81−

GU

8280

61G

U82

9941

TG

US

A

Noc

tuid

aeC

ondi

cina

eH

emic

epha

lis

ales

aII

,VR

Z34

1JN

4012

51JN

4011

33JN

4013

68JN

4014

79JN

4009

38JN

4015

81JN

4018

92JN

4017

89JN

4010

49JN

4016

82C

OS

TA

RIC

A

Noc

tuid

aeH

elio

thin

aeP

yrrh

ia u

mbr

aI,

VM

M05

114

GU

8287

12G

U82

8507

GU

8290

34G

U82

9324

GU

8295

88G

U82

9825

GU

8307

00G

U83

0416

GU

8282

00G

U83

0098

FIN

LA

ND

Noc

tuid

aeun

assi

gned

Chy

toni

x di

ehli

VR

Z51

7X

XX

XX

XX

X−

XM

AL

AY

SIA

Noc

tuid

aeB

ryop

hilin

aeC

ryph

ia r

aptr

icul

aI,

VM

M04

919

GU

8287

08G

U82

8503

GU

8290

31G

U82

9320

GU

8295

84G

U82

9822

GU

8306

96G

U83

0412

GU

8281

96G

U83

0094

FIN

LA

ND

Noc

tuid

aeB

ryop

hilin

aeSt

enol

oba

futi

iV

RZ

523

XX

XX

XX

XX

X−

MA

LA

YS

IA

Noc

tuid

aeun

assi

gned

Ecp

atia

sp.

VR

Z54

5X

XX

XX

XX

X−

XM

AL

AY

SIA

Noc

tuid

aeun

assi

gned

Ecp

atia

long

inqu

uaI,

II,V

RZ

25H

Q00

6190

HQ

0068

94H

Q00

6286

HQ

0063

80H

Q00

6798

−H

Q00

6703

HQ

0066

11H

Q00

6985

HQ

0065

32H

ON

G K

ON

G

Noc

tuid

aeN

octu

inae

Tira

cola

aur

eata

VR

Z14

XX

XX

−X

XX

X−

IND

ON

ES

IA

Noc

tuid

aeN

octu

inae

Act

inot

ia p

olyo

don

I,V

MM

0515

3G

U82

8714

GU

8285

09−

GU

8293

26G

U82

9590

GU

8298

27G

U83

0702

GU

8304

18G

U82

8202

GU

8301

00T

GFI

NL

AN

D

Noc

tuid

aeN

octu

inae

Hop

lodr

ina

octo

gena

ria

I,V

MM

0165

1H

Q00

6153

HQ

0068

60H

Q00

6251

HQ

0063

46H

Q00

6762

HQ

0064

34H

Q00

6670

HQ

0065

81H

Q00

6953

HQ

0065

03FI

NL

AN

D

Noc

tuid

aeN

octu

inae

Dia

phon

e sp

.I,

II,V

MF-

05-0

053

GU

8285

71G

U82

8372

GU

8289

13G

U82

9206

GU

8294

75G

U82

9738

GU

8305

91G

U83

0285

GU

8280

76G

U82

9960

TA

NZ

AN

IA

Noc

tuid

aeN

octu

inae

Apa

mea

cre

nata

I,IV

,VM

M01

170

GU

8286

61G

U82

8459

GU

8289

92G

U82

9276

GU

8295

47G

U82

9788

GU

8306

58G

U83

0367

GU

8281

58G

U83

0048

TG

FIN

LA

ND

Noc

tuid

aeN

octu

inae

Ufe

us fa

unas

I,V

RR

-98-

0914

GU

8288

60G

U92

9822

GU

8291

63G

U82

9425

GU

8297

09G

U82

9911

GU

8308

07G

U83

0552

GU

8283

20G

U83

0238

TG

US

A

Noc

tuid

aeN

octu

inae

Noc

tua

fim

bria

taI,

II,I

V,V

MM

0475

2G

U82

8705

GU

8285

00G

U82

9028

GU

8293

17G

U82

9581

GU

8298

20G

U83

0693

GU

8304

09G

U82

8194

GU

8300

91T

GFI

NL

AN

D