modular evolution of tngbss, a new family of ices ......! 1! modular evolution of tngbss, a new...

18
1 Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for their spreading Supplementary materials Supplementary figure legends Figure S1: Diversity of TnGBS1 related ICEs. The annotated genes of nine TnGBS1 related ICEs were aligned and compared by using the Easyfig software (1). Genes are shown as arrows. The genes encoding the DDE transposase are in red. The genes coding for proteins involved in mobilization/conjugation, replication, and surface adhesion are respectively in green, orange and purple. The genes coding for a protein similar to the ClpA ATPase are in pink. Other genes conserved in the nine TnGBS1-like ICEs are in grey and genes specific for one or few ICEs are in white. Figure S2: Diversity of TnGBS2 related ICEs. The annotated genes of 22 TnGBS2 related ICEs were aligned and compared by using the Easyfig software (1). Genes are shown as arrows. The genes encoding the DDE transposase are colored in red. The genes coding for proteins involved in mobilization/conjugation, replication, and surface adhesion are respectively colored in green, orange and purple. Genes specific for one or few ICEs are in white. Figure S3. Alignment of the right and left inverted repeats of TnGBS ICEs. Inverted repeat (IR) sequences were aligned by using CLUSTALW (2) and the Logo generated by using the WebLogo web site (3). ICE names are according to Table 1. Conserved bases are indicated in blue and non conserved ones in red.

Upload: others

Post on 18-Jan-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for

  1  

Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid

replication and conjugation for their spreading

Supplementary materials

Supplementary figure legends

Figure S1: Diversity of TnGBS1 related ICEs. The annotated genes of nine TnGBS1 related

ICEs were aligned and compared by using the Easyfig software (1). Genes are shown as

arrows. The genes encoding the DDE transposase are in red. The genes coding for proteins

involved in mobilization/conjugation, replication, and surface adhesion are respectively in

green, orange and purple. The genes coding for a protein similar to the ClpA ATPase are in

pink. Other genes conserved in the nine TnGBS1-like ICEs are in grey and genes specific for

one or few ICEs are in white.

Figure S2: Diversity of TnGBS2 related ICEs. The annotated genes of 22 TnGBS2 related

ICEs were aligned and compared by using the Easyfig software (1). Genes are shown as

arrows. The genes encoding the DDE transposase are colored in red. The genes coding for

proteins involved in mobilization/conjugation, replication, and surface adhesion are

respectively colored in green, orange and purple. Genes specific for one or few ICEs are in

white.

Figure S3. Alignment of the right and left inverted repeats of TnGBS ICEs. Inverted

repeat (IR) sequences were aligned by using CLUSTALW (2) and the Logo generated by using

the WebLogo web site (3). ICE names are according to Table 1. Conserved bases are indicated

in blue and non conserved ones in red.

Page 2: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for

  2  

Figure S4: Phylogeny of TnGBS1 related conjugative module. Maximum likelihood (ML)

using PhyML on the phylogeny.fr platform (4) was used to infer phylogenetic relationships.

ML bootstrap support was determined using 100 bootstrap replicates. A. relaxase, B. VirB4

and C. VirD4 proteins.

Figure S5: Phylogeny of TnGBS2 related conjugative modules. Maximum likelihood (ML)

using PhyML on the phylogeny.fr platform (4) was used to infer phylogenetic relationships.

ML bootstrap support was determined using 100 bootstrap replicates. A. relaxase, B. VirB4

and C. VirD4 proteins

Figure S6: Schematic representation of TnGBS1 and the integrative plasmid

pSU18::erm-miniTnGBS1. A. Circular form and B. Inserted form of the non replicative

plasmid pSU18::erm-miniTnGBS1. C. Schematic representation of the circular and D. Inserted

copy of TnGBS1. Genes, the pACYC184 origin of replication and inverted repeats (IRs) are

indicated by arrows. The DNA fragment in pSU18::erm-miniTnGBS1 originating from

TnGBS1.1 is colored in orange. Oligonucleotides used for detection and quantification of the

circular form by Q-PCR are indicated by small arrows. O-11, O-12 oligonucleotides were used

to quantify the circular form and O-13, O-14 to quantify gb0410.

Figure S7. Sequences of the insertion sites of TnGBS1 and pSU18::erm-miniTnGBS1.

gbs numbers correspond to the nomenclature of the orthologous genes in strains NEM316.

Numbers of identified insertions per site are indicated on the right for 16 BM110 TCs and 61

and 23 transformants of pSU18::erm-miniTnGBS1 in NEM316 and in BM110, respectively.

Blue letters represent the right extremity of the transposable element (IR-R); Underlined

Page 3: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for

  3  

letters, the sequence duplicated after insertion (DR); Red letters, putative -35 and -10

sequences; Purple letters, putative extended -10 region.

Figure S8: Phylogeny of TnGBS1 and TnGBS2 related conjugative modules and their

association with replication and/or integration modules. A. TnGBS1-like ICEs and related

plasmids. B. TnGBS2-like ICEs and related plasmids and ICEs. Phylogenies of the

conjugative modules correspond to the VirB4 phylogeny of the figures S5B (A) and S6B (B).

The presence of integration modules, DDE transposase or tyrosine recombinase and

replication modules of the RepA_N, RepE (PriCT family) or Rep_3 families (5) are indicated

on the right.

 

Page 4: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for

  4  

   Table  S1.  Bacterial  strains  and  plasmids  used  for  cloning  and  conjugation  assays.  Strains  and  plasmids  

Relevant  genotype  and  resistance  profile  1  or  characteristics  

Reference  or  source  

E.  coli    DH5α     Invitrogen  XL2-­‐Blue     Stratagene  

S.  agalactiae    NEM316   Sequenced  strain,  carries  TnGBS1  and  

TnGBS2  (6)  

WC3/UK21   Blood,  EOD   (7)  1122   Bovine  origin   (8)  2584   Bovine  origin   (8)  CZ183   Bovine  origin   (9)  GMP201   Erm;  NEM316-­‐TnGBS2::erm     (10)  GMP205   Erm;  A909RF-­‐TnGBS1::erm   This  work  GMP212   Erm;  BM110-­‐TnGBS1::erm   This  work  GMP206   Erm;  NEM316-­‐TnGBS1  repE::pG1   This  work  GMP207   Erm;  NEM316-­‐TnGBS2  repA::pG1   This  work  GMP208   Erm,  Tet;  BM110-­‐TnGBS1  repE::pG1   This  work  GMP209   Erm,  NEM316-­‐TnGBS1  repE+::pG1   This  work  GMP210   Erm,  NEM316-­‐TnGBS2  repA+::pG1   This  work  GMP211   Erm,TcR,  BM110  TC  TnGBS1  repE+::pG1   This  work    BM110   Tet;  Isolated  from  neonate  blood  culture   (11)  BM110  RF   BM110  spontaneous  mutant  for  Rif  and  Fus   This  work  A909RF   A909  spontaneous  mutant  for  Rif  and  Fus   (10)  

S.  gallolyticus  UCN34  

 Tet  

 (12)  

S.  pyogenes  BM137  

 Rif,  Fus  

 (13)  

E.  faecalis  JH2-­‐2  

 Rif,  Fus  derivative  of  strain  JH2  

 (14)  

B.  subtilis  168  

 Sequenced  strain  

   (15)  

Plasmids      pSU18   Cm,  pACYC184  derivative   (16)  pS18erm   Cm,  Erm   This  work  pG1   Erm,  thermosensitive  replication   (17)  pTCVerm   Erm,  Km;  oriR  pACYC184,  oriRpAMβ1   (18)  pJIM2246-­‐

Ptet  Cm,  derivative  of  pJIM2246 (19),  inducible  Ptet  promoter  

M-­‐F  Lartigue  unpublished  

1Amp,   Erm,   Fus,   Rif,   Tet,   are   resistance   to   ampicillin,   erythromycin,   fusidic   acid,  rifampicin,  and  tetracycline,  respectively.  

Page 5: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for

  5  

Table  S2:  Oligonucleotides  used  in  this  study  Name   Sequence  5'  =>  3'   Application  

O-­‐1   AAACTGCAGGGCTCCCTTCTTCATGAGATT   pSU-­‐erm::MiniTnGBS1  construction  O-­‐2   CGCGGATCCGATTGAGCGAAAGAGGTAGGG   pSU-­‐erm::MiniTnGBS1  construction  O-­‐3   CGGAATTCCGGTAAACTCTATGTTCAGATACAATTG   Cloning  TnGBS1.1  oriT  region  O-­‐4   CGGGATCCCGATGGTCCGATGTCAATTTC   Cloning  TnGBS1.1  oriT  region  O-­‐5   CTGAAAGAATTCTAATGACCTACTTATTTGAG   Cloning  TnGBS2.1  oriT  region  O-­‐6   ACACAGGATCCCTTATTAAGTATTTGACAGTC   Cloning  TnGBS2.1  oriT  region  O-­‐7   GCTTAGTTCTAATGATCCTTATA   Insertion  upstream  rpsJ  O-­‐8   GATGTCTACCAAACGTTTGTG   Insertion  upstream  rpsJ  O-­‐9   CGTTTATGGACTAACTTATTTGT   Insertion  upstream  gbs0411  O-­‐10   GTTTTTCCCAATCCATCAACAA   Insertion  upstream  gbs0411  O-­‐11   ACTGTCAAGGGCTGAGCAAG   Circular  form  of  TnGBS1.1  and  Q-­‐PCR  O-­‐12   TTTCTCCGTTCTCCCCATAA   Circular  form  of  TnGBS1.1  and  Q-­‐PCR  O-­‐13   GGGAGCTGAGACGATGAGTC   Q-­‐PCR,  quantification  gbs0410  O-­‐14   CCGACCAAGTGTCTGGAGAT   Q-­‐PCR,  quantification  gbs0410  O-­‐17   GGAACATTATGAAGCCGATGA   Q-­‐PCR,  quantification  polA  O-­‐18   TCAAACTCAGCAACTCCCTTT   Q-­‐PCR,  quantification  polA  O-­‐19   CGATTTTCTCGTTCTCTTAAGCTAT   Q-­‐PCR,  quantification  circular  form  TnGBS2.1  O-­‐20   CGTTCTCTTAGGCGACAAGG   Q-­‐PCR,  quantification  circular  form  TnGBS2.1  O-­‐21   TGAGGATAGTGGTTCACGACA   Q-­‐PCR,  quantification  gbs1118  O-­‐22   AATCCTGCTGGAGCGTATTG   Q-­‐PCR,  quantification  gbs1118  O-­‐23   CCGGAATTCTAAGTCTATCTGATTTATACAGTTAC   repA  inactivation  by  pG1  insertion  O-­‐24   CGCGGATCCTTACTGTAAAAGATGACTGTAGTCT   repA  inactivation  by  pG1  insertion  O-­‐25   CGGAATTCTAGGTGCTATCAGAGCCAGCTTA   repE  inactivation  by  pG1  insertion  O-­‐26   CGCGGATCCCTATCAGAAACTCGTCCTGAGAG   repE  inactivation  by  pG1  insertion  O-­‐27   ATAAGAATGCGGCCGCGTTGAAAGTGGGTGCTTGACA   Cloning  of  TnGBS2  repA  gene  in  pJIM2246-­‐Ptet  O-­‐28   TTTCCCCGCGGTTCATCTTGTAACATGTTATTCCT   Cloning  of  TnGBS2  repA  gene  in  pJIM2246-­‐Ptet  O-­‐29   ATAAGAATGCGGCCGCGATGCTAGTATTTAAGAAAGAGA   Cloning  of  TnGBS1  repE  gene  in  pJIM2246-­‐Ptet  O-­‐30   TTTCCCCGCGGTGTCTTCAGTTACCCCAGCT   Cloning  of  TnGBS1  repE  gene  in  pJIM2246-­‐Ptet  O-­‐31   ATTATATCATTGATAGAGTTATTTG   pJIM2246-­‐Ptet  forward  sequencing  primer  O-­‐32   GCAGTGAGCGCAACGCAAT   pJIM2246-­‐Ptet  reverse  sequencing  primer  O-­‐33   CCGGAATTCTAAAACTGGCGAGAATGAAGGTAA   pG1  insertion  downstream  TnGBS2  repA  gene  O-­‐34   CGCGGATCCTTAACGCATAACGCCAATTTGATC   pG1  insertion  downstream  TnGBS2  repA  gene  O-­‐35   CCGGAATTCTAAAAGGCTATCAGAGAAGAATTGA   pG1  insertion  downstream  TnGBS1  repE  gene  O-­‐36   CGCGGATCCTTAATCATTGATTGATAATCGTTTTCT   pG1  insertion  downstream  TnGBS1  repE  gene  

Page 6: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for

  6  

   Table  S3:  TnGBS  related  ICEs  ICE  name1   Species  -­‐  Strain   GC%  ICE   GC%  host   3insertion  site   lenght  kb   accession  number  

TnGBS1  -­‐  like              TnGBS1  a  to  c   S.  agalactiae  NEM316*4   37.6%   35.6%   gbs0411-­‐gbs0741-­‐gbs0968   47   NC_004368  2TnGBS1.2   S.  agalactiae  ATCC  13813*   -­‐   34.9%   galE   -­‐    AEQQ01000019      TnGBS1.3   S.  agalactiae  FSL  S3-­‐026*   38.5%   36.1%   rpsU   46   AEXT01000007  TnGBS1.4  a  to  b   S.  agalactiae  FSL  S3-­‐026   38.5%   36.1%   rpoB,  polC   50   AEXT01000002,  8  TnSgallo1.1   S.  gallolyticus  ATCC  43143   38%   37.5%   tRNA-­‐Cys   51   AP012053    TnSpneum1.1   S.  pneumoniae  GA17328   37.1%   39.7%   5NI   46   AGPH01000017  TnSspX1.1   S.  sp.  2_1_36FAA*   40.8%   40.5%   glmS   40   NZ_GG704942    TnSsporal1.1   S.  sp.  oral  taxon  071  str.  73H25AP   36.9%   41.5%   rpsO   46   NZ_AEEP01000006  2TnSsang1.1   S.  sanguinis  SK1058*   -­‐   43.1%   pyrG     -­‐    AFBF01000017    TnSang1.1   S.  anginosius  F0211   34.6%   37.6%   murF   52   AECT01000063  TnScanis1.1   S.  canis  FSL  Z3-­‐227   -­‐   39.7%   rpmH   -­‐   NZ_AIDX01000002.1  2TnSinf1.1   S.  infantis  SK970*   -­‐   39.4%   rpsL   -­‐   AFUT01000004-­‐08  TnSinf1.2   S.  infantis  X   37.1%   39.0%   rpoE   44   AFUQ01000001  TnSpast1.1   S.  pasteurianus  ATCC  43144   -­‐   37.4   rpsP   -­‐   NC_015600    TnSinter1.1   S.  intermedius  JTH08   34.4%   37.7%   purR   47   NZ_AIDX01000002.1  TnSuri1.1   S.  urinalis  2285-­‐97     30%   34.1%   rodA       44   AEUZ01000004  2TnSsob1.1   S.  sobrinus  TCI-­‐54   -­‐   43.5%   eno   -­‐   AGGH01000002  2TnSsob1.2   S.  sobrinus  TCI-­‐89   -­‐   43.5%   rpmV   -­‐   AGGN01000040  2TnSsob1.3   S.  sobrinus  TCI-­‐118   -­‐   43.5%   rpmV   -­‐   AGHN01000009  2TnSsob1.4   S.  sobrinus  TCI-­‐342   -­‐   43.5%   dltA   -­‐   AGGT01000092  2TnSsob1.5   S.  sobrinus  TCI-­‐384   -­‐   43.5%   rpmV   -­‐   AGHI01000004  2TnSsob1.6   S.  sobrinus  TCI-­‐61   -­‐   43.5%   NI   -­‐   AGGJ01000234  2TnLsal1.1   L.    salivarius  ATCC11741   -­‐   32.5%   NI   -­‐   ACGT01000030    

Page 7: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for

  7  

 ICE  name1   Species  -­‐  Strain   GC%  ICE   GC%  host   3insertion  site   lenght  kb   accession  number  TnGBS2  -­‐  like              TnGBS2   S.  agalactiae  NEM316*   38.0%   35.6%   xpt   34   NC_004368  2TnGBS2.2   S.  agalactiae  ATCC  13813*   -­‐   34.9%   glyQ   -­‐   AEQQ01000097-­‐98  TnGBS2.3   S.  agalactiae  Wc3   38.1%   -­‐   fbsA   33   This  study  TnGBS2.4   S.  agalactiae  CZ183   38.3%   -­‐   guaC   29   This  study  TnGBS2.5   S.  agalactiae  1122   34.4%   -­‐   rpmH   38   This  study  TnGBS2.6   S.  agalactiae  2584   34.5%   -­‐   rplJ   45   This  study  TnGBS2.7   S.  agalactiae  FSL  S3-­‐026*   38%   36.1%   guaC   34   AEXT01000007  TnSinf2.1   S.  infantis  SK970*   39.1%   39.4%   rpmV   32   AFUT01000008  2TnSinfta2.1   S.  infantarius  ATCC  BAA-­‐102   -­‐   37.6%   rpmH     NZ_ABJK02000018    TnSgallo2.1   S.  gallolyticus  UCN34   36.7%   37.6%   rpmB   41   NC_013798    TnSgallo2.2   S.  gallolyticus  ATCC  BAA-­‐2069*   38.8%   37.8%   rpmH   36   NC_015215  TnSgallo2.3   S.  gallolyticus  ATCC  BAA-­‐2069*   39.2%   37.8%   NI   30   NC_015215  TnSoral2.1   S.  oralis    ATCC  35037   39.3%   40.3%   NI   29   NZ_ADMV01000022  TnSoral2.2   S.  oralis  SK255   39.6%   41.5%   HMPREF9968_1062   29   AFNM01000055    TnSsporal2.1   S.  sp.  oral  taxon  071  str.  73H25AP   39.1%   41.5%   glyQ   31   NZ_AEEP01000011  TnSspX2.1   S.  sp.  2_1_36FAA*   41.6%   40.5%   rpsF   -­‐   NZ_GG704942    TnSmit2.1   S.  mitis  SK597   37.6%   40.2%   pyrF   30   NZ_AEDV01000027  2TnSmit2.2   S.  mitis  SK1073   -­‐   40.6%   pyrF   -­‐   AFQT01000042    TnSsang2.1   S.  sanguinis  ATCC  49296   39.3%   41.6%   rpmB   32   NZ_AEPO01000010    TnSsang2.2   S.  sanguinis  SK1059   38.9%   42.9%   rpsB   25   AFFM01000023  2TnSsang2.3   S.  sanguinis  SK49   -­‐   42.9%   relA2   -­‐    AFFO01000015-­‐16  TnSsang2.4   S.  sanguinis  SK72   41.7%   42.3%   pyrG     25   AEXV01000011        2TnSsang2.5   S.  sanguinis  ATCC29667   -­‐   42.9%   rpsB   -­‐   AFQA01000023-­‐24  TnSsang2.6   S.  sanguinis  SK340   39.0%   42.0%   rpsB   25   AFQB01000011  TnSsang2.7   S.  sanguinis  SK1058*   -­‐   43.1%   pyrG     -­‐    AFBF01000017    TnSsui2.1   S.  suis  D12   40.8%   41.3%   rplU   33   CP002644    TnScons2.1   S.  constellatus  SK1060   38.2%   38.1%   rpmH   25   NZ_AFUP01000009    

Page 8: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for

  8  

ICE  name1   Species  -­‐  Strain   GC%  ICE   GC%  host   3insertion  site   lenght  kb   accession  number  2TnSict2.1   S.  ictaluri  707-­‐05*   -­‐   39.2%   ABC  transporter     -­‐   NZ_AEUX02000006  2TnSict2.2   S.  ictaluri  707-­‐05*   -­‐   39.2%   rimP   -­‐   NZ_AEUX02000007    TnSang2.1   S.  anginosus  SK52   37.8%   39.1%   NI   33   NZ_AFIM01000003  TnSzoo2.1   S.  equi  subsp.  zooepidemicus  ATCC  

35246  39.2%   41.6%   rpmB   32   CP002904  

TnSsob2.1   S.  sobrinus  TCI-­‐396   41.1%   43.0%   leuA   27   AGHL01000006  2TnSsob2.2   S.  sobrinus  TCI-­‐345   -­‐   43.3%   cspR   -­‐   AGGU01000185  2TnSsob2.3   S.  sobrinus  TCI-­‐366   -­‐   43.6%   leuA   -­‐   AGHB01000008  2TnSsob2.4   S.  sobrinus  TCI-­‐377   -­‐   43.4%   NI   -­‐   AGHG01000295  6TnSdys2.1   S.  dysgalactiae  subsp.  equisimilis  

GGS_124  35.6%   39.6%   SDEG_1257  ABC  transporter   6   NC_012891.1  

6TnSdys2.2   S.  dysgalactiae  subsp.  equisimilis  ATCC  12394  

35.7%   39.5%   SDE12394_06580   6   AFUL01000001  

1  TnGBS  names  include  the  abbreviation  of  the  species  followed  by  1  or  2  which  indicates  whether  the  ICE  is  related  to  TnGBS1  or  TnGBS2,  respectively  and  by  an  order  number  2  The  TnGBS  sequence  is  incomplete  and/or  split  in  several  contigs.  3  The  gene  name  corresponds  to  the  promoter  upstream  of  which  the  ICE  is  inserted.  4  Strains  containing  more  than  one  TnGBS-­‐ICE  are  indicated  by  a  *  5  NI:  not  identifiable  6These  two  elements  correspond  to  simple  transposons.  

Page 9: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for

REFERENCES

1.   Sullivan   MJ,   Petty   NK,   Beatson   SA.   2011.   Easyfig:   a   genome   comparison  visualizer.  Bioinformatics  27:1009-­‐1010.  

2.   Chenna  R,  Sugawara  H,  Koike  T,  Lopez  R,  Gibson  TJ,  Higgins  DG,  Thompson  JD.   2003.   Multiple   sequence   alignment   with   the   Clustal   series   of   programs.  Nucleic  Acids  Res.  31:3497-­‐3500.  

3.   Crooks  GE,  Hon  G,  Chandonia  JM,  Brenner  SE.  2004.  WebLogo:  a  sequence  logo  generator.  Genome  Res  14:1188-­‐1190.  

4.   Dereeper  A,  Guignon  V,  Blanc  G,  Audic  S,  Buffet  S,  Chevenet  F,  Dufayard  JF,  Guindon   S,   Lefort   V,   Lescot   M,   Claverie   JM,   Gascuel   O.   2008.   Phylogeny.fr:  robust  phylogenetic  analysis  for  the  non-­‐specialist.  Nucleic  Acids  Res.  36:W465-­‐469.  

5.   Jensen   LB,   Garcia-­‐Migura   L,   Valenzuela   AJ,   Lohr  M,   Hasman   H,   Aarestrup  FM.  2010.  A  classification  system  for  plasmids  from  enterococci  and  other  Gram-­‐positive  bacteria.  J  Microbiol  Methods  80:25-­‐43.  

6.   Glaser  P,  Rusniok  C,  Buchrieser  C,  Chevalier  F,  Frangeul  L,  Msadek  T,  Zouine  M,  Couve  E,  Lalioui  L,  Poyart  C,  Trieu-­‐Cuot  P,  Kunst  F.  2002.  Genome  sequence  of   Streptococcus   agalactiae,   a   pathogen   causing   invasive   neonatal   disease.  Mol.  Microbiol.  45:1499-­‐1513.  

7.   Jones  N,  Bohnsack   JF,  Takahashi   S,  Oliver  KA,   Chan  MS,  Kunst   F,  Glaser  P,  Rusniok  C,   Crook  DW,  Harding  RM,  Bisharat  N,   Spratt  BG.   2003.  Multilocus  sequence   typing   system   for   group   B   Streptococcus.   J.   Clin.   Microbiol.  41:2530-­‐2536.  

8.   Haenni  M,  Saras  E,  Bertin  S,  Leblond  P,  Madec  JY,  Payot  S.  2010.  Diversity  and  mobility   of   integrative   and   conjugative   elements   in   bovine   isolates   of  Streptococcus   agalactiae,  S.   dysgalactiae   subsp.   dysgalactiae,   and  S.   uberis.   Appl.  Environ.  Microbiol.  76:7957-­‐7965.  

9.   Sorensen  UB,  Poulsen  K,  Ghezzo  C,  Margarit  I,  Kilian  M.  2010.  Emergence  and  global  dissemination  of  host-­‐specific  Streptococcus  agalactiae  clones.  MBio  1.  

10.   Brochet  M,  Da   Cunha  V,   Couve   E,   Rusniok   C,   Trieu-­‐Cuot   P,   Glaser   P.   2009.  Atypical  association  of  DDE  transposition  with  conjugation  specifies  a  new  family  of  mobile  elements.  Mol.  Microbiol.  71:948-­‐959.  

11.   Stalhammar-­‐Carlemalm  M,   Stenberg  L,   Lindahl  G.   1993.  Protein   rib:   a  novel  group  B  streptococcal  cell  surface  protein  that  confers  protective  immunity  and  is   expressed   by  most   strains   causing   invasive   infections.   J   Exp  Med  177:1593-­‐1603.  

12.   Rusniok  C,  Couve  E,  Da  Cunha  V,  El  Gana  R,  Zidane  N,  Bouchier  C,  Poyart  C,  Leclercq   R,   Trieu-­‐Cuot   P,   Glaser   P.   2010.   Genome   sequence   of   Streptococcus  gallolyticus:   insights   into   its   adaptation   to   the   bovine   rumen   and   its   ability   to  cause  endocarditis.  J.  Bacteriol.  192:2266-­‐2276.  

13.   Horodniceanu   T,   Buu-­‐Hoi   A,   Le   Bouguenec   C,   Bieth   G.   1982.   Narrow   host  range  of  some  streptococcal  R  plasmids.  Plasmid  8:199-­‐206.  

14.   Jacob  AE,  Hobbs  SJ.  1974.  Conjugal  transfer  of  plasmid-­‐borne  multiple  antibiotic  resistance  in  Streptococcus  faecalis  var.  zymogenes.  J.  Bacteriol.  117:360-­‐372.  

15.   Kunst  F,  Devine  K.   1991.  The  project   of   sequencing   the   entire   Bacillus   subtilis  genome.  Res.  Microbiol.  142:905-­‐912.  

Page 10: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for

  10  

16.   Martinez   E,   Bartolome   B,   de   la   Cruz   F.   1988.   pACYC184-­‐derived   cloning  vectors   containing   the   multiple   cloning   site   and   lacZ   alpha   reporter   gene   of  pUC8/9  and  pUC18/19  plasmids.  Gene  68:159-­‐162.  

17.   Biswas  I,  Gruss  A,  Ehrlich  SD,  Maguin  E.  1993.  High-­‐efficiency  gene  inactivation  and  replacement  system  for  gram-­‐positive  bacteria.  J.  Bacteriol.  175:3628-­‐3635.  

18.   Poyart  C,  Trieu-­‐Cuot  P.  1997.  A  broad-­‐host-­‐range  mobilizable  shuttle  vector  for  the  construction  of  transcriptional  fusions  to  beta-­‐galactosidase  in  gram-­‐positive  bacteria.  FEMS  Microbiol.  Lett.  156:193-­‐198.  

19.   Renault  P,  Corthier  G,  Goupil  N,  Delorme  C,  Ehrlich  SD.  1996.  Plasmid  vectors  for   gram-­‐positive   bacteria   switching   from   high   to   low   copy   number.   Gene  183:175-­‐182.  

Page 11: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for

Figure  S1  

TnSgal1.1  

TnSinf1.2  

TnSpneu1.1  

TnSsporal1.1  

TnSspX1.1  

TnGBS1.3  

TnGBS1  

TnGBS1.4  

TnSang1.1  

500  bp  

Iden2ty  %  20        to      100  

Page 12: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for

Figure  S2  

Iden-ty  %  20        to      100  

500  bp  

TnGBS2  

TnGBS2.7  

TnSzoo2.1  

TnGBS2.3  

TnGBS2.4  

TnSang2.1  

TnSgallo2.1  

TnSsui2.1  

TnGBS2.5  

TnGBS2.6  

TnSgallo2.3  

TnSgallo2.2  

TnSoral2.2  

TnSsporal2.1  

TnSoral2.1  

TnSsang2.1  

TnSmit2.1  

TnScons2.1  

TnSsang2.6  

TnSspX2.1  

TnSsang2.4  

Page 13: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for

IR‐R  IR‐L GTATGCGGTAGAATTTTTTAGAAT----ATTCTAAAAACTCTTACCACTTAC GTATGCGGTAGAATTTTTTAGAAT----TTTCTAAAAACTCTTACCACTTAC GTATGCGGTAGAATTTTTTAGAAC----TTTCTAAAAACTCTTACCACTTAC GTATGCGGTAGATTTTTTTAGAAC----TTTCTAAAAACTCTTACCACTTAC GTATGCGGTAGAATTTTCTAGAAC----TTTCTAAAAACTCTTACCACTTAC GTATGTGGTAGAATTTTTTAGAAT----ATTCTAAAAACTCTTACCACTTAC GTATGTGGTAGAATTTTTTAGAAT----TTTCTAAAAACTCTTACCACTTAC GTATGTGGTAGAATTTTTTAGAAT----ATTCTAAAAACTCTTACCACTTAC GTATGTGGTAGAATTTTTTAGAAA----TTTCTAAAAACTCTTACCACTTAC GTATGTGGAAGAATTTTTTAGAAT----ATTCTAAAAACTCTTACCACTTAC GTATGTGGTAAAATTTTTTAGAAT----ATTCTAAAAACTCTTACCACTTAC GAATGTGGTAAACTTTTGTAGAAA----ATTCTACAAACTCTTACCACTTAG GAATGTGGTAAACTTTTGTAGAAA----ATTCTACAAACTCTTACCACTTAG

TnGBS1.4 TnSpneu1.1 TnSinf1.1 TnSinf1.2

TnSsporal1.1 TnGBS1

TnGBS1.2 TnGBS1.3

TnSspX1.1 TnSuri1.1

TnSgallo1.1 TnSinter1.1

TnSang1.1

Figure S3 

consensus 

GTTTGTGTCTAAATTTTTGGGAAT----TTTCCCAAAACTCTAGACACTTAG GTTTGTGTCTAAATTTTTGGGAAT----TTTCCCAAAACTCTAGACACTTAC GTTTGTGTCTAAATTTTTGGGAAT----TTTCCCAAAACTCTAGACACTTAG GTTTGTGTCTAAATTTTTGGGAAT----TTTCCCAAAACTCTAGACACTTAC GTTTGTGTCTAAATTTTTGGGAAA----TTTCCCAAAACTCTAGACACTTAC GTATGTGTCTAAATTTCTGGGAAA----TTTCCCAAAACTCTAGACACTTAC GTATGTGTCTAAATTTCTGGGAAA----TTTCCCAAAACTCTAGACACTTAC GTATGTGTCTGAATTTTTGGGAAT----TTTCCCGAAACTCTAGACACTTAC GTATGTGTCTGAATTTTTGGGAAT----TTTCCCGAAACTCTAGACACTTAC GTATGTGTCTGAATTTTCGGGAAA----TTTCCCGAAACTCTAGACACTTAC GTTTGTGTCTGAATTTTTGGGAAA----TTTCCCGAAATTCTAGACACTTAC GTTTGTGTCTAAATTTTTGGGAAA----TTTCCCGAAACTCTAGACACTTAC GTATGTGTCTTTTTTTCTGGGAAT----TTTCCCAAAACTCTAGACACTTAC GTATGTGTCTTTTTTTCTGGGAAT----TTTCCCAAAACTCTAGACACTTAC GTATGTGTCTTTTTTTCTGGGAAA----TTTCCCAAAACTCTAGACACTTAC GTATGTGTCTGAATTTTTGAGAAG----TTTCTCAAAACTCTAGACACTTAC GTATGTGTCTGAATTTTTGAGAAG----TTTCTCAAAACTCTAGACACTTAC GTATGTGTCTGAATTTTTGAGAAG----TTTCTCAAAACTCTAGACACTTAC GTATGTGTCTCAATTTTTGAGAAG----TTTCTCAAAACTCTAGACACTTAC GTATGTGTCTCAATTTTTGAGAAG----TTTCTCAAAACTCTAGACACTTAC GTTTGTGTCTATTTTTTTGAGAAT----ATTCTCAAAAATCTATACACTTAC GTTTGTGTCTATTTTTTTGAGAAT----ATTCTCAAAAATCTATACACTTAC GTTTGTGTCTATTTTTTTGAGAAT----ATTCTCAAAACTCTAGACACTTAC GTATGTGTCGCGATTTTTGAGAAA----TTTCTCAAAACTCTAGACACTTAC GTATGTGTCTTATTTTTTGAGAAT----TTTCTCAAAACTCTAGACACTTAC GTATGTGTCTCAATTTTTGTGAAG----TTTCACAAAACTCTAGACACTTAC GAATGTGTATATTTTTTTGAGAAA----ATTCTCAAAACTTTATACACTTAC GAATGTGTCTGTTTTTGGGAGAAA----ATTCTCCCAATTTGGGACACATAC

TnSoral2.1 TnSoral2.2

TnSsporal2.1 TnSsang2.1 TnSsui2.1 TnSict2.1 TnSict2.2

TnGBS2 TnGBS2.7 TnGBS2.3 TnGBS2.4

TnSang2.1 TnSgallo2.1 TnSgallo2.3 TnSgallo2.2 TnSsang2.2 TnSsang2.5 TnSsang2.6 TnSsang2.3 TnSsang2.4

TnGBS2.2 TnGBS2.5

TnSinfanta2.1 TnSmit2.1 TnSsob2.1 TnSzoo2.1 TnGBS2.6

TnScons2.1

consensus 

Page 14: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for

Figure S4 

Page 15: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for

Figure S5 

Page 16: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for
Page 17: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for

Targeted promoter Insertion site pSU::MiniTnGBS1   TC Total NEM316 BM110 BM110

gbs0057 ­ rpsJ ACATACAATAAAAAAATAATGCTTGCGTGTGCTGTTTTTTTTTGATATCATATACTGG 2 2 gbs0104 ­ pyrF ACATACTTTTTGCATAAAAACTTTGTAAAACGTTTTAAATTATGGTAAACTAAACTGT 1 1 gbs0125 ­ rpsL ACATACATTTTCAGTAAAAAACTAGCATTTTTTATAGAATTGTGCTAGAATTAACATG 1 1 gbs0154 ­ tyrS ACATACTCAGATTTAATATAACTTGCATATCCTAAAGAGTTTTGATATAGTTGACATT 1 1 gbs0156 ­ ribD ACATACTCAAGAGAATAGAACTTGATTTATTGGTAAAAATAAGTTATAATGTATGTAA 2 2 1 5 gbs0258 ­ glyQ ACATACAGAATAAGATAAATAGTAGACATAAAAGTCATTTTTTGTTATACTGTCTCAG 2 1 3 gbs0301 ­ gmk ACATACAAAATAATAGGAGACCTTGAAAAAAAGGTTTCTTTTTGTTAAACTAATGAGA 5 5 gbs0353 ACATACCAGAATCAGCAAACTGTTGGAAGACAGAGATATTTCTGGTATAATATCTCTA 1 1 gbs0411 ACATACAAAATAAAGAAGATGATTGACTAAAGCCTATAAAACAAGTAAAATAAGAGGAA 1 1 gbs0443 ­ rnpA ACATACTAACATTAGAAAAGAATTGAGTCTTTTAGGTTATTTATGGTATAATAAAACCA 1 1 2 gbs0494 ACATACCGATGTAGAAAGTGACTTTACTTATTTTTAAAAAACTGGTATAGTTTTATTTG 2 2 gbs0553 ­ pyrD ACATACCATTATCATTATTTTCTTGCAGCTCTATTAATCAAGTGATAAAATAGTAAAAA 1 1 gbs0615 ACATACCCATATATGATATCGCTTTCATTCTTATGTTTTTTGTGATAAACTAATTAAAG 1 1 gbs0767 ­ ribD ACATACAAACACATTATTTTTATTGACAAATAAAAATGAGTTTAGTAAAATAACTGTCA 4 2 6 gbs0772 ACATACATAGACTTTTCACCATTTGAAAATAAGGGTAGAAAAAGGTATAATTAACAATT 1 1 gbs0809 ACATACAGTTTATTGAAAGCGCTTGACAAGATTAGTAAGAAATGATAAAATTAAGACGT 1 1 gbs0838 ACATACGTTAGAAATAAAACACTTGCTTTTTCCATTCTTTTTTTATATGCTATTACCAT 1 1 gbs0842 ACATACAGAAATTAATTATAGGTATTTTTAGTCTAATTATTATAGCGATTCTTGCTTGG 1 1 gbs0910­gbs0911 ACATACTTTTAAAAGCATTATCTTTATCTTTCATCTGTTATTTGTTAAAATATCCTAAA 1 1 gbs0968 ACATACAAAATGTCTATTTAAATAGACATTTTTATTTTTGTCTGCTATAATAGACAAAA 2 1 3 gbs1031 ACATACTAAATTGGAAAAAAGATAGTCAAACTCTTTAATTTTTTGTATAATAGTCTCTA 1 1 gbs1082 ­ pyrF ACATACATAATTTAGTATTTATTTGACAAAATGATTGTAAACTTGTAGAATACCTACAA 1 1 1 3 gbs1111 ACATACGCCATTGAAAACAGTGTGTACTTTTTCACAACATTATGTTACAATGATGCCCA 1 1 gbs1118­gbs1117  ACATACTTCCTTTGCTTCAGTCTTGACCCTATTGCGGTTTTTATGCTACAATACTGTTT 1 1 gbs1223 ACATACATATCAGTTTAGTTAGTTGACAATAATAATAATATAATATAAAATGAAGATAA 1 1 gbs1232 ACATACATTATTCATCTTATTTTTGCGATTTCAATAGTGATATGGTATATTTAAAGTAA 1 1 gbs1308 ­ scpB ACATACTTTTGCATGTTTTAACTTGCATTAAATCTTCTAAAGTAGTATAATTATATTAA 1 1 gbs1314 ­ int ACATACCAAAGTTTGAAGAAACTAGTAATTCTACAAATAATTTGGTAAAATTGAGGAAA 2 2 gbs1385 ­ ribD ACATACAAGTCTTGTTTCTCACTAGAATATCTTTTAAAAATCTGATAAAATAAGACTTT 1 1 gbs1468 ­ rpoB ACATACAAAGACTAAGATTACTTAGTCTTTTTTTCATGAAAATGATATAATAAAGTCAT 1 1 gbs1497 ­ dnaG ACATACAAGCTTTTGAAAAAATTTACACAGAAAAGAAAAAATGATATAATCAAATGTAA 1 1 gbs1499 ­ rpsU ACATACAAGTATCATAAAAATATTGACAATCTGCTTTTATTTGGGTATCCTAGTAAGTG 12 1 2 15 gbs1626 ­ tmk ACATACACAATCAAGTTGTGGGTGTCTTTTTTTGATAAATTTTGATAGAATAGTAGTAA 1 1 gbs1637 ­ cspR ACATACAAAACTCATGAATAGGTTGACTTTGTAGACTGAAGTGCTATAATAGTGTCAAC 1 1 gbs1638 ACATACAATAACACAGATAAACTTGTGACAAGCCCTAAATTAGGTTATAATTAACCTTT 1 1 gbs1650 ACATACTTTTGTTTACATATATTTGTAAACTCTTTCTTTTTTTGCTATAATGAGTCATG 1 1 gbs1662 ACATACCATTGTCAAAGTTTTGTTGATTTTATAGACTATTTAAGATATAATTGCCTGTG 1 1 gbs1681 ACATACCTTCTTGTCAATAAGGTTTCAAATCAGCTTGAAATATGATAAAATAAAACAGA 1 1 gbs1691 ACATACATTTCCATTTTACCAATTGCTATCAAAGTGCTATAATAATAGAGTTAAAATTA 1 1 2 gbs1724 ­ aroD ACATACTAAATTACATACTCTCTTTTTAATTGAGTCAGTTTTTGGTAAAATGAACTGAA 1 1 gbs1739 ­ efp ACATACCAAATCAATAAACTATTTGAGAAAGCAGGTTATTTGTGATAAAATGAGTTGAT 1 1 2 gbs1776 ACATACATACCATAAAGTCAAATTGACAGTTTCACTATTTTTTTGTAGACTGGATATTA 1 1 gbs1777 ­ glpF ACATACTTATTTTGTGATAAGCTTTACAATATTAAGCTTACTTGGTAGAATGGTTAATG 1 1 gbs1799 ACATACCATAATATCAAAACGCTTGTTTTGATATTTTTTATTTGGTATAATAATTGAAT 1 1 gbs1814 ­ rpsL ACATACTAAAAGTAATAAAAGCTTGACACATCATGTGTAAAATGATACTATGATAAACG 1 1 2 gbs1835 ­ dltR ACATACATAATGCGGAAATTCGTAGACAAATAGCCCCTATTTTTGTTAAAATATGAGGA 1 1 gbs1836 ­ rpmH ACATACAACTTGAAAGTATTTCTTGACAAGAGGCCTAAAATTGTTATAAAATAGTATGG 1 1 2 gbs1849 ACATACCCAATAAGAACACTTATTTTCATTTTTCTTATTAAATGATATAATACGGATAA 1 1 2 gbs1928 ­ relA ACATACTTGAGCCTCTAACTTCTTTTATTTTTAGGTTAAAAAGTGATAAAATAGGTACA 1 1 gbs2022 ACATACTTGAAATCGGATTATGGTTTCAATCCTTTTTTCGTTTTGTTATAATAGAAAAA 1 1 gbs2033 ACATACAAATCAAATTTAACTATTGACAATTATTTTTAAATGACGTAAACTTATAGGCA 1 1 gbs2101 ­ gidA ACATACAGCCTATCCCCTCTGGTTGACTTTTAAAAGATAAATGCTAAAATAAATTTAAC 1 1 rRNA 5S ACATACTATCCAAAAAGAGATATTGACAACGTTACGGTTTCTTGTTAGACTATAGATAT 2 2 rRNA 16S ACATACACTTAAAAAAAAGTAGTTGACAAAGCAGAATAAGTTTGCTAGAATATAGAAGT 1 1 tRNA thr ACATACATTTCTCCAAATAGAATTAGACTAAAAAAAACGGCTATTTTTCTAAGTAAAGA 2 2 tRNA cys ACATACATTTTACGAAAGAGGCTTGACGAATCTTTTTTTTTTCGATAGAATATTATCTG 1 1

total 61 23 16 100

IR‐right  ‐35 box  ‐10 box 

Figure S7 

Page 18: Modular evolution of TnGBSs, a new family of ICEs ......! 1! Modular evolution of TnGBSs, a new family of ICEs associating IS transposition, plasmid replication and conjugation for

RepA_N 

Rep_3 

RepE 

IntegraAon 

Tyrosine recombinase 

ReplicaAon 

DDE transposase 

Figure S8