module b2: material substitution

54
Module B2: Material Substitution AAE-E3120 Circular Economy for Energy Storage Prof. Annukka Santasalo-Aarnio Valence band Fermi level Conduction band Energy

Upload: others

Post on 15-Feb-2022

25 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Module B2: Material Substitution

Module B2: MaterialSubstitution

AAE-E3120 CircularEconomy for Energy Storage

Prof. Annukka Santasalo-Aarnio

Valence band

Fermi level

Conduction band

Ener

gy

Page 2: Module B2: Material Substitution

Learning outcomes

• Recognize the material choice effect to degradationmechanisms of the system

• What are the frame of active materials we can select?

• Develop new design for recycling approach for energy storageapplication and justify with scientific argumentation

• High activity (how to ensure that with active material selection?)

Page 3: Module B2: Material Substitution

Active materials- In electrochemicalsystems

Why have we selected problematicmaterials for the active materials?

H+

H+

ActiveMaterials

Page 4: Module B2: Material Substitution

Challenged with active materials

Currentmaterials

Cost

Rareelements Degradation

Dissolution

Corrosion

Stability Low activity

Hazardmaterials

Development for active materials

Page 5: Module B2: Material Substitution

Electrochemical cell

Electrode Electrode

Electrolyte

e-e-

e-

e-

Page 6: Module B2: Material Substitution

Reaction on two phase boundary

Electrode Electrolyte

SolidLiquid

Page 7: Module B2: Material Substitution

Reaction on two phase boundary

Electrode Electrolyte

SolidLiquid Transport

Page 8: Module B2: Material Substitution

When voltage is applied

Electrode Electrolyte

Double layer

- Ions in the electrolyte(if liquid) will organize

to the electrodesurface and create a

Double Layer

Page 9: Module B2: Material Substitution

Reaction on two phase boundary

Electrode Electrolyte

Diffusionvicinity of the electrode

Page 10: Module B2: Material Substitution

Reaction on two phase boundary

Electrode Electrolyte

Adsorptionto the electrode

Page 11: Module B2: Material Substitution

Reaction on two phase boundary

Electrode Electrolyte

Reaction:electron transfer

e-

Page 12: Module B2: Material Substitution

Reaction on two phase boundary

Electrode Electrolyte

DesorptionFrom the electrode

Page 13: Module B2: Material Substitution

Reaction on two phase boundary

Electrode Electrolyte

DiffusionBack to the bulk

Page 14: Module B2: Material Substitution

Active materials- Requirement forcatalyst materials

Why have we selected problematicmaterials for the active materials?

Valence band

Fermi level

Conduction band

Ener

gy

EF

Page 15: Module B2: Material Substitution

Active materials

Lecture JournalWhat is a catalyst?

Electrocatalyst?

Page 16: Module B2: Material Substitution

Active materials

Lecture JournalWhat is a catalyst?

Electrocatalyst?

ElectrocatalystA material working acatalyst in a reactioninvolving an electron

transfer.

Page 17: Module B2: Material Substitution

Metal atoms

Me Me

bonding

untibonding

Page 18: Module B2: Material Substitution

Metal atoms

Me

Me

bonding

untibonding

Me

Me

e- e-

e- e-

e- e-

If there are more electrons on thebonding orbital – the bond is stable

Page 19: Module B2: Material Substitution

Metal Electrode

Valence band

Fermi level

Conduction bandEn

ergy EF

Formed of many metal atoms- > Orbitals incorporate tocontinuous energy bands

Page 20: Module B2: Material Substitution

Metal Electrode

MMFE

Valence band

Fermi level

Conduction bandEn

ergy EF

Me~

Formed of many metal atoms- > Orbitals incorporate tocontinuous energy bands

Work function of a unchargedmetal: The electrical work neededto remove an electron from theFermi level of the metal to vacuum

Page 21: Module B2: Material Substitution

Electrode potential

MMM

Electrode

M Galvani potential

M surface potential

M outer potential (measurable)

Galvani potential:Energy needed to bring a charged particle fromthe vacuum to the inner part of the metal

Page 22: Module B2: Material Substitution

Metal ElectrodeMM

FE Valence band

Fermi level

Conduction band

Ener

gy

Me~

MMe

Me F ~

Uncharged electrodeM

Work function of unchargedelectrode is?

Page 23: Module B2: Material Substitution

Metal ElectrodeMM

FE Valence band

Fermi level

Conduction band

Ener

gy

Me~

MMe

Me F ~

Uncharged electrode

Work function of unchargedelectrode is?

Me

MM F

Page 24: Module B2: Material Substitution

Metal ElectrodeMM

FE Valence band

Fermi level

Conduction band

Ener

gy

Me~

MMe

Me F ~

Uncharged electrode

Work function of unchargedelectrode is?

Me

MM F

Work function of a metal effects

- Surface potential -> Adsoprtion of molecules on the electrode

Page 25: Module B2: Material Substitution

Work Function

Me

MM F

Work function of a metal effects

- Surface potential -> Adsoprtion of molecules on the electrode

Different metals

(eV)Pt 6.351

Au 5.101

Zn 4.31

D. R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 80th ed., CRC Press, Boca Raton 1999/2000.

Page 26: Module B2: Material Substitution

Work Function – how that effectsperformance?

J. Zhang et al. Electrochem. Commun. 9 (2007) 1298.

/eV

Pd 5.0

Pt 6.35

Page 27: Module B2: Material Substitution

Surface orientationCrystalline structures

(eV)Pt(100) 5.821

Pt(110) 5.852

Pt(111) 6.071

1) M. Salmerón et al. Phys. Ref. B 28 (1983) 6758.2) D. R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 80th ed.,

CRC Press, Boca Raton 1999/2000.

E. Sairanen et al. /Applied Catalysis B:Environmental 148–149(2014) 11

Methanol (solid line), 2-Propanol (dashed line) and 50/50 mixture(thin line) oxidation in 0.1 M HClO4 electrolyte on different surfaceorientations.

A. Santasalo et al. Electrochem. Acta 54 (2009) 6576.

Page 28: Module B2: Material Substitution

Work Function – how to modify?• Alloying metals effects the work function of the

electrode

Anna Zielińska-Jurek, Journal of NanomaterialsVolume (2014), http://dx.doi.org/10.1155/2014/208920

Page 29: Module B2: Material Substitution

Work Function – performance?

Ethanol oxidation in alkaline media (1 M KOH) on different

catalyst. Au/C is gold nanoparticle catalyst on carbon support.

Lecture Journal

What would be the bestcatalyst for this particular

reaction?

A. Geraldes et al. Electrochimica Acta 111 (2013) 455.

Page 30: Module B2: Material Substitution

How to interpret the catalystmaterial data?

In electrochemical cell:25 ºC0.1 M HClO4 + 1 M MeOH

A. Santasalo-Aarnio et al. International Journal of Hydrogen Energy, 37 (2012) 3415-3424.

3 Electrode set up:To study individual electrode reaction

Page 31: Module B2: Material Substitution

How to interpret the catalystmaterial data?

In electrochemical cell:25 ºC0.1 M HClO4 + 1 M MeOH

Single cell fuel cell:70 ºC1 M MeOH

A. Santasalo-Aarnio et al. International Journal of Hydrogen Energy, 37 (2012) 3415-3424.

3 Electrode system(anode reaction)

2 Electrode system(anode + cathode)

Page 32: Module B2: Material Substitution

Catalyst example:Direct Methanol FuelCell

H+

H+

e–e–

Total: CH3OH + 3/2 O2 CO2 + 2 H2O

Page 33: Module B2: Material Substitution

Example: Direct Methanol FuelCell

H+

H+

e–e–

CH3OH + H2O

CO2 + 6 H+ + 6 e–

O2 + 4 H+ + 4 e–

2 H2O

Total: CH3OH + 3/2 O2 CO2 + 2 H2O

Page 34: Module B2: Material Substitution

Electro-oxidation of methanolEl

ectro

de P

oten

tial

+

-

LUMO

Organic compound

HOMO

CB

EF

VB

Metal

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

1

2

3

4

5

6

j / m

A cm

-2

E / V vs. NHE

Page 35: Module B2: Material Substitution

Electro-oxidation of methanol

Elec

trode

Pot

entia

l

+

-

LUMO

Organic compound

HOMO

CB

EF

VB

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

1

2

3

4

5

6

j / m

A c

m-2

E / V vs. NHE

Page 36: Module B2: Material Substitution

Electro-oxidation of methanolEl

ectro

de P

oten

tial

+

-

LUMO

Organic compound

HOMOEF

CB

VB

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

1

2

3

4

5

6

j / m

A c

m-2

E / V vs. NHE

Page 37: Module B2: Material Substitution

Electro-oxidation of methanolEl

ectro

de P

oten

tial

+

-

LUMO

Organic compound

HOMOEF

CB

VB0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

1

2

3

4

5

6

j / m

A c

m-2

E / V vs. NHE

Page 38: Module B2: Material Substitution

Electro-oxidation of methanolEl

ectro

de P

oten

tial

+

-

LUMO

Organic compound

HOMOEF

CB

VB0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

1

2

3

4

5

6

j / m

A c

m-2

E / V vs. NHE

Page 39: Module B2: Material Substitution

Oxygen reductionEl

ectro

de P

oten

tial

+

-

LUMO

Oxygen molecule

HOMO

CB

EF

VB

Metal

0.2 0.4 0.6 0.8 1.0

-20

-15

-10

-5

0

j / m

A c

m-2

E / V vs. NHE

Page 40: Module B2: Material Substitution

Oxygen reductionEl

ectro

de P

oten

tial

+

-

LUMO

Oxygen molecule

HOMO

CB

EF

VB

Metal

0.2 0.4 0.6 0.8 1.0

-20

-15

-10

-5

0

j / m

A c

m-2

E / V vs. NHE

Page 41: Module B2: Material Substitution

Oxygen reductionEl

ectro

de P

oten

tial

+

-

LUMO

Oxygen molecule

HOMO

CB

EF

VB

Metal

0.2 0.4 0.6 0.8 1.0

-20

-15

-10

-5

0

j / m

A c

m-2

E / V vs. NHE

Page 42: Module B2: Material Substitution

Oxygen reductionEl

ectro

de P

oten

tial

+

-

LUMO

Oxygen molecule

HOMO

CBEF

VB

Metal

0.2 0.4 0.6 0.8 1.0

-20

-15

-10

-5

0

j / m

A c

m-2

E / V vs. NHE

Page 43: Module B2: Material Substitution

Energy Levels -Batteries

Page 44: Module B2: Material Substitution

Different voltages and chemistriesLithium ion battery (LIB)Positive electrode

CoO2 + Li+ + e- <-> LiCoO2 E0 ~ 3.8 V

Negative electrodeLiC6 + <-> C6 + Li+ + e- E0 ~ 0.1 V

Full reactionCoO2 + LiC6 <-> LiCoO2 + C6 E0 ~ 3.7 V

44

Discharge ->

<- Charge

Page 45: Module B2: Material Substitution

Different voltages and chemistriesLead (Pb) acid batteryPositive electrodePbO2 + 3H+ + HSO4

- + 2 e- <-> PbSO4 + 2 H2O E0 ~ 1.7 V

Negative electrodePb + HSO4

- <-> PbSO4 + H+ + 2e- E0 ~ 0.4 V

Full reactionPbO2 + Pb + 2H2SO4 <-> 2 PbSO4 + H2O E0 ~ 2.1 V

45

Discharge ->

<- Charge

Page 46: Module B2: Material Substitution

How different electrode materials effecton battery voltage

46

A. Manthiram, An Outlook on Lithium Ion Battery Technology – ASC Central ScienceDOI: 10.1021/acscentsci.7b00288

Similarly, the materials ofthe positive and negative

electrodes ->

effect on the batteryvoltage

Page 47: Module B2: Material Substitution

Take a home message

From active materials to achieveHIGH performance,

we must understand their impact on theelectrode reaction.

This possess limitations to entirely changethe materials.

Page 48: Module B2: Material Substitution

Energy Material –ElectrochemicalPotential(how to derive)

MMM Electrode

M Galvani potential

M surface potential

M outer potential (measurable)

Page 49: Module B2: Material Substitution

Electrochemical potential

49

MMM Electrode

M Galvani potential

M surface potential

M outer potential (measurable)

ai

ai

ai Fz ~

Electrochemical potential (ingeneral)

For an electron in a metal phase?

Page 50: Module B2: Material Substitution

Electrochemical potential

50

MMM Electrode

M Galvani potential

M surface potential

M outer potential (measurable)

ai

ai

ai Fz ~

Electrochemical potential (ingeneral)

For an electron in a metal phase

MMe

Me F ~

Page 51: Module B2: Material Substitution

Electrochemical potential

51

MMM Electrode

M Galvani potential

M surface potential

M outer potential (measurable)

ai

ai

ai Fz ~

Electrochemical potential (ingeneral)

For an electron in a metal phase

MMe

Me F ~

Surface and outer potential?

Page 52: Module B2: Material Substitution

Electrochemical potential

52

MMM Electrode

M Galvani potential

M surface potential

M outer potential (measurable)

ai

ai

ai Fz ~

Electrochemical potential (ingeneral)

For an electron in a metal phase

MMe

Me F ~

Surface and outer potential?

MMMe

Me FF ~

Page 53: Module B2: Material Substitution

Electrochemical potential

53

MMM Electrode

M Galvani potential

M surface potential

M outer potential (measurable)

ai

ai

ai Fz ~

Electrochemical potential (ingeneral)

For an electron in a metal phase

MMe

Me F ~

Surface and outer potential?

MMMe

Me FF ~

If the electrode is not charged, outer potential of the metal is 0

Page 54: Module B2: Material Substitution

Electrochemical potential

54

MMM Electrode

M Galvani potential

M surface potential

M outer potential (measurable)

ai

ai

ai Fz ~

Electrochemical potential (ingeneral)

For an electron in a metal phase

MMe

Me F ~

Surface and outer potential?

MMMe

Me FF ~

If the electrode is not charged, outer potential of the metal is 0MM

eMe F ~