molecular interactions at the cellulose-lignin interface

21
Molecular Interactions at the Cellulose-Lignin Interface Explored via Molecular Simulation Josh Vermaas, Gregg Beckham, and Michael Crowley Fall 2019 ACS National Meeting San Diego, California August 28th, 2019 NREL/PR-2700-74305

Upload: others

Post on 28-Oct-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Molecular Interactions at the Cellulose-Lignin Interface

Molecular Interactionsatthe Cellulose-Lignin Interface Exploredvia Molecular Simulation

Josh Vermaas, Gregg Beckham, and Michael Crowley

Fall 2019ACSNational Meeting San Diego, California

August28th,2019 NREL/PR-2700-74305

Page 2: Molecular Interactions at the Cellulose-Lignin Interface

LigninIntroduction

• Ligninisanaromatic heteropolymerthatmakesup between15-40%ofthedry weightofterrestrialplants

• Largestsourceofrenewable aromatics

• Manypotentialindustrialuses • Implicatedasasignificant

driverofcellwallrecalcitrance

2

Page 3: Molecular Interactions at the Cellulose-Lignin Interface

LignocelluloseSimulation

Vermaasetal.2015 3

Page 4: Molecular Interactions at the Cellulose-Lignin Interface

LigninBindstoCellulose…

• Lignincoversroughlya quarterofthecellulose surface

• Doesitcoatthesurface evenly?

• Doesligninchemistry matter?

Vermaasetal.2015 4

Page 5: Molecular Interactions at the Cellulose-Lignin Interface

…ParticularlyHydrophobicCelluloseFaces

• Prefershydrophobicfaces • Blockscellulasebinding • Canwequantifythethermodynamic

preferencebetweenfaces?

Vermaasetal.2015 5

Page 6: Molecular Interactions at the Cellulose-Lignin Interface

TheManyFacesofCellulose

• Onlythe200faceis hydrophobic

• Otherprimaryfacesare hydrophilic

• Normalcellulosetwists • Infinitecellulosedoesnot

6

Fernandesetal.2015

Page 7: Molecular Interactions at the Cellulose-Lignin Interface

200 110

1-10 010

TheNextExperiment

• Construct“infinite”sheetsof cellulosewithdifferentfaces exposedtosolution

• Placeligninderivedcompounds insolution

• Simulate for 200 ns • Determine binding free energies

ofcompoundstoindividualfaces

7

Page 8: Molecular Interactions at the Cellulose-Lignin Interface

WhatCompounds? OH OH OH OH

O OH

R' R Gua

iaco

l (G) Ph

enol (H)

HO

β1

* *

HO

O O

ββ

* *

* *

OH

OH

O

OH

OH O O O

OH OH

O

Syring

ol (S)

OH

O O α-ester γ-ester Phenolics OH OH

O *

*

OH

OH OH Ca

tech

ol (C)

OH HO 4O5 HO

OH β5 OH

OH

* O HO

O HO O

OHHO

*

OH O

R R' R R' OH

* *

Chiralcenter

OH O OH

R

OH OH R' OH OH

Monolignols 5-5 αO4 & βO4 βO4 8

Page 9: Molecular Interactions at the Cellulose-Lignin Interface

PotentialBindingMetricsforFreeEnergyDetermination

• Free energy isrelatedto probability

• Trajectoriescanbeusedto determinerelative probabilities

• Howdowedefineabound vs unbound state?

9

Page 10: Molecular Interactions at the Cellulose-Lignin Interface

DistanceandContactMetrics, Compared

• Distance • LigninCenter of

masstocellulose centerofmass

• Veryeasytoexplain • Contactnumber

• Pairwisecontacts betweencellulose andlignin

• Isnotbiasedby ligninshape

Unb

ound

Bo

und

Unb

ound

10

Page 11: Molecular Interactions at the Cellulose-Lignin Interface

CelluloseBindingforMonomers

• Hydrophobic200face predominantforbinding

• Ferulatepreferssolution • Fitswellwithits

physiologicalrole • 110facebetterfor

bindingthantheother OH OH OH OH OH OH OH OH OH OH OH MeO OMe OMe OH MeO MeO OMe OH MeO OH MeO MeO hydrophilicfaces

OH

O OH OH O O OH O OH

11

Page 12: Molecular Interactions at the Cellulose-Lignin Interface

MultimericBinding

• 200>>110>010>1-10 • Planarligninmoleculeslike

estersdemonstrateparticular affinitytothe200face

• Comparisonsbetween stereoisomerssuggestlonger simulationmaybebeneficial

12

Page 13: Molecular Interactions at the Cellulose-Lignin Interface

��

����

1

2

3

4

5

6

CelluloseFace-DependentBindingRelationships

100

G

bindi

ng

(kT

) 0

-

-

-

-

-

-r2 = 0.77 r2 = 0.56 r2 = 0.44

P henols Alcohols Carboxylates ↵O4& O4 O4

55 4O5 Esters 1 5

-2 0 -2 0 -2 0 110 Gbinding (kT) 1-10 Gbinding (kT) 010 Gbinding (kT) 13

Page 14: Molecular Interactions at the Cellulose-Lignin Interface

14

HowDoesBindingScalewithPolymerSize?

• Monomersanddimersarenot perfectmodelsforreallignin

• Drawfromestablishedlignin polymerlibraries

• Determine ligninbinding affinity

Page 15: Molecular Interactions at the Cellulose-Lignin Interface

UnbiasedLigninContactstoCellulose

15

Page 16: Molecular Interactions at the Cellulose-Lignin Interface

TechnicalChallenges

• Bindingisspontaneousand irreversibleontypicalMD timescalesforlargerlignin

• Usereplicaexchangeumbrella samplingonacontact-number reactioncoordinatetoestimate binding free energy

16

Page 17: Molecular Interactions at the Cellulose-Lignin Interface

SurfaceAreaComparison

• Contactnumberasdefinedisa strongproxyforcontactsurface areabetweenligninandcellulose

16.0 kDa lignin polymer 1200 200

110

1-10 1000 010

800

600

400

200

0

0 500 1000 1500 A2) 17 Lignin-Cellulose Contact Area (˚

Lig

nin

-Cel

lulo

se C

onta

cts

Page 18: Molecular Interactions at the Cellulose-Lignin Interface

BindingFreeEnergyProfiles

18

Page 19: Molecular Interactions at the Cellulose-Lignin Interface

SizeDependenceofLignin-CelluloseInteractions

• Bindingfreeenergygrows withthelogarithmofthe ligninmass

• Trendisweak, highly inconsistent

19

• Bindingfreeenergygrows directlywiththenumberof contactspresentatthefree energy minimum

• Slopesareconsistentacross faces

CelluloseFace 200 0.0111 110 0.0083 1-10 0.0107 010 0.0107

Page 20: Molecular Interactions at the Cellulose-Lignin Interface

Summary

• Bindingstrengthquantificationcaninformligninmodification • Ligninrelatedcompoundsprefer tobindtohydrophobic cellulose

facesbyaboutafactorof2 • Mayberelatedtothe“flatness”ofthe200face, whichfits

wellwithplanararomaticrings, creatingmorenonspecific interactionsites

• Lignincontactnumber/contactareaismoreimportantthan polymersizeindeterminingbindingstrength • Ligninagglomerationisnotconsidered, butwouldlikely

additivelyincreasebindingstrength 20

Page 21: Molecular Interactions at the Cellulose-Lignin Interface

GreggBeckham MichaelCrowley

Questions?

www.nrel.gov

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.