modis collection 6 (c6) lai/fpar product user’s guide · modis collection 6 (c6) lai/fpar product...

13
1 MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide (Updated: April 21, 2020) Contents 1. Definitions Page 2 2. Summary of Changes in C6 Page 2 3. Algorithm Description Page 2 4. Standard MODIS Products Page 4 5. How to Obtain the Data Page 6 6. Content of the product file Page 6 7. Policies Page 11 8. Contact Information Page 11 9. Related Papers Page 11

Upload: others

Post on 26-Aug-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide · MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide (Updated: April 21, 2020) Contents 1. Definitions Page 2 2. Summary

1

MODISCollection6(C6)LAI/FPARProductUser’sGuide

(Updated:April21,2020)

Contents

1.Definitions Page22.SummaryofChangesinC6 Page23.AlgorithmDescription Page24.StandardMODISProducts Page45.HowtoObtaintheData Page66.Contentoftheproductfile Page67.Policies Page118.ContactInformation Page119.RelatedPapers Page11

Page 2: MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide · MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide (Updated: April 21, 2020) Contents 1. Definitions Page 2 2. Summary

2

1.DefinitionsLeafareaindex(LAI;dimensionless)isdefinedastheone−sidedgreenleafareaper

unitgroundareainbroadleafcanopiesandasone−halfthetotalneedlesurfaceareaperunitgroundareainconiferouscanopies.STD LAI is the estimated retrieval uncertainty, i.e., “true LAI” can differ from its

retrievalcounterpartby±STDLAI(SeeFigure1).Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR;

dimensionless)isdefinedasthefractionofincidentphotosyntheticallyactiveradiation(400−700nm)absorbedbythegreenelementsofavegetationcanopy.STDFPARis theestimatedretrievaluncertainty, i.e., “trueFPAR”candiffer fromits

retrievalcounterpartby±STDFPAR(SeeFigure1).2.SummaryofChangesinC6• UsesL2G–litesurfacereflectanceat500mresolutionas(MOD09GA1)inputinplace

ofreflectanceat1kmresolution(MODAGAGG2)inCollection5.Anintermediatedailysurface reflectance product (MOD15IP3) at 500 m resolution is created fromMOD09GAbeforebeingusedforLAI/FPARretrieval.

• Productsaregeneratedataspatialresolutionof500m.• Usesimprovedmulti-yearlandcoverproduct.3.AlgorithmDescriptionThe MODIS LAI/FPAR algorithm consists of a main Look-up-Table (LUT) based

procedurethatexploitsthespectralinformationcontentoftheMODISred(648nm)andnear-infrared (NIR,858nm)surface reflectances,and theback-upalgorithmthatusesempirical relationships between Normalized Difference Vegetation Index (NDVI) andcanopy LAI and FPAR. The LUT was generated using 3D radiative transfer equation[Knyazikhinetal.,1998]. Inputstothealgorithmare(i)vegetationstructuraltype,(ii)sun-sensor geometry, (iii) BRFs at red (648 nm) and near-infrared (NIR, 858 nm)spectral bands and (vi) their uncertainties (Table 1). Figure 1 illustrates the main

1MOD09GA is a MODIS daily surface reflectance product, which provides daily atmosphericallycorrected surface reflectance at 500 m resolution in seven spectral bands. MOD09GA can beaccessedviaReverbtool(PleaserefertotheSection5.HowtoObtaintheData)2MODAGAGG is a MODIS daily aggregated surface reflectance product, which provides dailyatmospherically corrected surface reflectance at 1 km resolution in seven spectral bands.MODAGAGGisnotanarchivedproduct.3MOD15IPistheintermediateMODISdailysurfacereflectanceproductat500mresolution,whichis preprocessed from the daily MOD09GA surface reflectance product, for LAI/FPAR production.ThisproductisanequivalentofMODAGAGGinC5andnotarchived.

Page 3: MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide · MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide (Updated: April 21, 2020) Contents 1. Definitions Page 2 2. Summary

3

algorithm:foreachpixelitcomparesobservedandmodeledspectralBRFsforasuiteofcanopy structures and soil patterns that represent an expected range of typicalconditions for a given biome type. All canopy/soil patterns and corresponding FPARvaluesforwhichmodeledandobservedBRFsdifferwithinaspecifieduncertaintylevelareconsideredasacceptablesolutions.ThemeanvaluesofLAI,FPAR,theirdispersions,STDLAIandSTDFPAR,arereportedasretrievalsandtheiruncertainties[Knyazikhinetal., 1998]. In the case of dense canopies, the reflectances saturate, and are thereforeweaklysensitivetochangesincanopyproperties.Thereliabilityofparametersretrievedunder the condition of saturation is low, that is, the dispersion of the solutiondistribution is large. Suchretrievalsare flagged inQA layers (Table5).When theLUTmethod fails to localizea solution, theback-upmethod isutilized.Thealgorithmpath(main or backup) is archived in QA layers (Table 5). Analyses of the algorithmperformance indicate thatbestquality,highprecisionretrievalsareobtained fromthemainalgorithm[Yangetal.2006b;Yangetal.2006c].Thealgorithmpathisthereforeakeyqualityindicator.The algorithm has interfaces with the MODIS Surface Reflectance Product

(MOD09GA) and theMODIS Land Cover Product (MCD12Q1). Technical details of thealgorithmcanbefoundintheAlgorithmTheoreticalBasisDocument(ATBD)4.

A

B

Figure1.Schematicillustrationofthemainalgorithm.PanelA:Distributionofvegetatedpixelswith respect to their reflectancesat redandnear-infrared (NIR) spectralbandsfromTerraMODIStileh12v04.Apointonthered-NIRplaneandanareaaboutit(yellowellipse defined by a𝜒#distribution) are treated as themeasured BRF at a given sun-sensorgeometryanditsuncertainty.Eachcombinationofcanopy/soilparametersandcorrespondingFPARvalues forwhichmodeled reflectancesbelong to theellipse is an

4ATBDforMODISLAI/FPARproductcanbedirectlydownloadedfrombelowlink:http://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf

Red$

Near(Infrared

$

Soil$line$(LAI=0)$

Prob

abili

ty d

ensit

y

Page 4: MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide · MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide (Updated: April 21, 2020) Contents 1. Definitions Page 2 2. Summary

4

acceptable solution. Panel B: Density distribution function of acceptable solutions.ShownissolutiondensitydistributionfunctionofLAIforfivedifferentpixels.ThemeanLAIanditsdispersion(STDLAI)aretakenastheLAIretrievalanditsuncertainty.Thistechnique is used to estimate mean FPAR and its dispersions (STD FPAR). From[Knyazikhinatal,1998].Table1.Theoreticalestimatesofuncertainties(%)intheBRFsusedintheC6LAI/FPARalgorithm

BiomeTypeUncertainty

Red(648nm) NIR(858nm)Biome1(Grasses/Cerealcrops) 20% 5%Biome2(Shrubs) 20% 5%Biome3(Broadleafcrops) 20% 5%Biome4(Savanna) 20% 5%Biome5(EvergreenBroadleafforest) 30% 15%Biome6(DeciduousBroadleafforest) 30% 15%Biome7(EvergreenNeedleleafforest) 30% 15%Biome8(DeciduousNeedleleafforest) 30% 15%4.StandardMODISProductsThe standardMODISC6 LAI/FPARproducts (M*D15A*H) are at 500−meter spatial

resolutionandincludeLAI/FPARretrievals fromTerraMODIS,AquaMODISandTerraMODIS+Aqua MODIS Combined. The temporal compositing periods are 8 and 4 days(Table2).

Table2.DescriptionoftheStandardMODISLAI/FPARproducts

OfficialName Platform RasterTypeSpatialResolution

TemporalGranularity

MOD15A2H Terra Tile 500m 8DayMYD15A2H Aqua Tile 500m 8Day

MCD15A2H Terra+AquaCombined

Tile 500m 8Day

MCD15A3H Terra+AquaCombined

Tile 500m 4Day

Page 5: MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide · MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide (Updated: April 21, 2020) Contents 1. Definitions Page 2 2. Summary

5

TheMODISLAI/FPARproductsusetheSinusoidalgridtillingsystem(Figure2).Tilesare10degreesby10degreesattheequator(Table3).Thetilecoordinatesystemstartsat (0, 0) (horizontal tile number, vertical tile number) in the upper left corner andproceedsright(horizontal)anddownward(vertical).Thetileinthebottomrightcorneris(35,17).Table3.DatasetcharacteristicsoftheMODISLAI/FPARproducts

Characteristics C6Product

TemporalCoverageMOD15:February18,2000–MYD15&MCD15:July4,2002–

Area ~10x10lat/longFileSize ~0.8MBcompressedProjection SinusoidalDataFormat HDF−EOSDimensions 2400x2400rows/columnsResolution 500meterScienceDataSets(SDSHDFLayers) 6

Figure2.MODISSinusoidalTilingSystem

MODISproductfilenames(i.e.,thelocalgranuleID)followanamingconventionthat

gives useful information regarding the specific product. For example, the filenameMOD15A2H.A2006001.h08v05.006.2006012234657.hdfindicates:

Page 6: MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide · MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide (Updated: April 21, 2020) Contents 1. Definitions Page 2 2. Summary

6

ü MOD15A2H–ProductShortNameü .A2006001–JulianDateofAcquisition(A−YYYYDDD)ü .h08v05–TileIdentifier(horizontalXX,verticalYY)ü .006–CollectionVersionü .2006012234657–JulianDateofProduction(YYYYDDDHHMMSS)ü .hdf–DataFormat(HDF−EOS)TheMODIS LAI/FPAR products have two sources ofmetadata: the embeddedHDF

metadata, and the external ECS metadata. The HDF metadata contains valuableinformationincludingglobalattributesanddataset−specificattributespertainingtothegranule. The ECS (generated by the EOSDIS Core System) .met file is the externalmetadata file in XML format, which is delivered to the user along with the MODISproduct.ItprovidesasubsetoftheHDFmetadata.SomekeyfeaturesofcertainMODISmetadataattributesincludethefollowing:

ü TheXdimandYdimrepresenttherowsandcolumnsofthedata,respectively.ü TheProjection andProjParams identify the projection and its corresponding

projectionparameters.ü TheSinusoidalProjectionisusedformostofthegriddedMODISlandproducts,

andhasauniquespheremeasuring6371007.181meters.ü The UpperLeftPoinitMtrs is in projection coordinates, and identifies the very

upperleftcorneroftheupperleftpixeloftheimagedata.ü The LowerRightMtrs identifies the very lower right corner of the lower right

pixeloftheimagedata.Theseprojectioncoordinatesaretheonlymetadatathataccuratelyreflecttheextremecornersofthegriddedimage.

ü ThereareadditionalBOUNDINGRECTANGLEandGRINGPOINT fieldswithinthemetadata, which represent the latitude and longitude coordinates of thegeographictilecorrespondingtothedata.

5.HowtoObtaintheDataNASA EARTHDATA (https://earthdata.nasa.gov/): This tool provides access to a

completedatarecordofallMODISproductsavailablefromtheLPDAAC.

6.ContentoftheproductfileTheMODISLAI/FPARproductisat500−meterresolutioninaSinusoidalgrid.Science

Data Sets provided in the product include LAI, FPAR, quality ratings, and standarddeviationforeachvariable,STDLAIandSTDFPAR(Table4).

Page 7: MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide · MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide (Updated: April 21, 2020) Contents 1. Definitions Page 2 2. Summary

7

Table4.ScientificDataSetsincludedintheMODISLAI/FPARproduct

ScientificDataSets(HDFLayers)(6)

Units BitTypeFillValue

ValidRange

MultiplyByScaleFactor

Fpar_500m Dimensionless8−bitunsignedinteger

249−255 0−100 0.01

Lai_500m Dimensionless8−bitunsignedinteger

249−255 0−100 0.1

FparLai_QC Classflag8−bitunsignedinteger

255 0−254 N/A

FparExtra_QC Classflag8−bitunsignedinteger

255 0−254 N/A

FparStdDev_500m5 Dimensionless8−bitunsignedinteger

248−255 0−100 0.01

LaiStdDev__500m5 Dimensionless8−bitunsignedinteger

248−255 0−100 0.1

6.1.DescriptionofQCSDSQualitycontrol (QC)measuresareproducedatboth the file (containingoneMODIS

tile)andatthepixellevelsfortheM*D15A*Hproduct.Atthetilelevel,theseappearasaset of EOSDIS core system (ECS) metadata fields. At the pixel level, quality controlinformation is representedby2data layers (FparLai_QCandFparExtra_QC) in the filewithM*D15A*Hproduct.NotethattheLAI/FPARalgorithmisexecutedirrespectiveofinputquality.ThereforeusershouldconsulttheQClayersoftheLAI/FPARproducttoselectreliableretrievals.

5ThemainalgorithmemploysaLUTmethodsimulatedfroma3-Dradiativetransfermodel.TheLUTmethodessentially searches forLAI/FPARs fora specific setof solarandviewzenithangles,observed BRFs at certain spectral bands and biome types. The outputs are the LAI/FPARmeanvalues (i.e.,Lai_500m/Fpar_500mscientificdata)averagedoverallacceptable solutions,and thestandarddeviation(i.e.,LaiStdDev/FparStdDevscientificdata)servingasameasureofthesolutionaccuracy.

Page 8: MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide · MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide (Updated: April 21, 2020) Contents 1. Definitions Page 2 2. Summary

8

Table5.ValuesofFparLAI_QC(8−bit)

BitNo. ParameterName BitComb.

FparLai_QC

0 MODLAND_QCbits0

Goodquality(mainalgorithmwithorwithoutsaturation)

1 Otherquality(back−upalgorithmorfillvalues)

1 Sensor0 Terra1 Aqua

2 DeadDetector0

Detectorsapparentlyfineforupto50%ofchannels1,2

1 Deaddetectorscaused>50%adjacentdetectorretrieval

3−4

CloudState(inheritedfromAggregate_QCbits{0,1}cloudstate)

00 0SignificantcloudsNOTpresent(clear)01 1SignificantcloudsWEREpresent

10 2Mixedcloudpresentinpixel

11 3Cloudstatenotdefined,assumedclear

5−7 SCF_QC(five−levelconfidencescore)

0000Main(RT)methodused,bestresultpossible(nosaturation)

001 1Main(RT)methodusedwithsaturation.Good,veryusable

0102Main(RT)methodfailedduetobadgeometry,empiricalalgorithmused

0113Main(RT)methodfailedduetoproblemsotherthangeometry,empiricalalgorithmused

1004Pixelnotproducedatall,valuecouldn’tberetrieved(possiblereasons:badL1Bdata,unusableMOD09GAdata)

Note, in theFparLai_QC, the fieldMODLAND is thestandardonecommon to theall

MODLAND products and specifies the overall quality of the product. Also, several bitfields in the M*D15A*H QA are passed-thru from the corresponding bitfields of theMOD09GAsurfacereflectancesproduct(CloudState,LandSea,etc.).ThekeyindicatorofretrievalqualityoftheLAI/FPARproductisSCF_QCbitfielddthatrepresentsalgorithmpath.M*D15A*Hbitpatternsareparsedfromrighttoleft.Individualbitswithinabitword

are read from left to right. The following example illustrates the interpretation of

Page 9: MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide · MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide (Updated: April 21, 2020) Contents 1. Definitions Page 2 2. Summary

9

FparLai_QC. Let assume a single pixel’s value from FparLai_QC layer is 64, thus thisdecimal value can be converted to a binary value of 1000000 as shown in Figure 3.Interpretationofbit-stringsisalsoshowninFigure3basedonTable5.

Figure3.ExampleofFparLai_QCbit-stringanditsinterpretation

Table5.ValuesofFparExtra_QC(8−bit)

BitNo. ParameterName BitComb. FparExtra_QC

0−1 LandSeaPass−Thru

00 0LANDAggrQC(3,5)values{001}

01 1SHOREAggrQC(3,5)values{000,010,100}

102FRESHWATERAggrQC(3,5)values{011,101}

11 3OCEANAggrQC(3,5)values{110,111}

2Snow_Ice(fromAggregate_QCbits)

0 Nosnow/icedetected1 Snow/icedetected

3 Aerosol0

Noorlowatmosphericaerosollevelsdetected

1 Averageorhighaerosollevelsdetected

4Cirrus(fromAggregate_QCbits{8,9})

0 Nocirrusdetected

1 Cirruswasdetected

5 Internal_CloudMask0 Noclouds1 Cloudsweredetected

6 Cloud_Shadow0 Nocloudshadowdetected1 Cloudshadowdetected

7 SCF_Biome_Mask0 Biomeoutsideinterval<1,4>1 Biomeininterval<1,4>

Page 10: MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide · MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide (Updated: April 21, 2020) Contents 1. Definitions Page 2 2. Summary

10

ExampleforinterpretationofFparExtra_QCbit-stringsisshowninFigure4.

Figure4.ExampleofFparExtra_QCbit-stringanditsinterpretation

6.2.DescriptionofFillvalueforSDSsUsing the MODIS land cover product (MCD12Q1), each 500m pixel is classified

according to its status as a land or non-land pixel. A number of non-terrestrial pixelclassesarenowcarriedthroughintheproductdatapixels(notQA/QCpixels)whenthealgorithmcouldnotretrieveabiophysicalestimate(Table6and7).Table6.LAIandFPARFillvalueLegends

Value Description

255Fillvalue,assignedwhen:theMOD09GAsurfacereflectanceforchannelVIS,NIRwasassignedits_Fillvalue,orlandcoverpixelitselfwasassignedFillvalue255or254

254 landcoverassignedasperennialsaltorinlandfreshwater253 landcoverassignedasbarren,sparsevegetation(rock,tundra,desert)252 landcoverassignedasperennialsnow,ice251 landcoverassignedas“permanent”wetlands/inundatedmarshlands250 landcoverassignedasurban/built−up249 landcoverassignedas“unclassified”ornotabletodetermine

Page 11: MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide · MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide (Updated: April 21, 2020) Contents 1. Definitions Page 2 2. Summary

11

Table7.STDLAIandSTDFPARFillValueLegends

Value Description

255Fillvalue,assignedwhen:theMOD09GAsurfacereflectanceforchannelVIS,NIRwasassignedits_Fillvalue,orlandcoverpixelitselfwasassigned_Fillvalue255or254

254 landcoverassignedasperennialsaltorinlandfreshwater253 landcoverassignedasbarren,sparsevegetation(rock,tundra,desert)252 landcoverassignedasperennialsnow,ice251 landcoverassignedas“permanent”wetlands/inundatedmarshlands250 landcoverassignedasurban/built−up249 landcoverassignedas“unclassified”ornotabletodetermine248 Nostandarddeviationavailable,pixelproducedusingbackupmethod7.PoliciesPlease find the currentMODIS−relatedDatapolicies on theMODISPolicies page at

https://lpdaac.usgs.gov/lpdaac/products/modis_policies.For informationonhowtociteLPDAACdata,pleaseseeourDataCitationspageat

https://lpdaac.usgs.gov/about/citing_lp_daac_and_data.

8.ContactInformationRangaMyneniDepartmentofGeographyandEnvironment,BostonUniversityEmail:[email protected]:http://cliveg.bu.edu9.RelatedPapersAhletal.,2006.MonitoringSpringCanopyPhenologyofaDeciduousBroadleafForest

UsingMODIS,RemoteSens.Environ.,104:88–95.Baret et al., 2006. Evaluation of the representativeness of networks of sites for the

validationand inter–comparisonofglobal landbiophysicalproducts.Propositionof the CEOS–BELMANIP. IEEE Trans. Geosci. Remote Sens., 44: 1794–1803. DOI:10.1126/science.1199048,2011.

Ganguly et al., 2008. Generating vegetation leaf area index earth system data recordsfrommultiplesensors.Part1:Theory.RemoteSens.Environ.,Vol.112(2008)4333–4343,doi:10.1016/j.rse.2008.07.014

Page 12: MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide · MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide (Updated: April 21, 2020) Contents 1. Definitions Page 2 2. Summary

12

Ganguly et al., 2008. Generating vegetation leaf area index earth system data recordsfrommultiple sensors. Part 2: Implementation, Analysis and Validation. RemoteSens.Environ.,112(2008)4318–4332,doi:10.1016/j.rse.2008.07.013

Gaoetal.,2008.AnAlgorithmtoProduceTemporallyandSpatiallyContinuousMODIS–LAITimeSeries.Geophys.Res.Lett.,doi:10.1109/LGRS.2007.907971.

Garrigues et al., 2008. Intercomparison and sensitivity analysis of leaf area indexretrievals fromLAI–2000, AccuPAR, and digital hemispherical photography overcroplands,Agric.For.Meteorol.,doi:10.1016/j.agrformet.2008.02.014.

Garrigues et al., 2008. Validation and Intercomparison of Global Leaf Area IndexProductsDerived fromRemote SensingData, J.Geophys.Res., VOL. 113, G02028,doi:10.1029/2007JG000635,2008.

Hashimoto et al., 2012 Exploring Simple Algorithms for Estimating Gross PrimaryProduction in Forested Areas from Satellite Data, Remote Sens., 4, 303–326;doi:10.3390/rs4010303

Huang et al., 2006. The Importance of Measurement Error for Deriving AccurateReference Leaf Area IndexMaps for Validation of theMODIS LAI Product. IEEETrans.Geosci.RemoteSens.,44:1866–1871.

Justice,etal.,1998.Themoderateresolutionimagingspectroradiometer(MODIS):Landremote sensing for global change research. IEEE Trans. Geosc. Remote Sens.,36:1228–1249.

Knyazikhinetal.,1998.Synergisticalgorithmforestimatingvegetationcanopyleafareaindex and fraction of absorbed photosynthetically active radiation from MODISandMISRdata.J.Geophys.Res.,103:32,257–32,276.

Morisette et al., 2006. Validation of global moderate resolution LAI Products: aframework proposed within the CEOS Land Product Validation subgroup. IEEETrans.Geosci.RemoteSens.44:1804–1817.

Mynenietal.,2002.Globalproductsofvegetation leafareaandfractionabsorbedPARfromyearoneofMODISdata.RemoteSens.Environ.,83:214–231.

Mynenietal.,2007.Largeseasonalchangesinleafareaofamazonrainforests.Proc.Natl.Acad.Sci.,104:4820–4823,doi:10.1073/pnas.0611338104.

Privette et al., 1998. Global validation of EOS LAI and FPARproducts.EarthObserver,10(6):39–42.

Privette et al., 2002. Early spatial and temporal validation of MODIS LAI product inAfrica.RemoteSens.Environ.,83:232–243.

Samantaetal.,2011.Commenton"Drought–InducedReductioninGlobalTerrestrialNetPrimaryProductionfrom2000Through2009",Science,Vol.333,p.1093,

Samantaetal.,2012SeasonalchangesinleafareaofAmazonforestsfromleafflushingand abscission, J. Geophys. Res. VOL. 117, G01015, doi:10.1029/2011JG001818,2012

Page 13: MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide · MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide (Updated: April 21, 2020) Contents 1. Definitions Page 2 2. Summary

13

Shabanovetal.,2003.TheeffectofspatialheterogeneityinvalidationoftheMODISLAIandFPARalgorithmoverbroadleafforests,RemoteSens.Environ.,85:410–423.

Tan et al., 2006. The impact of geolocation offsets on the local spatial properties ofMODIS data: Implications for validation, compositing, and band–to–bandregistration,RemoteSens.Environ.,105:98–114.

Tian et al., 2000. Prototyping of MODIS LAI and FPAR algorithm with LASUR andLANDSATdata.IEEETrans.Geosci.RemoteSens.,38(5):2387–2401.

Tian et al., 2002a. Multiscale Analysis and Validation of the MODIS LAI Product. I.UncertaintyAssessment.RemoteSens.Environ.,83:414–430.

Tian et al., 2002b. Multiscale Analysis and Validation of the MODIS LAI Product. II.SamplingStrategy.RemoteSens.Environ.,83:431–441.

Tian et al., 2002c. Radiative transfer based scaling of LAI/FPAR retrievals fromreflectancedataofdifferentresolutions.RemoteSens.Environ.,84:143–159.

Wang et al., 2001. Investigation of product accuracy as a function of input andmodeluncertainities:CasestudywithSeaWiFSandMODISLAI/FPARAlgorithm.RemoteSens.Environ.,78:296–311.

Xu et al., 2018. Analysis of global lai/fpar products from viirs andmodis sensors forspatio-temporalconsistencyanduncertaintyfrom2012–2016.Forests,9(2),p.73.

Xu et al., 2020 Improving leaf area index retrieval over heterogeneous surfacemixedwithwaterRemoteSens.Environ.,240:111700.

Yan et al., 2016a. Evaluation of MODIS LAI/FPAR product collection 6. Part 1:Consistencyandimprovements.RemoteSens.,8(5),p.359.

Yanetal.,2016b.EvaluationofMODISLAI/FPARproductcollection6.Part2:Validationandintercomparison.RemoteSens.,8(6),p.460.

Yang et al., 2006a. Analysis of Leaf Area Index and Fraction of PAR Absorbed byVegetationProductsfromtheTerraMODISSensor:2000–2005.IEEETrans.Geosci.RemoteSens.,44:1829–1842.

Yanget al., 2006b.Analysisofprototype collection5productsof leaf area index fromTerraandAquaMODISsensors,RemoteSens.Environ.,104,297–312.

Yang et al., 2006c. MODIS Leaf Area Index Products: From Validation to AlgorithmImprovement.IEEETrans.Geosci.RemoteSens.,44:1885–1898.